

# TUSB8041-Q1 汽车类四端口 USB 3.0 集线器

## 1 特性

- 四端口 USB 3.0 集线器
- USB 2.0 集线器特性
  - 多事务转换器 (MTT) 集线器：四个事务转换器
  - 每个事务转换器有四个异步端点缓冲器
- 支持电池充电
  - 充电下行端口 (CDP) 模式（上行端口已连接）
  - 专用充电端口 (DCP) 模式（上行端口未连接）
  - DCP 模式符合中国电信行业标准 YD/T 1591-2009
  - D+/D- 分压器模式
- 支持作为一个 USB 3.0 或者 USB 2.0 复合器件运行
- 支持每端口或成组电源开关以及过流告知输入
- 可使用一次性可编程 (OTP) ROM、串行 EEPROM 或 I<sup>2</sup>C/SMBus 受控接口进行自定义配置：
  - VID 和 PID
  - 端口定制
  - 生产商和产品字串 (OTP ROM 不支持)
  - 序列号 (OTP ROM 不支持)
- 可使用引脚选择或 EEPROM/I<sup>2</sup>C/SMBus 受控接口选择应用特性
- 提供 128 位通用唯一标识符 (UUID)
- 支持通过 USB 2.0 上行端口进行板载和系统内 OTP/EEPROM 编程
- 单时钟输入，24MHz 晶振或者振荡器
- 无特殊驱动程序要求；可与任一支持 USB 堆叠的

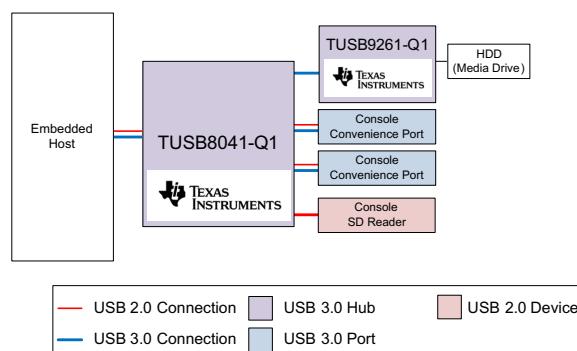
## 操作系统无缝工作

- 64 引脚耐热增强型薄型四方扁平 (HTQFP) 封装 (PAP)

## 2 应用

- 汽车
- 计算机系统
- 扩展坞
- 监视器
- 机顶盒

## 3 说明


TUSB8041-Q1 是一款四端口 USB 3.0 集线器。该器件在上行端口上可提供同步超快速和高速/全速 USB 连接，在下行端口上可提供超快速、高速、全速或者低速 USB 连接。当上行端口被连接到一个只支持高速或者全速/低速连接的电气环境中时，下行端口上的超快速 USB 连接被禁用。当上行端口被连接到一个只支持全速/低速连接的电气环境中时，下行端口上的超快速 USB 和高速连接被禁用。

### 器件信息<sup>(1)</sup>

| 器件型号        | 封装         | 封装尺寸（标称值）         |
|-------------|------------|-------------------|
| TUSB8041-Q1 | HTQFP (64) | 10.00mm x 10.00mm |

(1) 如需了解所有可用封装，请见数据表末尾的可订购产品附录。

## 图



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

English Data Sheet: [SLLSEE6](#)

## 目录

|   |                                                 |    |      |                                              |    |
|---|-------------------------------------------------|----|------|----------------------------------------------|----|
| 1 | 特性 .....                                        | 1  | 8.4  | Device Functional Modes .....                | 15 |
| 2 | 应用 .....                                        | 1  | 8.5  | Register Maps .....                          | 16 |
| 3 | 说明 .....                                        | 1  | 9    | <b>Applications and Implementation .....</b> | 28 |
| 4 | 修订历史记录 .....                                    | 2  | 9.1  | Application Information .....                | 28 |
| 5 | 说明 (续) .....                                    | 2  | 9.2  | Typical Application .....                    | 28 |
| 6 | <b>Pin Configuration and Functions .....</b>    | 4  | 10   | <b>Power Supply Recommendations .....</b>    | 36 |
| 7 | <b>Specifications .....</b>                     | 9  | 10.1 | TUSB8041-Q1 Power Supply .....               | 36 |
|   | 7.1 Absolute Maximum Ratings .....              | 9  | 10.2 | Downstream Port Power .....                  | 36 |
|   | 7.2 ESD Ratings .....                           | 9  | 10.3 | Ground .....                                 | 36 |
|   | 7.3 Recommended Operating Conditions .....      | 9  | 11   | <b>Layout .....</b>                          | 37 |
|   | 7.4 Thermal Information .....                   | 10 | 11.1 | Layout Guidelines .....                      | 37 |
|   | 7.5 Electrical Characteristics, 3.3-V I/O ..... | 10 | 11.2 | Layout Examples .....                        | 38 |
|   | 7.6 Timing Requirements, Power-Up .....         | 11 | 12   | <b>器件和文档支持 .....</b>                         | 40 |
|   | 7.7 Hub Input Supply Current .....              | 11 | 12.1 | 社区资源 .....                                   | 40 |
| 8 | <b>Detailed Description .....</b>               | 12 | 12.2 | 商标 .....                                     | 40 |
|   | 8.1 Overview .....                              | 12 | 12.3 | 静电放电警告 .....                                 | 40 |
|   | 8.2 Functional Block Diagram .....              | 12 | 12.4 | Glossary .....                               | 40 |
|   | 8.3 Feature Description .....                   | 12 | 13   | 机械、封装和可订购信息 .....                            | 41 |

## 4 修订历史记录

## Changes from Revision A (August 2015) to Revision B

## Page

|   |                                                                                                                                                                                                         |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| • | Changed Active High. (PWRCTL_POL = 0) To: Active High. (PWRCTL_POL = 1) in 表 48 .....                                                                                                                   | 29 |
| • | Changed text in the <i>Clock, Reset, and Misc</i> section From: "The PWRCTL_POL is pulled down which results in active low" To: "The PWRCTL_POL is left unconnected which results in active high" ..... | 33 |
| • | Deleted R17 from pin 41 of 图 11 .....                                                                                                                                                                   | 33 |

## Changes from Original (July 2014) to Revision A

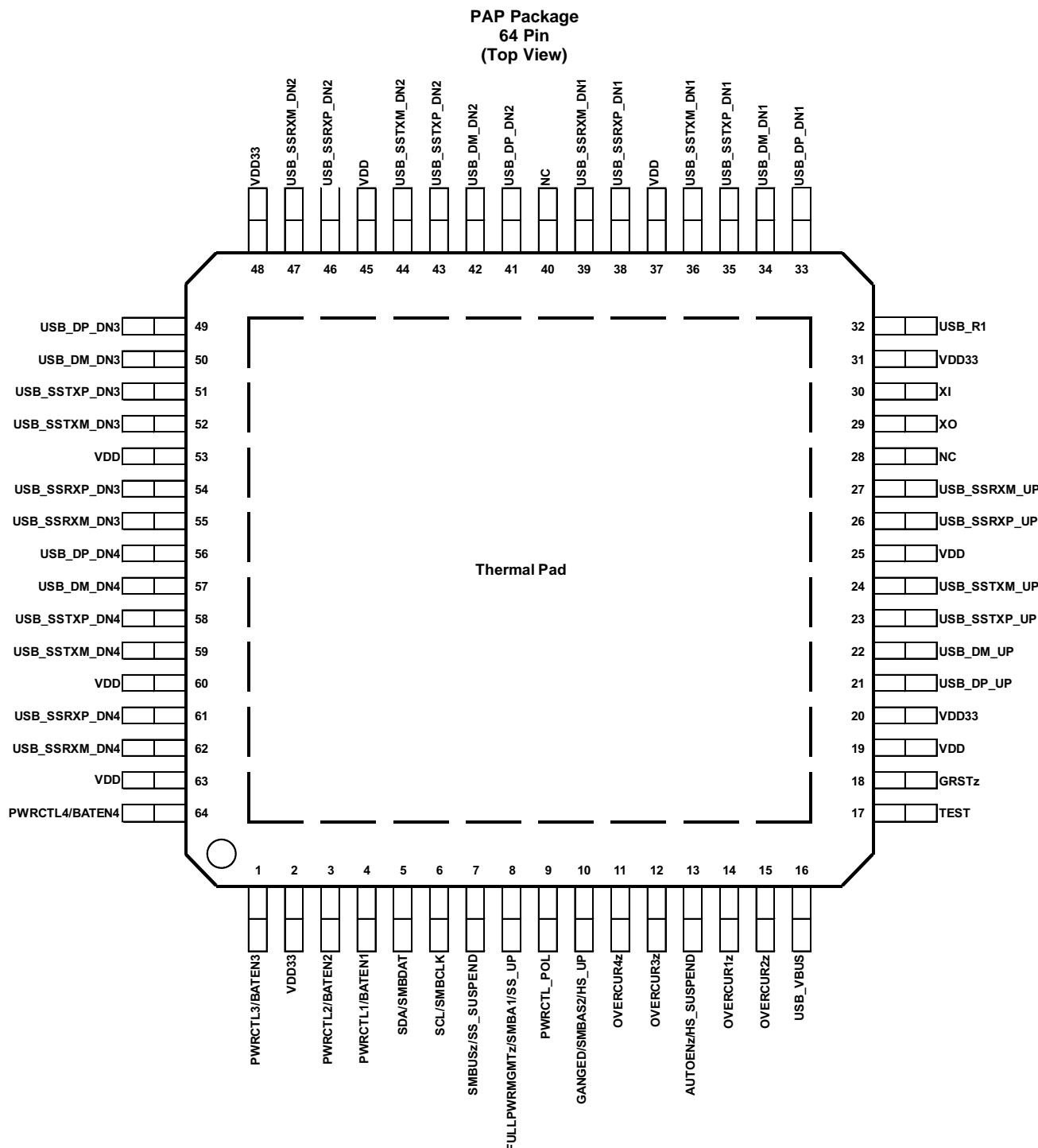
## Page

|   |                                                                                                                                                                                                                              |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| • | Added Note ""Power switching must be supported for battery charging applications"" to pin FULLPWRMGMTz / SMBA1/SS_UP in the <i>Pin Functions</i> table .....                                                                 | 7  |
| • | Added Note "Individual power control must be enabled for battery charging applications" to pin GANGED / SMBA2 / HS_UP in the <i>Pin Functions</i> table .....                                                                | 8  |
| • | Changed the <i>Handling Ratings</i> table to the <i>ESD Ratings</i> table .....                                                                                                                                              | 9  |
| • | Changed the <i>Timing Requirements, Power-Up</i> table: Deleted text from the $t_{d1}$ description: "There is no timing relationship between VDD33 and VDD": Added Note 2 to the MIN value .....                             | 11 |
| • | Added Note: "An active reset is required.." To the <i>Timing Requirements, Power-Up</i> table .....                                                                                                                          | 11 |
| • | Changed text in the <i>Clock, Reset, and Misc</i> section From: "The PWRCTL_POL is pulled down which results in active high power enable" To: "The PWRCTL_POL is pulled down which results in active low power enable" ..... | 33 |

## 5 说明 (续)

TUSB8041-Q1 支持每端口或成组电源开关和过流保护，而且支持电池充电应用。

按照 USB 主机的要求，一个端口电源单独控制集线器开关为每个下行端口加电或者断电。同样地，当一个端口电源单独控制集线器感测到一个过流事件时，它只关闭到受影响的下行端口的电源。


当需要为任一端口供电时，一个成组集线器开关打开到其所有下行端口的电源。只有当所有端口处于电源可被移除的状态时，到下行端口的电源才可被关闭。同样地，当一个成组集线器感测到一个过流事件时，到所有下行端口的电源将被关闭。

TUSB8041-Q1 下行端口可提供电池充电连接下行端口 (CDP) 握手支持，以此为电池充电 应用 提供支持。未连接上行端口时，该器件还支持专用充电端口 (DCP) 模式。DCP 模式支持 USB 电池充电并且符合中国电信行业标准 YD/T 1591-2009，能够为 USB 器件提供支持。此外，未连接上行端口时，自动模式能够为 BC 器件以及支持分压器模式充电解决方案的器件提供透明支持。

TUSB8041-Q1 能够为包括电池充电支持在内的部分 特性 提供引脚搭接配置，还能够通过 OTP ROM、I<sup>2</sup>C EEPROM 或 I<sup>2</sup>C/SMBus 受控接口为 PID、VID、自定义端口和物理层配置提供定制支持。使用 I<sup>2</sup>C EEPROM 或 I<sup>2</sup>C/SMBus 受控接口时，还可以提供定制字串支持。

该器件采用 64 引脚 PAP 封装，专用于在 -40°C 到 85°C 的温度范围内工作。

## 6 Pin Configuration and Functions



### Pin Functions

| PIN                            |     | I/O     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------|-----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                           | NO. |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Clock and Reset Signals</b> |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GRSTz                          | 18  | I<br>PU | Global power reset. This reset brings all of the TUSB8041-Q1 internal registers to their default states. When GRSTz is asserted, the device is completely nonfunctional.                                                                                                                                                                                                                                                                       |
| XI                             | 30  | I       | Crystal input. This pin is the crystal input for the internal oscillator. The input may alternately be driven by the output of an external oscillator. When using a crystal a 1-MΩ feedback resistor is required between XI and XO.                                                                                                                                                                                                            |
| XO                             | 29  | O       | Crystal output. This pin is the crystal output for the internal oscillator. If XI is driven by an external oscillator this pin may be left unconnected. When using a crystal a 1-MΩ feedback resistor is required between XI and XO.                                                                                                                                                                                                           |
| <b>USB Upstream Signals</b>    |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| USB_SSTXP_UP                   | 23  | O       | USB SuperSpeed transmitter differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSTXM_UP                   | 24  | O       | USB SuperSpeed transmitter differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSRXP_UP                   | 26  | I       | USB SuperSpeed receiver differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_SSRXM_UP                   | 27  | I       | USB SuperSpeed receiver differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_DP_UP                      | 21  | I/O     | USB High-speed differential transceiver (positive)                                                                                                                                                                                                                                                                                                                                                                                             |
| USB_DM_UP                      | 22  | I/O     | USB High-speed differential transceiver (negative)                                                                                                                                                                                                                                                                                                                                                                                             |
| USB_R1                         | 32  | I       | Precision resistor reference. A 9.53-kΩ ±1% resistor should be connected between USB_R1 and GND.                                                                                                                                                                                                                                                                                                                                               |
| USB_VBUS                       | 16  | I       | USB upstream port power monitor. The VBUS detection requires a voltage divider. The signal USB_VBUS must be connected to VBUS through a 90.9-KΩ ±1% resistor, and to ground through a 10-kΩ ±1% resistor from the signal to ground.                                                                                                                                                                                                            |
| <b>USB Downstream Signals</b>  |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| USB_SSTXP_DN1                  | 35  | O       | USB SuperSpeed transmitter differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSTXM_DN1                  | 36  | O       | USB SuperSpeed transmitter differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSRXP_DN1                  | 38  | I       | USB SuperSpeed receiver differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_SSRXM_DN1                  | 39  | I       | USB SuperSpeed receiver differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_DP_DN1                     | 33  | I/O     | USB High-speed differential transceiver (positive)                                                                                                                                                                                                                                                                                                                                                                                             |
| USB_DM_DN1                     | 34  | I/O     | USB High-speed differential transceiver (negative)                                                                                                                                                                                                                                                                                                                                                                                             |
| PWRCTL1/BATEN1                 | 4   | I/O, PD | <p>USB Port 1 Power On Control for Downstream Power/Battery Charging Enable. The pin is used for control of the downstream power switch for Port 1.</p> <p>In addition, the value of the pin is sampled at the de-assertion of reset to determine the value of the battery charging support for Port 1 as indicated in the Battery Charging Support register:</p> <p>0 = Battery charging not supported<br/>1 = Battery charging supported</p> |
| OVERCUR1z                      | 14  | I, PU   | <p>USB Port 1 Over-Current Detection. This pin is used to connect the over current output of the downstream port power switch for Port 1.</p> <p>0 = An over current event has occurred<br/>1 = An over current event has not occurred</p> <p>This pin can be left unconnected if power management is not implemented. If power management is enabled, the external circuitry needed should be determined by the power switch.</p>             |
| USB_SSTXP_DN2                  | 43  | O       | USB SuperSpeed transmitter differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSTXM_DN2                  | 44  | O       | USB SuperSpeed transmitter differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSRXP_DN2                  | 46  | I       | USB SuperSpeed receiver differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_SSRXM_DN2                  | 47  | I       | USB SuperSpeed receiver differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_DP_DN2                     | 41  | I/O     | USB High-speed differential transceiver (positive)                                                                                                                                                                                                                                                                                                                                                                                             |
| USB_DM_DN2                     | 42  | I/O     | USB High-speed differential transceiver (negative)                                                                                                                                                                                                                                                                                                                                                                                             |

## Pin Functions (continued)

| PIN            |     | I/O     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|-----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME           | NO. |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PWRCTL2/BATEN2 | 3   | I/O, PD | <p>USB Port 2 Power On Control for Downstream Power/Battery Charging Enable. The pin is used for control of the downstream power switch for Port 2.</p> <p>In addition, the value of the pin is sampled at the de-assertion of reset to determine the value of the battery charging support for Port 2 as indicated in the Battery Charging Support register:</p> <ul style="list-style-type: none"> <li>0 = Battery charging not supported</li> <li>1 = Battery charging supported</li> </ul> |
| OVERCUR2z      | 15  | I, PU   | <p>USB Port 2 Over-Current Detection. This pin is used to connect the over current output of the downstream port power switch for Port 2.</p> <ul style="list-style-type: none"> <li>0 = An over current event has occurred</li> <li>1 = An over current event has not occurred</li> </ul> <p>This pin be left unconnected if power management is not implemented. If power management is enabled, the external circuitry needed should be determined by the power switch.</p>                 |
| USB_SSTXP_DN3  | 51  | O       | USB SuperSpeed transmitter differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSTXM_DN3  | 52  | O       | USB SuperSpeed transmitter differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSRXP_DN3  | 54  | I       | USB SuperSpeed receiver differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_SSRXM_DN3  | 55  | I       | USB SuperSpeed receiver differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_DP_DN3     | 49  | I/O     | USB High-speed differential transceiver (positive)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| USB_DM_DN3     | 50  | I/O     | USB High-speed differential transceiver (negative)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PWRCTL3/BATEN3 | 1   | I/O, PD | <p>USB Port 3 Power On Control for Downstream Power/Battery Charging Enable. The pin is used for control of the downstream power switch for Port 3.</p> <p>In addition, the value of the pin is sampled at the de-assertion of reset to determine the value of the battery charging support for Port 3 as indicated in the Battery Charging Support register:</p> <ul style="list-style-type: none"> <li>0 = Battery charging not supported</li> <li>1 = Battery charging supported</li> </ul> |
| OVERCUR3z      | 12  | I, PU   | <p>USB Port 3 Over-Current Detection. This pin is used to connect the over current output of the downstream port power switch for Port 3.</p> <ul style="list-style-type: none"> <li>0 = An over current event has occurred</li> <li>1 = An over current event has not occurred</li> </ul> <p>This pin can be left unconnected if power management is not implemented. If power management is enabled, the external circuitry needed should be determined by the power switch.</p>             |
| USB_SSTXP_DN4  | 58  | O       | USB SuperSpeed transmitter differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSTXM_DN4  | 59  | O       | USB SuperSpeed transmitter differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| USB_SSRXP_DN4  | 61  | I       | USB SuperSpeed receiver differential pair (positive)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_SSRXM_DN4  | 62  | I       | USB SuperSpeed receiver differential pair (negative)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USB_DP_DN4     | 56  | I/O     | USB High-speed differential transceiver (positive)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| USB_DM_DN4     | 57  | I/O     | USB High-speed differential transceiver (negative)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PWRCTL4/BATEN4 | 64  | I/O, PD | <p>USB Port 4 Power On Control for Downstream Power/Battery Charging Enable. The pin is used for control of the downstream power switch for Port 4.</p> <p>In addition, the value of the pin is sampled at the de-assertion of reset to determine the value of the battery charging support for Port 4 as indicated in the Battery Charging Support register:</p> <ul style="list-style-type: none"> <li>0 = Battery charging not supported</li> <li>1 = Battery charging supported</li> </ul> |

**Pin Functions (continued)**

| PIN                                   |     | I/O     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                                  | NO. |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OVERCUR4z                             | 11  | I, PU   | <p>USB Port 4 Over-Current Detection. This pin is used to connect the over current output of the downstream port power switch for Port 4.</p> <p>0 = An over current event has occurred<br/>1 = An over current event has not occurred</p> <p>This pin can be left unconnected if power management is not implemented. If power management is enabled, the external circuitry needed should be determined by the power switch.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>I<sup>2</sup>C/SMBUS Signals</b>   |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SCL/SMBCLK                            | 6   | I/O, PD | <p>I<sup>2</sup>C clock/SMBus clock. Function of pin depends on the setting of the SMBUSz input.</p> <p>When SMBUSz = 1, this pin acts as the serial clock interface for an I<sup>2</sup>C EEPROM.</p> <p>When SMBUSz = 0, this pin acts as the serial clock interface for an SMBus host.</p> <p>Can be left unconnected if external interface not implemented.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SDA/SMBDAT                            | 5   | I/O, PD | <p>I<sup>2</sup>C data/SMBus data. Function of pin depends on the setting of the SMBUSz input.</p> <p>When SMBUSz = 1, this pin acts as the serial data interface for an I<sup>2</sup>C EEPROM.</p> <p>When SMBUSz = 0, this pin acts as the serial data interface for an SMBus host.</p> <p>Can be left unconnected if external interface not implemented.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SMBUSz/SS_SUSPEND                     | 7   | I/O, PU | <p>I<sup>2</sup>C/SMBus mode select/SuperSpeed USB Suspend Status. The value of the pin is sampled at the de-assertion of reset set I<sup>2</sup>C or SMBus mode as follows:</p> <p>1 = I<sup>2</sup>C Mode Selected<br/>0 = SMBus Mode Selected</p> <p>Can be left unconnected if external interface not implemented.</p> <p>After reset, this signal indicates the SuperSpeed USB Suspend status of the upstream port if enabled through the Additional Feature Configuration register. When enabled a value of 1 indicates the connection is suspended.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Test and Miscellaneous Signals</b> |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FULLPWRMGMTz/<br>SMBA1/SS_UP          | 8   | I/O, PD | <p>Full power management enable/SMBus address bit 1/SuperSpeed USB Connection Status Upstream port.</p> <p>The value of the pin is sampled at the de-assertion of reset to set the power switch control follows:</p> <p>0 = Power switching and over current inputs supported<br/>1 = Power switching and over current inputs not supported</p> <p>Full power management is the ability to control power to the downstream ports of the TUSB8041-Q1 using PWRCTL[4:1]/BATEN[4:1].</p> <p>When SMBus mode is enabled using SMBUSz, this pin sets the value of the SMBus slave address bit 1.</p> <p>Can be left unconnected if full power management and SMBus are not implemented.</p> <p>After reset, this signal indicates the SuperSpeed USB connection status of the upstream port if enabled through the Additional Feature Configuration register. When enabled a value of 1 indicates the upstream port is connected to a SuperSpeed USB capable port.</p> <p>Note: Power switching must be supported for battery charging applications.</p> |
| PWRCTL_POL                            | 9   | I/O, PU | <p>Power Control Polarity.</p> <p>The value of the pin is sampled at the de-assertion of reset to set the polarity of PWRCTL[4:1].</p> <p>0 = PWRCTL polarity is active low<br/>1 = PWRCTL polarity is active high</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

**Pin Functions (continued)**

| PIN                             |                                    | I/O     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                            | NO.                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GANGED/SMBA2/<br>HS_UP          | 10                                 | I/O, PD | <p>Ganged operation enable/SMBus Address bit 2/HS Connection Status Upstream Port. The value of the pin is sampled at the de-assertion of reset to set the power switch and over current detection mode as follows:</p> <ul style="list-style-type: none"> <li>0 = Individual power control supported when power switching is enabled</li> <li>1 = Power control gangs supported when power switching is enabled</li> </ul> <p>When SMBus mode is enabled using SMBUSz, this pin sets the value of the SMBus slave address bit 2.</p> <p>After reset, this signal indicates the High-speed USB connection status of the upstream port if enabled through the Additional Feature Configuration register. When enabled a value of 1 indicates the upstream port is connected to a High-speed USB capable port.</p> <p>Note: Individual power control must be enabled for battery charging applications.</p> |
| AUTOENz/<br>HS_SUSPEND          | 13                                 | I/O, PU | <p>Automatic Charge Mode Enable/HS Suspend Status. The value of the pin is sampled at the de-assertion of reset to determine if automatic mode is enabled as follows:</p> <ul style="list-style-type: none"> <li>0 = Automatic Mode is enabled on ports that are enabled for battery charging when the hub is unconnected. Please note that CDP is not supported on Port 1 when operating in Automatic mode.</li> <li>1 = Automatic Mode is disabled</li> </ul> <p>This value is also used to set the autoEnz bit in the Battery Charging Support Register. After reset, this signal indicates the High-speed USB Suspend status of the upstream port if enabled through the Additional Feature Configuration register. When enabled a value of 1 indicates the connection is suspended.</p>                                                                                                              |
| TEST                            | 17                                 | I, PD   | This pin is reserved for factory test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Power and Ground Signals</b> |                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VDD                             | 19, 25,<br>37, 45<br>53, 60,<br>63 | PWR     | 1.1-V power rail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VDD33                           | 2, 20,<br>31, 48                   | PWR     | 3.3-V power rail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VSS                             | THERM<br>AL PAD                    | PWR     | Ground. Thermal pad must be connected to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NC                              | 28, 40                             | —       | No connect, leave floating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## 7 Specifications

### 7.1 Absolute Maximum Ratings<sup>(1)</sup>

over operating free-air temperature range (unless otherwise noted)

|                                |                                                                                            | MIN  | MAX  | UNIT |
|--------------------------------|--------------------------------------------------------------------------------------------|------|------|------|
| Supply Voltage Range           | $V_{DD}$ Steady-state supply voltage                                                       | -0.3 | 1.4  | V    |
|                                | $V_{DD33}$ Steady-state supply voltage                                                     | -0.3 | 3.8  | V    |
| Voltage Range                  | USB_SSRXP_UP, USB_SSRXN_UP, USB_SSRXP_DN[4:1],<br>USB_SSRXN_DP[4:1] and USB_VBUS terminals | -0.3 | 1.4  | V    |
|                                | XI terminals                                                                               | -0.3 | 2.45 | V    |
| All other terminals            |                                                                                            | -0.3 | 3.8  | V    |
| Storage temperature, $T_{stg}$ |                                                                                            | -65  | 150  | °C   |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

### 7.2 ESD Ratings

|             |                         |                                                                                 | VALUE               | UNIT |
|-------------|-------------------------|---------------------------------------------------------------------------------|---------------------|------|
| $V_{(ESD)}$ | Electrostatic discharge | Human body model (HBM), per AEC Q100-002 Classification Level H2 <sup>(1)</sup> | ±2000               | V    |
|             |                         | Charged device model (CDM), per AEC Q100-011 Classification Level C4B           | Corner pins<br>±750 |      |
|             |                         | Other pins<br>±500                                                              |                     |      |

(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

### 7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|          |                                | MIN  | NOM | MAX   | UNIT |
|----------|--------------------------------|------|-----|-------|------|
| VDD      | 1.1V supply voltage            | 0.99 | 1.1 | 1.26  | V    |
| VDD33    | 3.3V supply voltage            | 3    | 3.3 | 3.6   | V    |
| USB_VBUS | Voltage at USB_VBUS PAD        | 0    |     | 1.155 | V    |
| $T_A$    | Operating free-air temperature | -40  |     | 85    | °C   |
| $T_J$    | Operating junction temperature | -40  |     | 105   | °C   |

## 7.4 Thermal Information

| THERMAL METRIC <sup>(1)</sup> |                                                             | TUSB8041-Q1 | UNIT |
|-------------------------------|-------------------------------------------------------------|-------------|------|
|                               |                                                             | PAP         |      |
|                               |                                                             | 64 PINS     |      |
| $R_{\theta JA}$               | Junction-to-ambient thermal resistance <sup>(2)</sup>       | 26.2        | °C/W |
| $R_{\theta JCtop}$            | Junction-to-case (top) thermal resistance <sup>(3)</sup>    | 11.5        |      |
| $R_{\theta JB}$               | Junction-to-board thermal resistance <sup>(4)</sup>         | 10.4        |      |
| $\psi_{JT}$                   | Junction-to-top characterization parameter <sup>(5)</sup>   | 0.2         |      |
| $\psi_{JB}$                   | Junction-to-board characterization parameter <sup>(6)</sup> | 10.3        |      |
| $R_{\theta JCbot}$            | Junction-to-case (bottom) thermal resistance <sup>(7)</sup> | 0.6         |      |

(1) 有关传统和新热指标的更多信息，请参见应用报告《半导体和 IC 封装热指标》(文献编号: SPRA953)。

(2) 在 JESD51-2a 描述的环境中，按照 JESD51-7 的规定，在一个 JEDEC 标准高 K 电路板上进行仿真，从而获得自然对流条件下的结至环境热阻抗。

(3) 通过在封装顶部进行冷板测试仿真来获得结至外壳(顶部)热阻。JEDEC 标准中没有相关测试的描述，但可在 ANSI SEMI 标准 G30 - 88 中找到相应的说明。

(4) 结至板热阻，可按照 JESD51-8 中的说明在使用环形冷板夹具来控制 PCB 温度的环境中进行仿真来获得。

(5) 结点至顶部特性参数  $\psi_{JT}$  估算器件在实际系统中的结温，可通过 JESD51-2a (第 6 节和第 7 节) 介绍的步骤从获得  $R_{\theta JA}$  的仿真数据中获取该温度。

(6) 结点至电路板特性参数  $\psi_{JB}$  估算器件在实际系统中的结温，可通过 JESD51-2a (第 6 节和第 7 节) 介绍的步骤从获得  $R_{\theta JA}$  的仿真数据中获取该温度。

(7) 通过在外露(电源)焊盘上进行冷板测试仿真来获得结至外壳(底部)热阻。JEDEC 标准中没有相关测试的描述，但可在 ANSI SEMI 标准 G30 - 88 中找到相应的说明。

## 7.5 Electrical Characteristics, 3.3-V I/O

over operating free-air temperature range (unless otherwise noted)

| PARAMETER | OPERATION                                                                               | TEST CONDITIONS            | MIN | MAX          | UNIT          |
|-----------|-----------------------------------------------------------------------------------------|----------------------------|-----|--------------|---------------|
| $V_{IH}$  | High-level input voltage <sup>(1)</sup>                                                 | VDD33                      | 2   | VDD33        | V             |
| $V_{IL}$  | Low-level input voltage <sup>(1)</sup>                                                  | VDD33                      | 0   | 0.8          | V             |
|           |                                                                                         |                            | 0   | 0.55         |               |
| $V_I$     | Input voltage                                                                           |                            | 0   | VDD33        | V             |
| $V_O$     | Output voltage <sup>(2)</sup>                                                           |                            | 0   | VDD33        | V             |
| $t_t$     | Input transition time ( $t_{rise}$ and $t_{fall}$ )                                     |                            | 0   | 25           | ns            |
| $V_{hys}$ | Input hysteresis <sup>(3)</sup>                                                         |                            |     | 0.13 x VDD33 | V             |
| $V_{OH}$  | High-level output voltage                                                               | $I_{OH} = -4 \text{ mA}$   | 2.4 |              | V             |
| $V_{OL}$  | Low-level output voltage                                                                | $I_{OL} = 4 \text{ mA}$    |     | 0.4          | V             |
| $I_{OZ}$  | High-impedance, output current <sup>(2)</sup>                                           | $V_I = 0 \text{ to VDD33}$ |     | $\pm 20$     | $\mu\text{A}$ |
| $I_{OZP}$ | High-impedance, output current with internal pullup or pulldown resistor <sup>(4)</sup> | $V_I = 0 \text{ to VDD33}$ |     | $\pm 250$    | $\mu\text{A}$ |
| $I_I$     | Input current <sup>(5)</sup>                                                            | $V_I = 0 \text{ to VDD33}$ |     | $\pm 15$     | $\mu\text{A}$ |

(1) Applies to external inputs and bidirectional buffers.  
 (2) Applies to external outputs and bidirectional buffers.  
 (3) Applies to GRSTz.  
 (4) Applies to pins with internal pullups/pulldowns.  
 (5) Applies to external input buffers.

## 7.6 Timing Requirements, Power-Up

| PARAMETER         | DESCRIPTION                                                               | MIN | TYP                | MAX | UNIT |
|-------------------|---------------------------------------------------------------------------|-----|--------------------|-----|------|
| $t_{d1}$          | VDD33 stable before VDD stable <sup>(1)</sup>                             |     | See <sup>(2)</sup> |     | ms   |
| $t_{d2}$          | VDD and VDD33 stable before de-assertion of GRSTz                         | 3   |                    |     | ms   |
| $t_{su\_io}$      | Setup for MISC inputs <sup>(3)</sup> sampled at the de-assertion of GRSTz | 0.1 |                    |     | μs   |
| $t_{hd\_io}$      | Hold for MISC inputs <sup>(3)</sup> sampled at the de-assertion of GRSTz  | 0.1 |                    |     | μs   |
| $t_{VDD33\_RAMP}$ | VDD33 supply ramp requirements                                            | 0.2 |                    | 100 | ms   |
| $t_{VDD\_RAMP}$   | VDD supply ramp requirements                                              | 0.2 |                    | 100 | ms   |

- (1) An active reset is required if the VDD33 supply is stable before the VDD11 supply. This active Reset shall meet the 3ms power-up delay counting from both power supplies being stable to the de-assertion of GRSTz.
- (2) There is no power-on relationship between VDD33 and VDD unless GRSTz is only connected to a capacitor to GND. Then VDD must be stable minimum of 10 μs before the VDD33.
- (3) MISC pins sampled at de-assertion of GRSTz: FULLPWRMGMTz, GANGED, PWRCTL\_POL, SMBUSz, BATEN[4:1], and AUTOENz.

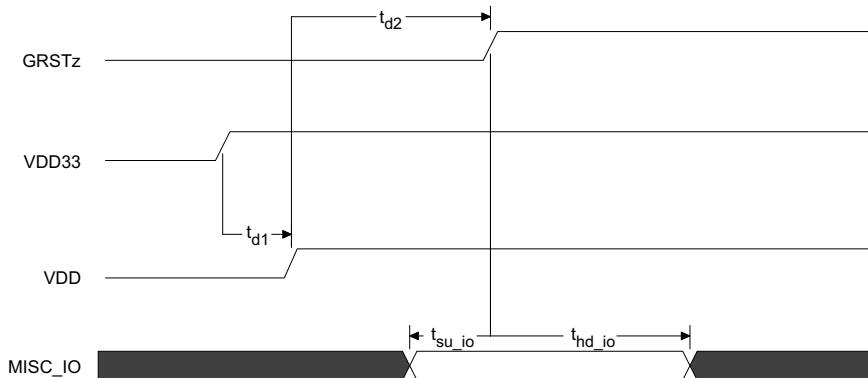
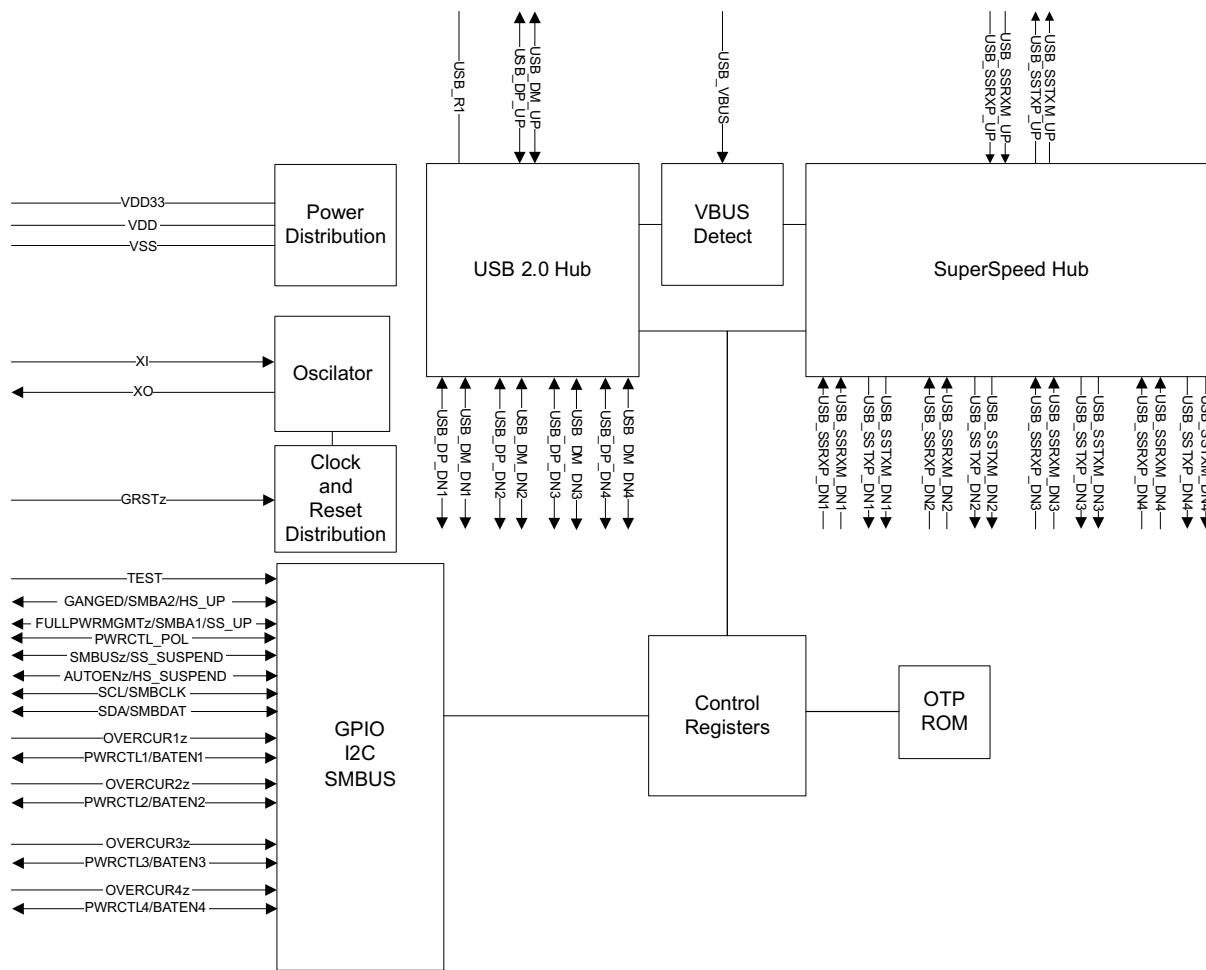



图 2. Power-Up Timing Requirements

## 7.7 Hub Input Supply Current

Typical values measured at  $T_A = 25^\circ\text{C}$


| PARAMETER                                      | VDD33 | VDD   | UNIT |
|------------------------------------------------|-------|-------|------|
|                                                | 3.3 V | 1.1 V |      |
| <b>LOW POWER MODES</b>                         |       |       |      |
| Power On (after Reset)                         | 2.3   | 28    | mA   |
| Upstream Disconnect                            | 2.3   | 28    | mA   |
| Suspend                                        | 2.5   | 33    | mA   |
| <b>ACTIVE MODES (US state / DS State)</b>      |       |       |      |
| 3.0 host / 1 SS Device and Hub in U1 / U2      | 49    | 225   | mA   |
| 3.0 host / 1 SS Device and Hub in U0           | 49    | 366   | mA   |
| 3.0 host / 2 SS Devices and Hub in U1 / U2     | 49    | 305   | mA   |
| 3.0 host / 2 SS Devices and Hub in U0          | 49    | 508   | mA   |
| 3.0 host / 3 SS Devices and Hub in U1 / U2     | 49    | 380   | mA   |
| 3.0 host / 3 SS Devices and Hub in U0          | 49    | 661   | mA   |
| 3.0 host / 4 SS Devices and Hub in U1 / U2     | 49    | 455   | mA   |
| 3.0 host / 4 SS Devices and Hub in U0          | 49    | 778   | mA   |
| 3.0 host / 1 SS Device in U0 and 1 HS Device   | 85    | 395   | mA   |
| 3.0 host / 2 SS Devices in U0 and 2 HS Devices | 99    | 554   | mA   |
| 2.0 host / HS Device                           | 45    | 63    | mA   |
| 2.0 host / 4 HS Devices                        | 76    | 86    | mA   |

## 8 Detailed Description

### 8.1 Overview

The TUSB8041-Q1 is a four-port USB 3.0 compliant hub. It provides simultaneous SuperSpeed USB and high-speed/full-speed connections on the upstream port and provides SuperSpeed USB, high-speed, full-speed, or low-speed connections on the downstream ports. When the upstream port is connected to an electrical environment that only supports high-speed or full-speed/low-speed connections, SuperSpeed USB connectivity is disabled on the downstream ports. When the upstream port is connected to an electrical environment that only supports full-speed/low-speed connections, SuperSpeed USB and high-speed connectivity are disabled on the downstream ports.

### 8.2 Functional Block Diagram



### 8.3 Feature Description

#### 8.3.1 Battery Charging Features

The TUSB8041 provides support for USB Battery Charging. Battery charging support may be enabled on a per port basis through the REG\_6h(batEn[3:0]).

Battery charging support includes both Charging Downstream Port (CDP) and Dedicated Charging Port (DCP) modes. The DCP mode is compliant with the Chinese Telecommunications Industry Standard YD/T 1591-2009.

## Feature Description (接下页)

In addition, to standard DCP mode, the TUSB8041 provides a mode (AUTOMODE) which automatically provides support for DCP devices and devices that support custom charging indication. When in AUTOMODE, the port will automatically switch between a divider mode and the DCP mode depending on the portable device connected. The divided mode places a fixed DC voltage on the ports DP and DM signals which allows some devices to identify the capabilities of the charger. The default divider mode indicates support for up to 5W. The divider mode can be configured to report a high-current setting (up to 10 W) through REG\_Ah (HiCurAcpModeEn).

The battery charging mode for each port is dependent on the state of Reg\_6h(batEn[n]), the status of the VBUS input, and the state of REG\_Ah(autoModeEnz) upstream port as identified in [表 1](#).

**表 1. TUSB8041 Battery Charging Modes**

| batEn[n] | VBUS       | autoModeEnz | BC Mode Port x<br>(x = n + 1)          |
|----------|------------|-------------|----------------------------------------|
| 0        | Don't Care | Don't Care  | Don't Care                             |
| 1        | < 4 V      | 0           | Automode <sup>(1)</sup> <sup>(2)</sup> |
|          |            | 1           | DCP <sup>(3)</sup> <sup>(4)</sup>      |
|          | > 4 V      | Don't Care  | CDP <sup>(3)</sup>                     |

(1) Auto-mode automatically selects divider-mode or DCP mode.

(2) Divider mode can be configured for high-current mode through register or OTP settings.

(3) USB Device is USB Battery Charging Specification Revision 1.2 Compliant

(4) USB Device is Chinese Telecommunications Industry Standard YD/T 1591-2009

### 8.3.2 USB Power Management

The TUSB8041 can be configured for power switched applications using either per-port or ganged power-enable controls and over-current status inputs.

Power switch support is enabled by REG\_5h (fullPwrMgmtz) and the per-port or ganged mode is configured by REG\_5h(ganged).

The TUSB8041 supports both active high and active low power-enable controls. The PWRCTL[4:1] polarity is configured by REG\_Ah(pwrctlPol).

### 8.3.3 One Time Programmable (OTP) Configuration

The TUSB8041 allows device configuration through one time programmable non-volatile memory (OTP). The programming of the OTP is supported using vendor-defined USB device requests. For details using the OTP features please contact your TI representative.

The table below provides a list features which may be configured using the OTP.

**表 2. OTP Configurable Features**

| CONFIGURATION REGISTER<br>OFFSET | BIT FIELD | DESCRIPTION                                                                                                                            |
|----------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|
| REG_01h                          | [7:0]     | Vendor ID LSB                                                                                                                          |
| REG_02h                          | [7:0]     | Vendor ID MSB                                                                                                                          |
| REG_03h                          | [7:0]     | Product ID LSB                                                                                                                         |
| REG_04h                          | [7:0]     | Product ID MSB                                                                                                                         |
| REG_07h                          | [0]       | Port removable configuration for downstream ports 1. OTP configuration is inverse of rmbl[3:0], i.e. 1 = not removable, 0 = removable. |
| REG_07h                          | [1]       | Port removable configuration for downstream ports 2. OTP configuration is inverse of rmbl[3:0], i.e. 1 = not removable, 0 = removable. |
| REG_07h                          | [2]       | Port removable configuration for downstream ports 3. OTP configuration is inverse of rmbl[3:0], i.e. 1 = not removable, 0 = removable. |

表 2. OTP Configurable Features (接下页)

| CONFIGURATION REGISTER OFFSET | BIT FIELD | DESCRIPTION                                                                                                                            |
|-------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|
| REG_07h                       | [3]       | Port removable configuration for downstream ports 4. OTP configuration is inverse of rmb1[3:0], i.e. 1 = not removable, 0 = removable. |
| REG_0Ah                       | [3]       | Enable Device Attach Detection..                                                                                                       |
| REG_0Ah                       | [4]       | High-current divider mode enable.                                                                                                      |
| REG_0Bh                       | [0]       | USB 2.0 port polarity configuration for downstream ports 1.                                                                            |
| REG_0Bh                       | [1]       | USB 2.0 port polarity configuration for downstream ports 2.                                                                            |
| REG_0Bh                       | [2]       | USB 2.0 port polarity configuration for downstream ports 3.                                                                            |
| REG_0Bh                       | [3]       | USB 2.0 port polarity configuration for downstream ports 4.                                                                            |
| REG_F0h                       | [3:1]     | USB power switch power-on delay.                                                                                                       |

### 8.3.4 Clock Generation

The TUSB8041-Q1 accepts a crystal input to drive an internal oscillator or an external clock source. If a clock is provided to XI instead of a crystal, XO is left open. Otherwise, if a crystal is used, the connection needs to follow the guidelines below. Since XI and XO are coupled to other leads and supplies on the PCB, it is important to keep them as short as possible and away from any switching leads. It is also recommended to minimize the capacitance between XI and XO. This can be accomplished by shielding C1 and C2 with the clean ground lines.

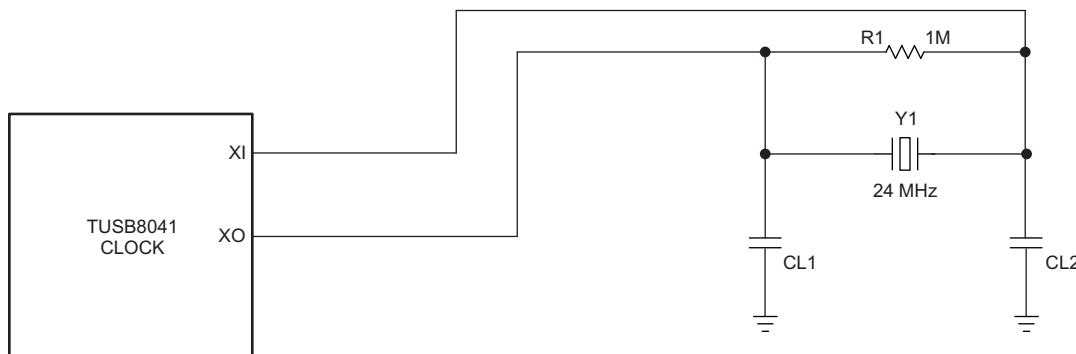



图 3. TUSB8041-Q1 Clock

### 8.3.5 Crystal Requirements

The crystal must be fundamental mode with load capacitance of 12 pF - 24 pF and frequency stability rating of  $\pm 100$  PPM or better. To ensure proper startup oscillation condition, a maximum crystal equivalent series resistance (ESR) of  $50\ \Omega$  is recommended. A parallel load capacitor should be used if a crystal source is used. The exact load capacitance value used depends on the crystal vendor. Refer to application note *Selection and Specification for Crystals for Texas Instruments USB2.0 devices* ([SLLA122](#)) for details on how to determine the load capacitance value.

### 8.3.6 Input Clock Requirements

When using an external clock source such as an oscillator, the reference clock should have a  $\pm 100$  PPM or better frequency stability and have less than 50-ps absolute peak to peak jitter or less than 25-ps peak to peak jitter after applying the USB 3.0 jitter transfer function. XI should be tied to the 1.8-V clock source and XO should be left floating.

### 8.3.7 Power-Up and Reset

The TUSB8041-Q1 does not have specific power sequencing requirements with respect to the core power (VDD) or I/O and analog power (VDD33). The core power (VDD) or I/O power (VDD33) may be powered up for an indefinite period of time while the other is not powered up if all of these constraints are met:

- All maximum ratings and recommended operating conditions are observed.
- All warnings about exposure to maximum rated and recommended conditions are observed, particularly junction temperature. These apply to power transitions as well as normal operation.
- Bus contention while VDD33 is powered up must be limited to 100 hours over the projected life-time of the device.
- Bus contention while VDD33 is powered down may violate the absolute maximum ratings.

A supply bus is powered up when the voltage is within the recommended operating range. It is powered down when it is below that range, either stable or in transition.

A minimum reset duration of 3 ms is required. This is defined as the time when the power supplies are in the recommended operating range to the de-assertion of GRSTz. This can be generated using programmable-delay supervisory device or using an RC circuit.

## 8.4 Device Functional Modes

### 8.4.1 External Configuration Interface

The TUSB8041-Q1 supports a serial interface for configuration register access. The device may be configured by an attached I<sup>2</sup>C EEPROM or accessed as a slave by an SMBus capable host controller. The external interface is enabled when both the SCL/SMBCLK and SDA/SMBDAT pins are pulled up to 3.3 V at the de-assertion of reset. The mode, I<sup>2</sup>C master or SMBus slave, is determined by the state of SMBUSz/SS\_SUSPEND pin at reset.

### 8.4.2 I<sup>2</sup>C EEPROM Operation

The TUSB8041-Q1 supports a single-master, standard mode (100 kbit/s) connection to a dedicated I<sup>2</sup>C EEPROM when the I<sup>2</sup>C interface mode is enabled. In I<sup>2</sup>C mode, the TUSB8041-Q1 reads the contents of the EEPROM at bus address 1010000b using 7-bit addressing starting at address 0.

If the value of the EEPROM contents at byte 00h equals 55h, the TUSB8041-Q1 loads the configuration registers according to the EEPROM map. If the first byte is not 55h, the TUSB8041-Q1 exits the I<sup>2</sup>C mode and continues execution with the default values in the configuration registers. The hub will not connect on the upstream port until the configuration is completed. If the hub detected an un-programmed EEPROM (value other than 55h), the hub will enter Programming Mode and a Programming Endpoint within the hub will be enabled.

Note, the bytes located above offset Ah are optional. The requirement for data in those addresses is dependent on the options configured in the Device Configuration, and Device Configuration 2 registers.

For details on I<sup>2</sup>C operation refer to the UM10204 I<sup>2</sup>C-bus Specification and User Manual.

### 8.4.3 SMBus Slave Operation

When the SMBus interface mode is enabled, the TUSB8041-Q1 supports read block and write block protocols as a slave-only SMBus device.

The TUSB8041-Q1 slave address is 1000 1xyz, where:

- x is the state of GANGED/SMBA2/HS\_UP pin at reset,
- y is the state of FULLPWRMGMTz/SMBA1/SS\_UP pin at reset, and
- z is the read/write bit; 1 = read access, 0 = write access.

If the TUSB8041-Q1 is addressed by a host using an unsupported protocol it will not respond. The TUSB8041-Q1 will wait indefinitely for configuration by the SMBus host and will not connect on the upstream port until the SMBus host indicates configuration is complete by clearing the CFG\_ACTIVE bit.

For details on SMBus requirements refer to the System Management Bus Specification.

## 8.5 Register Maps

### 8.5.1 Configuration Registers

The internal configuration registers are accessed on byte boundaries. The configuration register values are loaded with defaults but can be over-written when the TUSB8041-Q1 is in I<sup>2</sup>C or SMBus mode.

表 3. TUSB8041-Q1 Register Map

| BYTE ADDRESS | CONTENTS                                  | EEPROM CONFIGURABLE          |
|--------------|-------------------------------------------|------------------------------|
| 00h          | ROM Signature Register                    | No                           |
| 01h          | Vendor ID LSB                             | Yes                          |
| 02h          | Vendor ID MSB                             | Yes                          |
| 03h          | Product ID LSB                            | Yes                          |
| 04h          | Product ID MSB                            | Yes                          |
| 05h          | Device Configuration Register             | Yes                          |
| 06h          | Battery Charging Support Register         | Yes                          |
| 07h          | Device Removable Configuration Register   | Yes                          |
| 08h          | Port Used Configuration Register          | Yes                          |
| 09h          | Reserved                                  | Yes, program to 00h          |
| 0Ah          | Device Configuration Register 2           | Yes                          |
| 0Bh          | USB 2.0 Port Polarity Control Register    | Yes                          |
| 0Ch-0Fh      | Reserved                                  | No                           |
| 10h-1Fh      | UUID Byte [15:0]                          | No                           |
| 20h-21h      | LangID Byte [1:0]                         | Yes, if customStrings is set |
| 22h          | Serial Number String Length               | Yes, if customSerNum is set  |
| 23h          | Manufacturer String Length                | Yes, if customStrings is set |
| 24h          | Product String Length                     | Yes, if customStrings is set |
| 25h-2Fh      | Reserved                                  | No                           |
| 30h-4Fh      | Serial Number String Byte [31:0]          | Yes, if customSerNum is set  |
| 50h-8Fh      | Manufacturer String Byte [63:0]           | Yes, if customStrings is set |
| 90h-CFh      | Product String Byte [63:0]                | Yes, if customStrings is set |
| D0-DFh       | Reserved                                  | No                           |
| F0h          | Additional Feature Configuration Register | Yes                          |
| F1-F7h       | Reserved                                  | No                           |
| F8h          | Device Status and Command Register        | No                           |
| F9-FFh       | Reserved                                  | No                           |

### 8.5.2 ROM Signature Register

表 4. Register Offset 0h

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

表 5. Bit Descriptions – ROM Signature Register

| Bit | Field Name   | Access | Description                                                                                                                                                                                                                                                                                                 |
|-----|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | romSignature | RW     | ROM Signature Register. This register is used by the TUSB8041-Q1 in I <sup>2</sup> C mode to validate the attached EEPROM has been programmed. The first byte of the EEPROM is compared to the mask 55h and if not a match, the TUSB8041-Q1 aborts the EEPROM load and executes with the register defaults. |

### 8.5.3 Vendor ID LSB Register

**表 6. Register Offset 1h**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |

**表 7. Bit Descriptions – Vendor ID LSB Register**

| Bit | Field Name  | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | vendorIdLsb | RO/RW  | <p>Vendor ID LSB. Least significant byte of the unique vendor ID assigned by the USB-IF; the default value of this register is 51h representing the LSB of the TI Vendor ID 0451h. The value may be over-written to indicate a customer Vendor ID.</p> <p>This field is read/write unless the OTP ROM VID and OTP ROM PID values are non-zero. If both values are non-zero the value when reading this register shall reflect the OTP ROM value.</p> |

### 8.5.4 Vendor ID MSB Register

**表 8. Register Offset 2h**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |

**表 9. Bit Descriptions – Vendor ID MSB Register**

| Bit | Field Name  | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | vendorIdMsb | RO/RW  | <p>Vendor ID MSB. Most significant byte of the unique vendor ID assigned by the USB-IF; the default value of this register is 04h representing the MSB of the TI Vendor ID 0451h. The value may be over-written to indicate a customer Vendor ID.</p> <p>This field is read/write unless the OTP ROM VID and OTP ROM PID values are non-zero. If both values are non-zero the value when reading this register shall reflect the OTP ROM value.</p> |

### 8.5.5 Product ID LSB Register

**表 10. Register Offset 3h**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

**表 11. Bit Descriptions – Product ID LSB Register**

| Bit | Field Name   | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | productIdLsb | RO/RW  | <p>Product ID LSB. Least significant byte of the product ID assigned by Texas Instruments and reported in the SuperSpeed Device descriptor. the default value of this register is 40h representing the LSB of the SuperSpeed product ID assigned by Texas Instruments. The value reported in the USB 2.0 Device descriptor is the value of this register bit wise XORed with 00000010b. The value may be over-written to indicate a customer product ID.</p> <p>This field is read/write unless the OTP ROM VID and OTP ROM PID values are non-zero. If both values are non-zero the value when reading this register will reflect the OTP ROM value.</p> |

### 8.5.6 Product ID MSB Register

表 12. Register Offset 4h

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

表 13. Bit Descriptions – Product ID MSB Register

| Bit | Field Name   | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|--------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | productIdMsb | RO/RW  | Product ID MSB. Most significant byte of the product ID assigned by Texas Instruments; the default value of this register is 81h representing the MSB of the product ID assigned by Texas Instruments. The value may be over-written to indicate a customer product ID. This field is read/write unless the OTP ROM VID and OTP ROM PID values are non-zero. If both values are non-zero, the value when reading this register will reflect the OTP ROM value. |

### 8.5.7 Device Configuration Register

表 14. Register Offset 5h

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 1 | X | X | 0 | 0 |

表 15. Bit Descriptions – Device Configuration Register

| Bit | Field Name    | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|---------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | customStrings | RW     | <p>Custom strings enable. This bit controls the ability to write to the Manufacturer String Length, Manufacturer String, Product String Length, Product String, and Language ID registers</p> <p>0 = The Manufacturer String Length, Manufacturer String, Product String Length, Product String, and Language ID registers are read only</p> <p>1 = The Manufacturer String Length, Manufacturer String, Product String Length, Product String, and Language ID registers may be loaded by EEPROM or written by SMBus</p> <p>The default value of this bit is 0.</p>                                                                                                                                       |
| 6   | customSernum  | RW     | <p>Custom serial number enable. This bit controls the ability to write to the serial number registers.</p> <p>0 = The Serial Number String Length and Serial Number String registers are read only</p> <p>1 = Serial Number String Length and Serial Number String registers may be loaded by EEPROM or written by SMBus</p> <p>The default value of this bit is 0.</p>                                                                                                                                                                                                                                                                                                                                    |
| 5   | u1u2Disable   | RW     | <p>U1 U2 Disable. This bit controls the U1/U2 support.</p> <p>0 = U1/U2 support is enabled</p> <p>1 = U1/U2 support is disabled, the TUSB8041-Q1 will not initiate or accept any U1 or U2 requests on any port, upstream or downstream, unless it receives or sends a Force_LinkPM_Accept LMP. After receiving or sending an FLPMA LMP, it will continue to enable U1 and U2 according to USB 3.0 protocol until it gets a power-on reset or is disconnected on its upstream port.</p> <p>When the TUSB8041-Q1 is in I<sup>2</sup>C mode, the TUSB8041-Q1 loads this bit from the contents of the EEPROM.</p> <p>When the TUSB8041-Q1 is in SMBUS mode, the value may be overwritten by an SMBus host.</p> |
| 4   | RSVD          | RO     | Reserved. This bit is reserved and returns 1 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

**表 15. Bit Descriptions – Device Configuration Register (接下页)**

|   |              |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|--------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | ganged       | RW | <p>Ganged. This bit is loaded at the de-assertion of reset with the value of the GANGED/SMBA2/HS_UP pin.</p> <p>0 = When fullPwrMgmtz = 0, each port is individually power switched and enabled by the PWRCTL[4:1]/BATEN[4:1] pins</p> <p>1 = When fullPwrMgmtz = 0, the power switch control for all ports is ganged and enabled by the PWRCTL[4:1]/BATEN1 pin</p> <p>When the TUSB8041-Q1 is in I<sup>2</sup>C mode, the TUSB8041-Q1 loads this bit from the contents of the EEPROM.</p> <p>When the TUSB8041-Q1 is in SMBUS mode, the value may be over-written by an SMBus host.</p> |
| 2 | fullPwrMgmtz | RW | <p>Full Power Management. This bit is loaded at the de-assertion of reset with the value of the FULLPWRMGM TZ/SMBA1/SS_UP pin.</p> <p>0 = Port power switching status reporting is enabled</p> <p>1 = Port power switching status reporting is disabled</p> <p>When the TUSB8041-Q1 is in I<sup>2</sup>C mode, the TUSB8041-Q1 loads this bit from the contents of the EEPROM.</p> <p>When the TUSB8041-Q1 is in SMBUS mode, the value may be over-written by an SMBus host.</p>                                                                                                         |
| 1 | RSVD         | RW | Reserved. This field is reserved and should not be altered from the default.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 | RSVD         | RO | Reserved. This field is reserved and returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### 8.5.8 Battery Charging Support Register

**表 16. Register Offset 6h**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | X | X | X | X |

**表 17. Bit Descriptions – Battery Charging Support Register**

| Bit | Field Name | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | RSVD       | RO     | Reserved. Read only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3:0 | batEn[3:0] | RW     | <p>Battery Charger Support. The bits in this field indicate whether the downstream port implements the charging port features.</p> <p>0 = The port is not enabled for battery charging support features</p> <p>1 = The port is enabled for battery charging support features</p> <p>Each bit corresponds directly to a downstream port, i.e. batEn0 corresponds to downstream port 1, and batEN1 corresponds to downstream port 2.</p> <p>The default value for these bits are loaded at the de-assertion of reset with the value of PWRCTL/BATEN[3:0].</p> <p>When in I<sup>2</sup>C/SMBus mode the bits in this field may be over-written by EEPROM contents or by an SMBus host.</p> |

### 8.5.9 Device Removable Configuration Register

表 18. Register Offset 7h

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | X | X | X | X |

表 19. Bit Descriptions – Device Removable Configuration Register

| Bit | Field Name | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | customRmb1 | RW     | <p>Custom Removable. This bit controls the ability to write to the port removable bits.</p> <p>0 = rmb1[3:0] are read only and the values are loaded from the OTP ROM</p> <p>1 = rmb1[3:0] are read/write and can be loaded by EEPROM or written by SMBus</p> <p>This bit may be written simultaneously with rmb1[3:0].</p>                                                                                                                                                                                                                                                                                            |
| 6:4 | RSVD       | RO     | Reserved. Read only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3:0 | rmb1[3:0]  | RW     | <p>Removable. The bits in this field indicate whether a device attached to downstream ports 4 through 1 are removable or permanently attached.</p> <p>0 = The device attached to the port is not removable</p> <p>1 = The device attached to the port is removable</p> <p>Each bit corresponds directly to a downstream port <math>n + 1</math>, i.e. rmb10 corresponds to downstream port 1, rmb11 corresponds to downstream port 2, etc.</p> <p>This field is read only unless the customRmb1 bit is set to 1. Otherwise the value of this field reflects the inverted values of the OTP ROM non_rmb[3:0] field.</p> |

### 8.5.10 Port Used Configuration Register

表 20. Register Offset 8h

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

表 21. Bit Descriptions – Port Used Configuration Register

| Bit | Field Name | Access | Description                                                                                                                                                                                                                                                                                                                                                                             |
|-----|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | RSVD       | RO     | Reserved. Read only.                                                                                                                                                                                                                                                                                                                                                                    |
| 3:0 | used[3:0]  | RW     | <p>Used. The bits in this field indicate whether a port is enabled.</p> <p>0 = The port is disabled</p> <p>1 = The port is enabled</p> <p>Each bit corresponds directly to a downstream port, i.e. used0 corresponds to downstream port 1, used1 corresponds to downstream port 2, etc. All combinations are supported with the exception of both ports 1 and 3 marked as disabled.</p> |

### 8.5.11 Device Configuration Register 2

**表 22. Register Offset Ah**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | X | 0 | 0 | 0 | X | 0 |

**表 23. Bit Descriptions – Device Configuration Register 2**

| Bit | Field Name       | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Reserved         | RO     | Reserved. Read-only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6   | customBCfeatures | RW     | <p>Custom Battery Charging Feature Enable. This bit controls the ability to write to the battery charging feature configuration controls.</p> <p>0 = The HiCurAcpModeEn and cpdEN bits are read only and the values are loaded from the OTP ROM.</p> <p>1 = The HiCurAcpModeEn and cpdEN, bits are read/write and can be loaded by EEPROM or written by SMBus. from this register.</p> <p>This bit may be written simultaneously with HiCurAcpModeEn and cpdEN.</p>                                                  |
| 5   | pwrctlPol        | RW     | <p>Power enable polarity. This bit is loaded at the de-assertion of reset with the value of the PWRCTL_POL pin.</p> <p>0 = PWRCTL polarity is active low</p> <p>1 = PWRCTL polarity is active high</p> <p>When the TUSB8041-Q1 is in I<sup>2</sup>C mode, the TUSB8041-Q1 loads this bit from the contents of the EEPROM.</p> <p>When the TUSB8041-Q1 is in SMBUS mode, the value may be overwritten by an SMBus host.</p>                                                                                           |
| 4   | HiCurAcpModeEn   | RO/RW  | <p>High-current ACP mode enable. This bit enables the high-current tablet charging mode when the automatic battery charging mode is enabled for downstream ports.</p> <p>0 = High current divider mode disabled</p> <p>1 = High current divider mode enabled</p> <p>This bit is read only unless the customBCfeatures bit is set to 1. If customBCfeatures is 0, the value of this bit reflects the value of the OTP ROM HiCurAcpModeEn bit.</p>                                                                     |
| 3   | cpdEN            | RORW   | <p>Enable Device Attach Detection. This bit enables device attach detection (aka, cell phone detect) when autoMode is enabled.</p> <p>0 = Device Attach detect is disabled in automode.</p> <p>1 = Device Attach detect is enabled in automode..</p> <p>This bit is read only unless the customBCfeatures bit is set to 1. If customBCfeatures is 0 the value of this bit reflects the value of the OTP ROM cpdEN bit.</p>                                                                                           |
| 2   | dsportEcr_en     | RW     | <p>DSPORT ECR Enable. This bit enables full implementation of the DSOPRT ECR (April 2013).</p> <p>0 = The DSOPRT ECR (April 2013) is enabled with exception of the following: Changes related to when CCS bit is set upon entering U0, and Changes related to avoiding or reporting compliance mode entry</p> <p>1 = The full DSOPRT ECR (April 2013) is enabled.</p> <p>The default value of this bit is 0. The value returned from this register will be the OR of this bit and the OTP ROM dsport_ecr_en bit.</p> |

表 23. Bit Descriptions – Device Configuration Register 2 (接下页)

|   |             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | autoModeEnz | RW | <p>Automatic Mode Enable. This bit is loaded at the de-assertion of reset with the value of the AUTOENz/HS_SUSPEND pin.</p> <p>The automatic mode only applies to downstream ports with battery charging enabled when the upstream port is not connected. Under these conditions:</p> <p>0 = Automatic mode battery charging features are enabled.</p> <p>1 = Automatic mode is disabled; only Battery Charging DCP and CDP mode is supported.</p> <p>NOTE: When the upstream port is connected, Battery Charging CDP mode will be supported on all ports that enabled for battery charging support regardless of the value of this bit with the exception of Port 1. CDP on Port 1 is not supported when Automatic Mode is enabled.</p> |
| 0 | RSVD        | RO | Reserved. Read only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### 8.5.12 USB 2.0 Port Polarity Control Register

表 24. Register Offset B<sub>h</sub>

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

表 25. Bit Descriptions – USB 2.0 Port Polarity Control Register

| Bit | Field Name     | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | customPolarity | RW     | <p>Custom USB 2.0 Polarity. This bit controls the ability to write the p[4:0]_usb2pol bits.</p> <p>0 = The p[4:0]_usb2pol bits are read only and the values are loaded from the OTP ROM.</p> <p>1 = The p[4:0]_usb2pol bits are read/write and can be loaded by EEPROM or written by SMBus. from this register</p> <p>This bit may be written simultaneously with the p[4:0]_usb2pol bits</p>                                                    |
| 6:5 | RSVD           | RO     | Reserved. Read only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4   | p4_usb2pol     | RO/RW  | <p>Downstream Port 4 DM/DP Polarity. This controls the polarity of the port.</p> <p>0 = USB 2.0 port polarity is as documented by the pin out</p> <p>1 = USB 2.0 port polarity is swapped from that documented in the pin out, i.e. DM becomes DP, and DP becomes DM.</p> <p>This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0 the value of this bit reflects the value of the OTP ROM p4_usb2pol bit.</p> |
| 3   | p3_usb2pol     | RO/RW  | <p>Downstream Port 3 DM/DP Polarity. This controls the polarity of the port.</p> <p>0 = USB 2.0 port polarity is as documented by the pin out</p> <p>1 = USB 2.0 port polarity is swapped from that documented in the pin out, i.e. DM becomes DP, and DP becomes DM.</p> <p>This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0 the value of this bit reflects the value of the OTP ROM p3_usb2pol bit.</p> |
| 2   | p2_usb2pol     | RO/RW  | <p>Downstream Port 2 DM/DP Polarity. This controls the polarity of the port.</p> <p>0 = USB 2.0 port polarity is as documented by the pin out</p> <p>1 = USB 2.0 port polarity is swapped from that documented in the pin out, i.e. DM becomes DP, and DP becomes DM.</p> <p>This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0 the value of this bit reflects the value of the OTP ROM p2_usb2pol bit.</p> |

**表 25. Bit Descriptions – USB 2.0 Port Polarity Control Register (接下页)**

|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | p1_usb2pol | RORW  | Downstream Port 1 DM/DP Polarity. This controls the polarity of the port.<br>0 = USB 2.0 port polarity is as documented by the pin out<br>1 = USB 2.0 port polarity is swapped from that documented in the pin out, i.e. DM becomes DP, and DP becomes DM.<br><br>This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0 the value of this bit reflects the value of the OTP ROM p1_usb2pol bit. |
| 0 | p0_usb2pol | RO/RW | Upstream Port DM/DP Polarity. This controls the polarity of the port.<br>0 = USB 2.0 port polarity is as documented by the pin out<br>1 = USB 2.0 port polarity is swapped from that documented in the pin out, i.e. DM becomes DP, and DP becomes DM.<br><br>This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0 the value of this bit reflects the value of the OTP ROM p0_usb2pol bit.     |

### 8.5.13 UUID Registers

**表 26. Register Offset 10h-1Fh**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | X | X | X | X | X | X | X | X |

**表 27. Bit Descriptions – UUID Byte N Register**

| Bit | Field Name  | Access | Description                                                                                                                                                                                                                     |
|-----|-------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | uuidByte[n] | RO     | UUID byte N. The UUID returned in the Container ID descriptor. The value of this register is provided by the device and is meets the UUID requirements of Internet Engineering Task Force (IETF) RFC 4122 A UUID URN Namespace. |

### 8.5.14 Language ID LSB Register

**表 28. Register Offset 20h**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |

**表 29. Bit Descriptions – Language ID LSB Register**

| Bit | Field Name | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | langIdLsb  | RO/RW  | Language ID least significant byte. This register contains the value returned in the LSB of the LANGID code in string index 0. The TUSB8041-Q1 only supports one language ID. The default value of this register is 09h representing the LSB of the LangID 0409h indicating English United States.<br>When customStrings is 1, this field may be over-written by the contents of an attached EEPROM or by an SMBus host. |

### 8.5.15 Language ID MSB Register

表 30. Register Offset 21h

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |

表 31. Bit Descriptions – Language ID MSB Register

| Bit | Field Name | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | langIdMsb  | RO/RW  | Language ID most significant byte. This register contains the value returned in the MSB of the LANGID code in string index 0. The TUSB8041-Q1 only supports one language ID. The default value of this register is 04h representing the MSB of the LangID 0409h indicating English United States. When customStrings is 1, this field may be over-written by the contents of an attached EEPROM or by an SMBus host. |

### 8.5.16 Serial Number String Length Register

表 32. Register Offset 22h

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |

表 33. Bit Descriptions – Serial Number String Length Register

| Bit | Field Name      | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|-----------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | RSVD            | RO     | Reserved. Read only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5:0 | serNumStringLen | RO/RW  | Serial number string length. The string length in bytes for the serial number string. The default value is 18h indicating that a 24 byte serial number string is supported. The maximum string length is 32 bytes. When customSernum is 1, this field may be over-written by the contents of an attached EEPROM or by an SMBus host. When the field is non-zero, a serial number string of serNumbStringLen bytes is returned at string index 1 from the data contained in the Serial Number String registers. |

### 8.5.17 Manufacturer String Length Register

表 34. Register Offset 23h

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

表 35. Bit Descriptions – Manufacturer String Length Register

| Bit | Field Name   | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|--------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RSVD         | RO     | Reserved. Read only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6:0 | mfgStringLen | RO/RW  | Manufacturer string length. The string length in bytes for the manufacturer string. The default value is 0, indicating that a manufacturer string is not provided. The maximum string length is 64 bytes. When customStrings is 1, this field may be over-written by the contents of an attached EEPROM or by an SMBus host. When the field is non-zero, a manufacturer string of mfgStringLen bytes is returned at string index 3 from the data contained in the Manufacturer String registers. |

### 8.5.18 Product String Length Register

**表 36. Register Offset 24h**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

**表 37. Bit Descriptions – Product String Length Register**

| Bit | Field Name    | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RSVD          | RO     | Reserved. Read only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6:0 | prodStringLen | RO/RW  | Product string length. The string length in bytes for the product string. The default value is 0, indicating that a product string is not provided. The maximum string length is 64 bytes.<br>When customStrings is 1, this field may be over-written by the contents of an attached EEPROM or by an SMBus host.<br>When the field is non-zero, a product string of prodStringLen bytes is returned at string index 3 from the data contained in the Product String registers. |

### 8.5.19 Serial Number String Registers

**表 38. Register Offset 30h-4Fh**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | X | X | x | x | x | x | x | x |

**表 39. Bit Descriptions – Serial Number Registers**

| Bit | Field Name      | Access | Description                                                                                                                                                                                                                                                           |
|-----|-----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | serialNumber[n] | RO/RW  | Serial Number byte N. The serial number returned in the Serial Number string descriptor at string index 1. The default value of these registers is assigned by TI. When customSernum is 1, these registers may be overwritten by EEPROM contents or by an SMBus host. |

### 8.5.20 Manufacturer String Registers

**表 40. Register Offset 50h-8Fh**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

**表 41. Bit Descriptions – Manufacturer String Registers**

| Bit | Field Name       | Access | Description                                                                                                                                                                                                                                                                                                                                            |
|-----|------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | mfgStringByte[n] | RW     | Manufacturer string byte N. These registers provide the string values returned for string index 3 when mfgStringLen is greater than 0. The number of bytes returned in the string is equal to mfgStringLen. The programmed data should be in UNICODE UTF-16LE encodings as defined by The Unicode Standard, Worldwide Character Encoding, Version 5.0. |

### 8.5.21 Product String Registers

表 42. Register Offset 90h-CFh

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

表 43. Bit Descriptions – Product String Byte N Register

| Bit | Field Name        | Access | Description                                                                                                                                                                                                                                                                                                                                         |
|-----|-------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | prodStringByte[n] | RO/RW  | Product string byte N. These registers provide the string values returned for string index 2 when prodStringLen is greater than 0. The number of bytes returned in the string is equal to prodStringLen. The programmed data should be in UNICODE UTF-16LE encodings as defined by The Unicode Standard, Worldwide Character Encoding, Version 5.0. |

### 8.5.22 Additional Feature Configuration Register

表 44. Register Offset F0h

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

表 45. Bit Descriptions – Additional Feature Configuration Register

| Bit | Field Name    | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|---------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:5 | RSVD          | RO     | Reserved. Read only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4   | stsOutputEn   | RO/RW  | <p>Status output enable. This bit enables the HS, HS_SUSPEND, SS, and SS_SUSPEND outputs..</p> <p>0 = HS, HS_SUSPEND, SS, and SS_SUSPEND outputs are disabled and tri-stated.</p> <p>1 = HS, HS_SUSPEND, SS, and SS_SUSPEND outputs are enabled.</p> <p>This field may be over-written by EEPROM contents or by an SMBus Host.</p>                                                                                                                                                                                          |
| 3:1 | pwronTime     | RW     | <p>Power On Delay Time. When OTP ROM pwronTime field is all zero, this field sets the delay time from the removal disable of PWRCTL to the enable of PWRCTL when transitioning battery charging modes. For example, when disabling the power on a transition from a custom charging mode to Dedicated Charging Port Mode. The nominal timing is defined as follows:</p> $TPWRON\_EN = (\text{pwronTime} + 1) \times 200 \text{ ms} \quad (1)$ <p>This field may be over-written by EEPROM contents or by an SMBus host.</p> |
| 0   | usb3spreadDis | RW     | <p>USB3 Spread Spectrum Disable. This bit allows firmware to disable the spread spectrum function of the USB3 phy PLL.</p> <p>0 = Spread spectrum function is enabled</p> <p>1 = Spread spectrum function is disabled</p>                                                                                                                                                                                                                                                                                                   |

### 8.5.23 Device Status and Command Register

**表 46. Register Offset F8h**

| Bit No.     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---|---|---|---|---|
| Reset State | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

**表 47. Bit Descriptions – Device Status and Command Register**

| Bit | Field Name | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:2 | RSVD       | RO     | Reserved. Read only, returns 0 when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1   | smbusRst   | RSU    | SMBus interface reset. This bit loads the registers back to their GRSTz values.<br>This bit is set by writing a 1 and is cleared by hardware on completion of the reset. A write of 0 has no effect.                                                                                                                                                                                                                                                                                          |
| 0   | cfgActive  | RCU    | Configuration active. This bit indicates that configuration of the TUSB8041-Q1 is currently active. The bit is set by hardware when the device enters the I <sup>2</sup> C or SMBus mode. The TUSB8041-Q1 shall not connect on the upstream port while this bit is 1.<br>When in the SMBus mode, this bit must be cleared by the SMBus host in order to exit the configuration mode and allow the upstream port to connect.<br>The bit is cleared by a writing 1. A write of 0 has no effect. |

## 9 Applications and Implementation

### 注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

### 9.1 Application Information

The TUSB8041-Q1 is a four-port USB 3.0 compliant hub. It provides simultaneous SuperSpeed USB and high-speed/full-speed connections on the upstream port and provides SuperSpeed USB, high-speed, full-speed, or low speed connections on the downstream port. The TUSB8041-Q1 can be used in any application that needs additional USB compliant ports. For example, a specific notebook may only have two downstream USB ports. By using the TUSB8041-Q1, the notebook can increase the downstream port count to five.

### 9.2 Typical Application

#### 9.2.1 Discrete USB Hub Product

A common application for the TUSB8041-Q1 is as a self powered standalone USB hub product. The product is powered by an external 5V DC Power adapter. In this application, using a USB cable TUSB8041-Q1's upstream port is plugged into a USB Host controller. The downstream ports of the TUSB8041-Q1 are exposed to users for connecting USB hard drives, cameras, flash drives, and so forth.

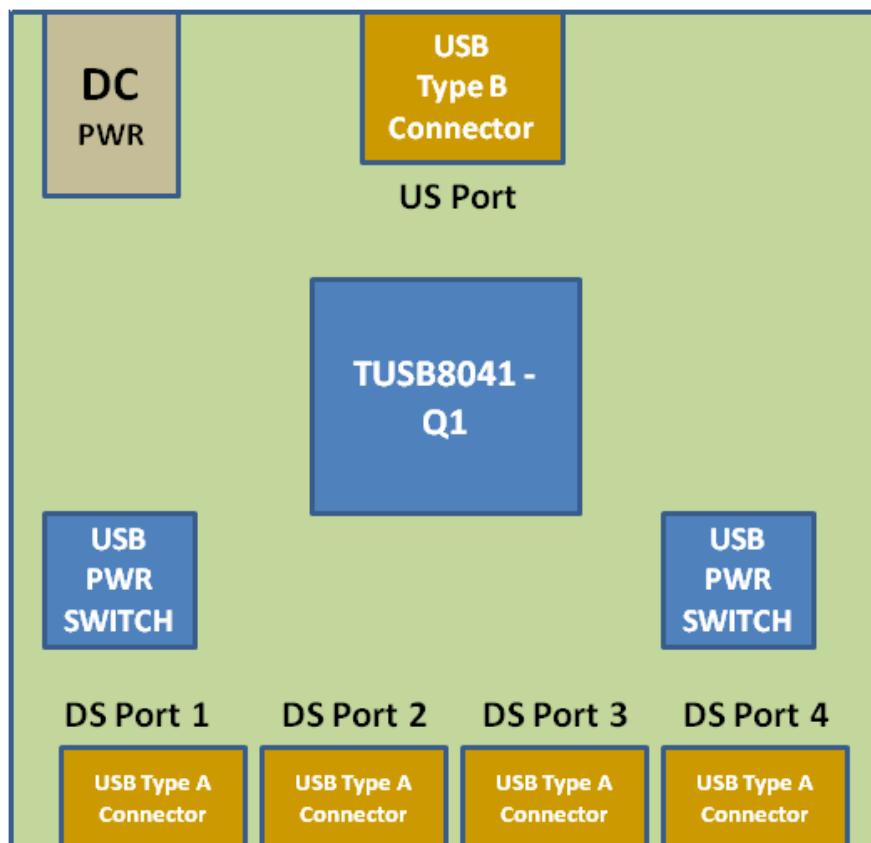
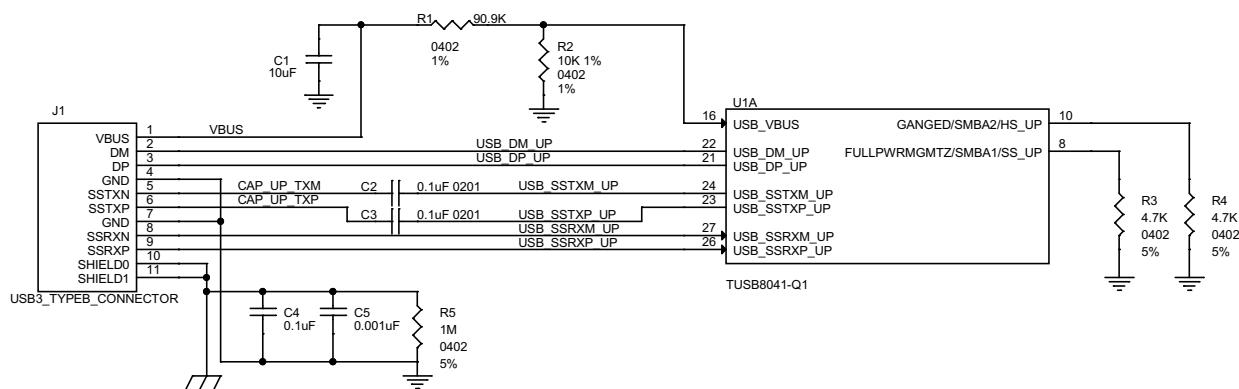



图 4. Discrete USB Hub Product

## Typical Application (接下页)

### 9.2.1.1 Design Requirements


**表 48. Design Parameters**

| DESIGN PARAMETER                                   | EXAMPLE VALUE                 |
|----------------------------------------------------|-------------------------------|
| VDD Supply                                         | 1.1V                          |
| VDD33 Supply                                       | 3.3V                          |
| Upstream Port USB Support (SS, HS, FS)             | SS, HS, FS                    |
| Downstream Port 1 USB Support (SS, HS, FS, LS)     | SS, HS, FS, LS                |
| Downstream Port 2 USB Support (SS, HS, FS, LS)     | SS, HS, FS, LS                |
| Downstream Port 3 USB Support (SS, HS, FS, LS)     | SS, HS, FS, LS                |
| Downstream Port 4 USB Support (SS, HS, FS, LS)     | SS, HS, FS, LS                |
| Number of Removable Downstream Ports               | 4                             |
| Number of Non-Removable Downstream Ports           | 0                             |
| Full Power Management of Downstream Ports          | Yes. (FULLPWRMGM TZ = 0)      |
| Individual Control of Downstream Port Power Switch | Yes. (GANGED = 0)             |
| Power Switch Enable Polarity                       | Active High. (PWRCTL_POL = 1) |
| Battery Charge Support for Downstream Port 1       | Yes                           |
| Battery Charge Support for Downstream Port 2       | Yes                           |
| Battery Charge Support for Downstream Port 3       | Yes                           |
| Battery Charge Support for Downstream Port 4       | Yes                           |
| I2C EEPROM Support                                 | No.                           |
| 24MHz Clock Source                                 | Crystal                       |

### 9.2.1.2 Detailed Design Procedure

#### 9.2.1.2.1 Upstream Port Implementation

The upstream of the TUSB8041-Q1 is connected to a USB3 Type B connector. This particular example has GANGED pin and FULLPWRMGM TZ pin pulled low which results in individual power support each downstream port. The VBUS signal from the USB3 Type B connector is feed through a voltage divider. The purpose of the voltage divider is to make sure the level meets USB\_VBUS input requirements



**图 5. Upstream Port Implementation**

### 9.2.1.2.2 Downstream Port 1 Implementation

The downstream port 1 of the TUSB8041-Q1 is connected to a USB3 Type A connector. With BATEN1 pin pulled up, Battery Charge support is enabled for Port 1. If Battery Charge support is not needed, then pull-up resistor on BATEN1 should be uninstalled.

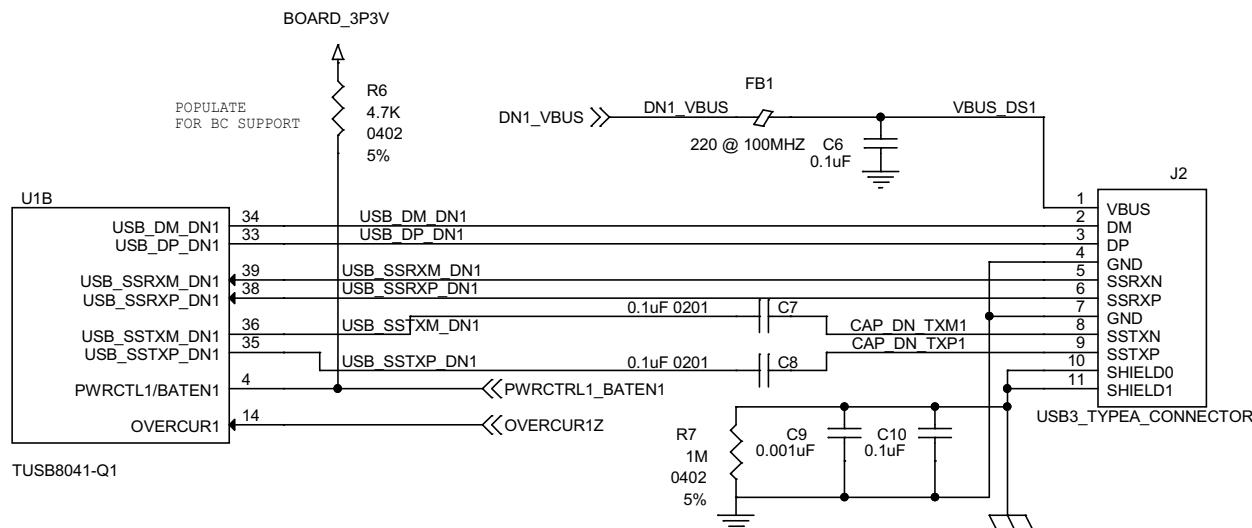



图 6. Downstream Port 1 Implementation

### 9.2.1.2.3 Downstream Port 2 Implementation

The downstream port 2 of the TUSB8041-Q1 is connected to a USB3 Type A connector. With BATEN2 pin pulled up, Battery Charge support is enabled for Port 2. If Battery Charge support is not needed, then pull-up resistor on BATEN2 should be uninstalled.

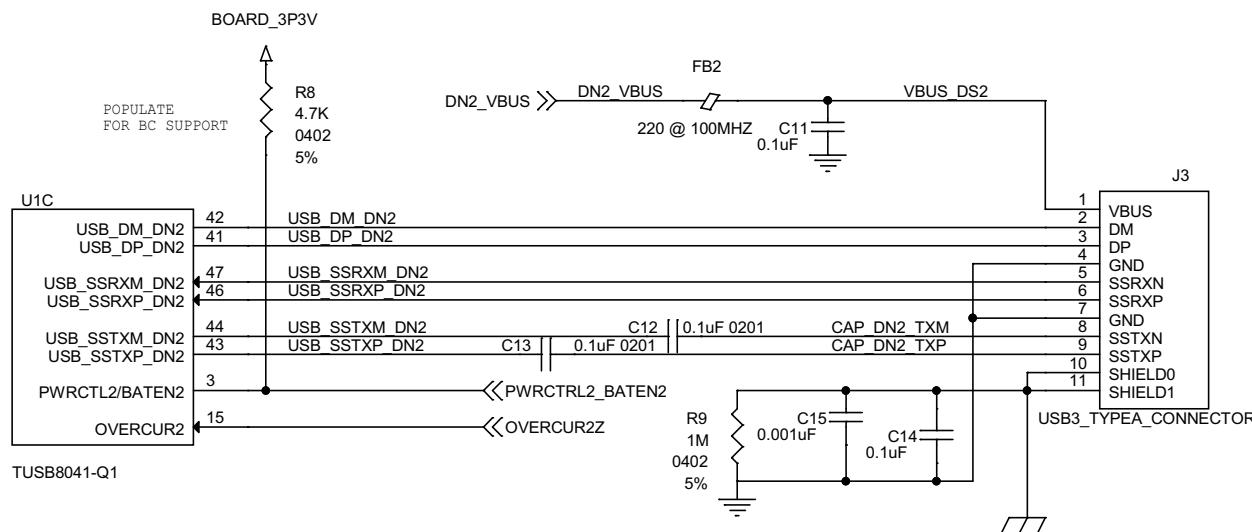



图 7. Downstream Port 2 Implementation

### 9.2.1.2.4 Downstream Port 3 Implementation

The downstream port3 of the TUSB8041-Q1 is connected to a USB3 Type A connector. With BATEN3 pin pulled up, Battery Charge support is enabled for Port 3. If Battery Charge support is not needed, then pull-up resistor on BATEN3 should be uninstalled.

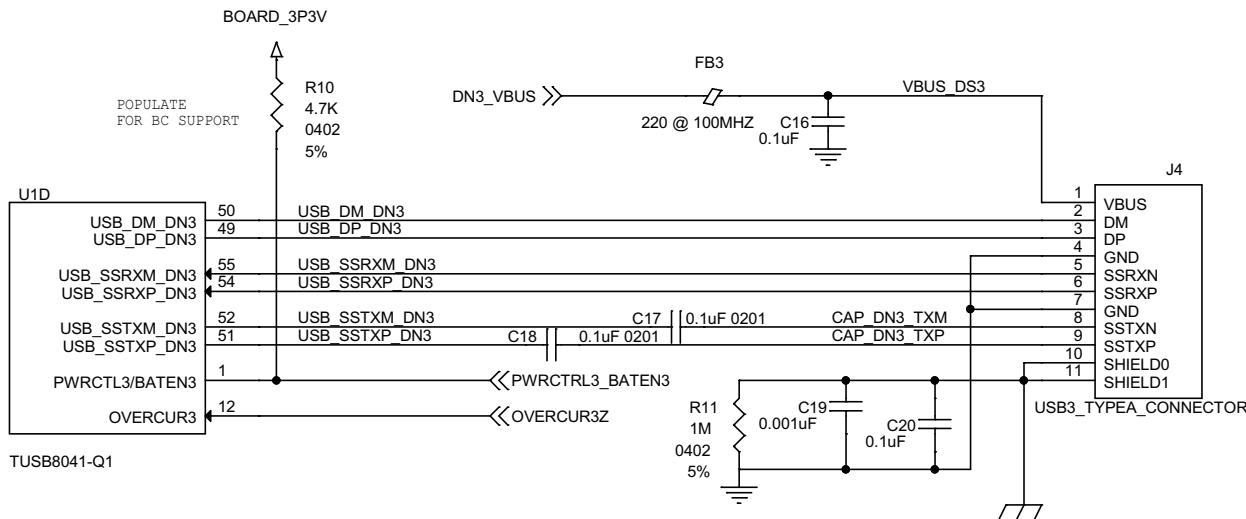



图 8. Downstream Port 3 Implementation

### 9.2.1.2.5 Downstream Port 4 Implementation

The downstream port 4 of the TUSB8041-Q1 is connected to a USB3 Type A connector. With BATEN4 pin pulled up, Battery Charge support is enabled for Port 4. If Battery Charge support is not needed, then pull-up resistor on BATEN4 should be uninstalled.

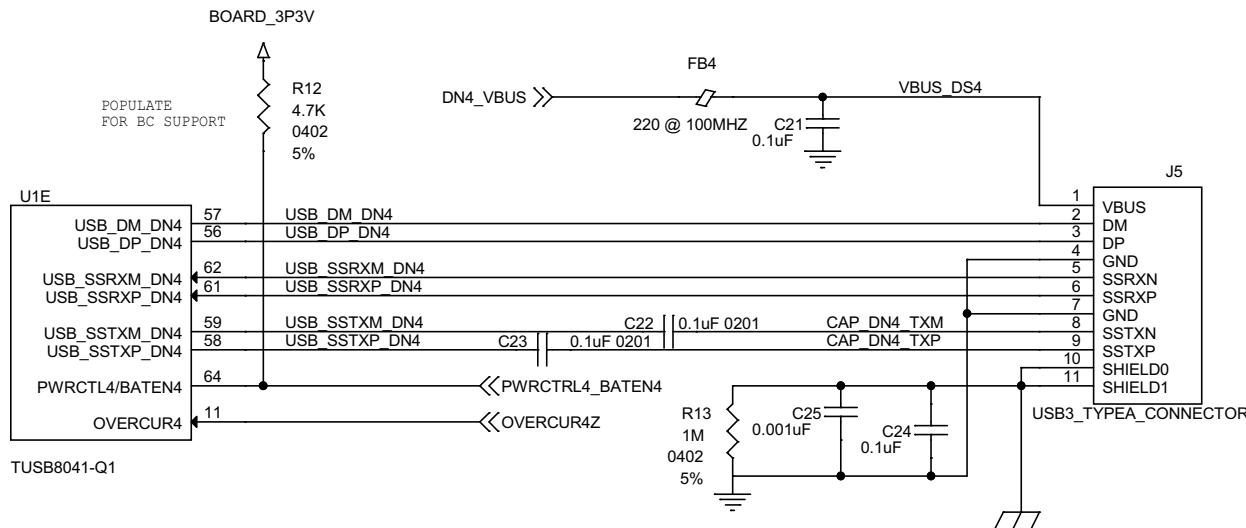
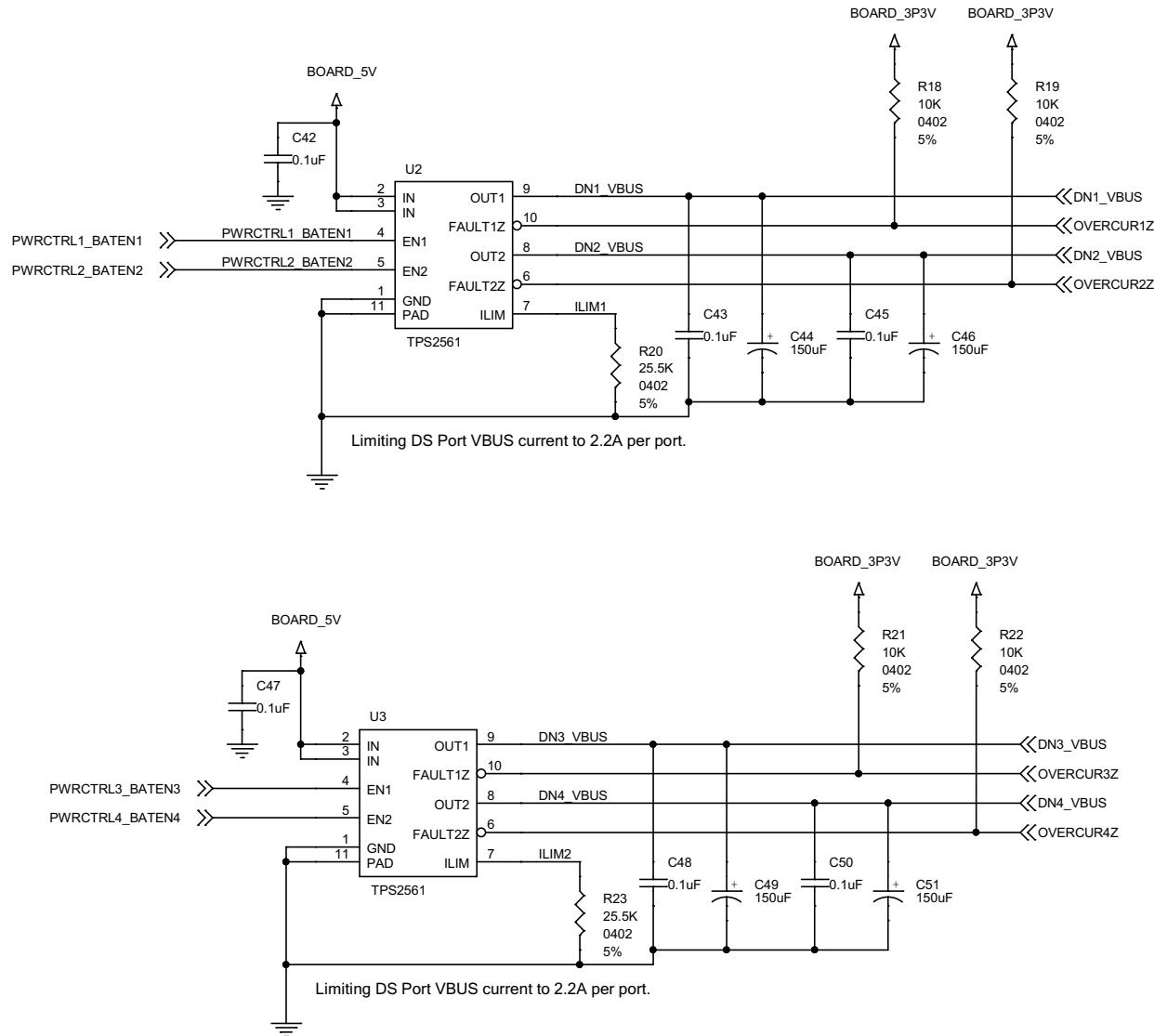




图 9. Downstream Port 4 Implementation

### 9.2.1.2.6 VBUS Power Switch Implementation

This particular example uses the Texas Instruments [TPS2561](#) Dual Channel Precision Adjustable Current-Limited power switch. For details on this power switch or other power switches available from Texas Instruments, refer to the Texas Instruments website.



**图 10. VBUS Power Switch Implementation**

### 9.2.1.2.7 Clock, Reset, and Misc

The PWRCTL\_POL is left unconnected which results in active high power enable (PWRCTL1, PWRCTL2, PWRCTL3, and PWRCTL4) for a USB VBUS power switch. The 1  $\mu$ F capacitor on the GRSTN pin can only be used if the VDD11 supply is stable before the VDD33 supply. The depending on the supply ramp of the two supplies the capacitor may have to be adjusted.

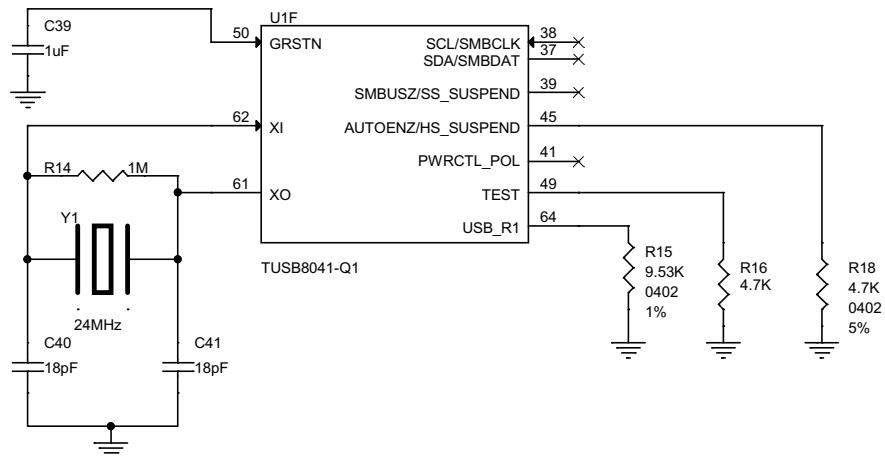



图 11. Clock, Reset, and Misc

### 9.2.1.2.8 TUSB8041-Q1 Power Implementation

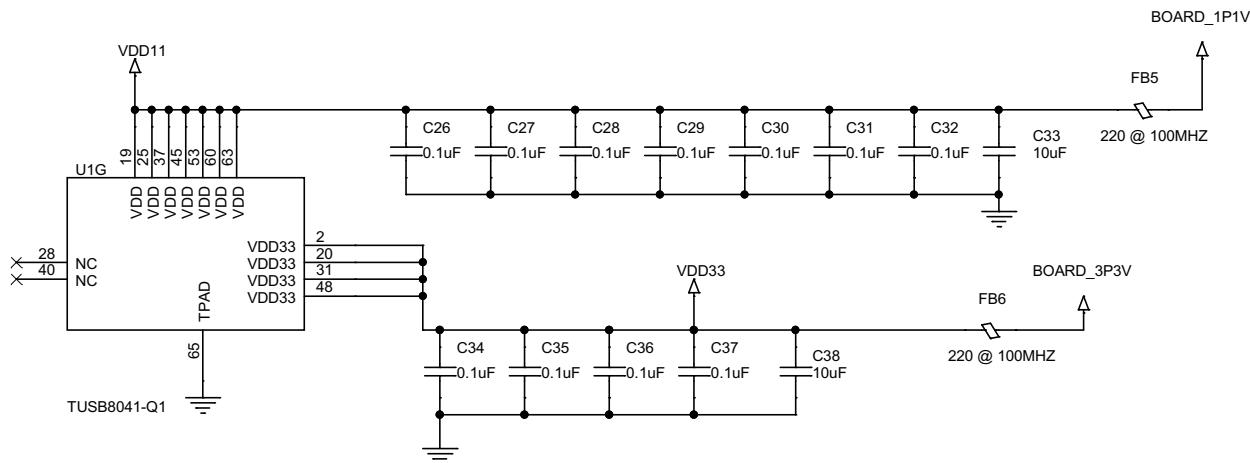
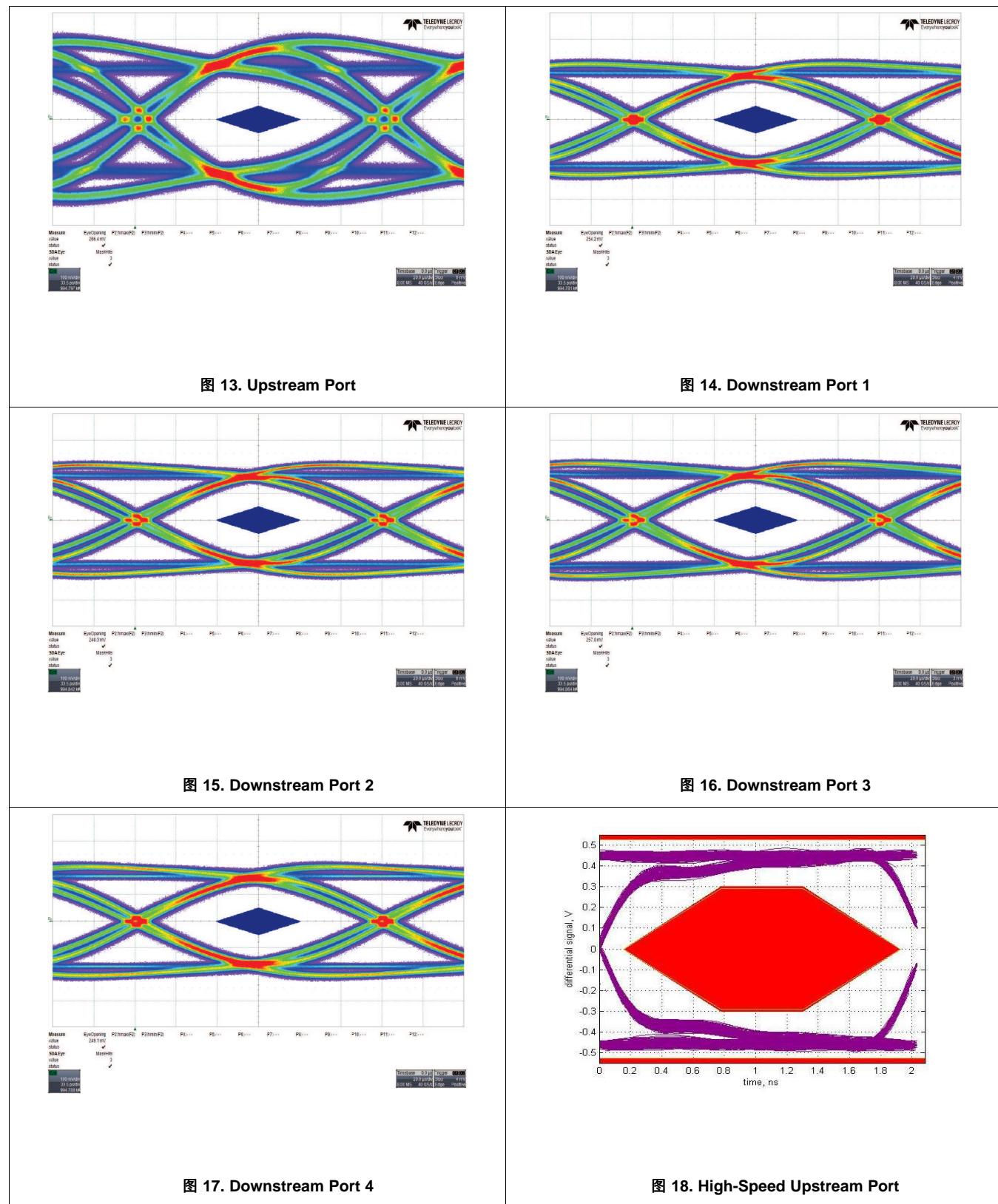




图 12. TUSB8041-Q1 Power Implementation

### 9.2.1.3 Application Curves



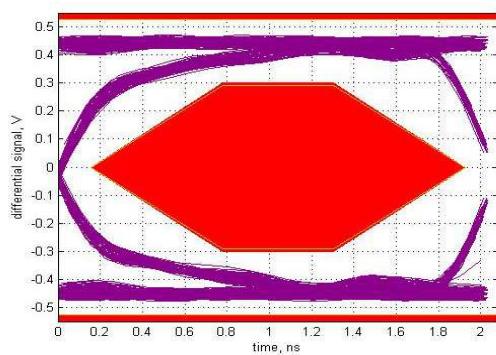



图 19. High-Speed Downstream Port 1

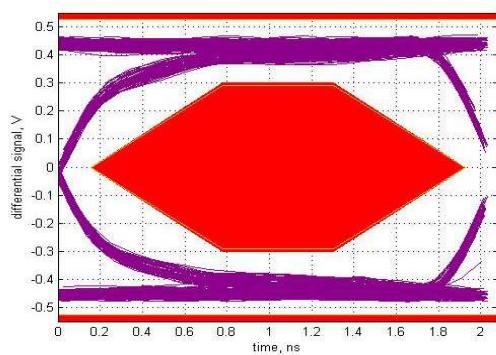



图 20. High-Speed Downstream Port 2

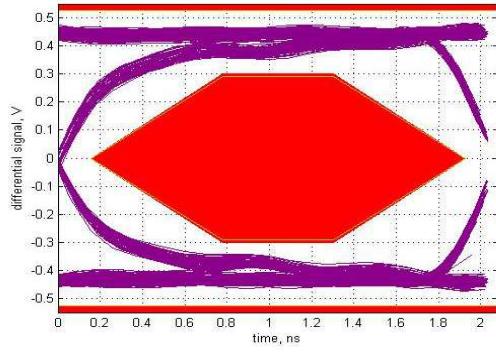



图 21. High-Speed Downstream Port 3

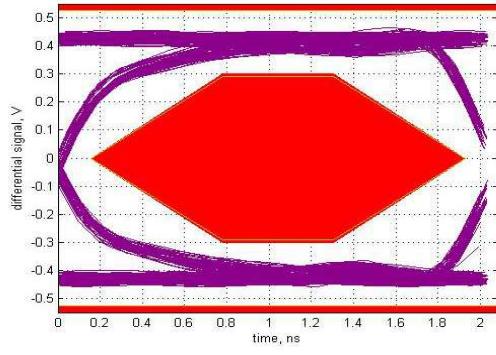



图 22. High-Speed Downstream Port 4

## 10 Power Supply Recommendations

### 10.1 TUSB8041-Q1 Power Supply

$V_{DD}$  should be implemented as a single power plane, as should  $V_{DD33}$ .

- The  $V_{DD}$  pins of the TUSB8041-Q1 supply 1.1 V (nominal) power to the core of the TUSB8041-Q1. This power rail can be isolated from all other power rails by a ferrite bead to reduce noise.
- The DC resistance of the ferrite bead on the core power rail can affect the voltage provided to the device due to the high current draw on the power rail. The output of the core voltage regulator may need to be adjusted to account for this or a ferrite bead with low DC resistance (less than 0.05  $\Omega$ ) can be selected.
- The  $V_{DD33}$  pins of the TUSB8041-Q1 supply 3.3 V power rail to the I/O of the TUSB8041-Q1. This power rail can be isolated from all other power rails by a ferrite bead to reduce noise.
- All power rails require a 10  $\mu$ F capacitor or 1  $\mu$ F capacitors for stability and noise immunity. These bulk capacitors can be placed anywhere on the power rail. The smaller decoupling capacitors should be placed as close to the TUSB8041-Q1 power pins as possible with an optimal grouping of two of differing values per pin.

### 10.2 Downstream Port Power

- The downstream port power, VBUS, must be supplied by a source capable of supplying 5V and up to 900 mA per port. Downstream port power switches can be controlled by the TUSB8041-Q1 signals. It is also possible to leave the downstream port power always enabled.
- A large bulk low-ESR capacitor of 22  $\mu$ F or larger is required on each downstream port's VBUS to limit in-rush current.
- The ferrite beads on the VBUS pins of the downstream USB port connections are recommended for both ESD and EMI reasons. A 0.1 $\mu$ F capacitor on the USB connector side of the ferrite provides a low impedance path to ground for fast rise time ESD current that might have coupled onto the VBUS trace from the cable.

### 10.3 Ground

It is recommended that only one board ground plane be used in the design. This provides the best image plane for signal traces running above the plane. The thermal pad of the TUSB8041-Q1 and any of the voltage regulators should be connected to this plane with vias. An earth or chassis ground is implemented only near the USB port connectors on a different plane for EMI and ESD purposes.

## 11 Layout

### 11.1 Layout Guidelines

#### 11.1.1 Placement

1.  $9.53K \pm 1\%$  resistor connected to pin USB\_R1 should be placed as close as possible to the TUSB8041-Q1.
2. A  $0.1 \mu F$  capacitor should be placed as close as possible on each VDD and VDD33 power pin.
3. The  $100 nF$  capacitors on the SSTXP and SSTXM nets should be placed close to the USB connector (Type A, Type B, and so forth).
4. The ESD and EMI protection devices (if used) should also be placed as possible to the USB connector.
5. If a crystal is used, it must be placed as close as possible to the TUSB8041-Q1's XI and XO pins.
6. Place voltage regulators as far away as possible from the TUSB8041-Q1, the crystal, and the differential pairs.
7. In general, the large bulk capacitors associated with each power rail should be placed as close as possible to the voltage regulators.

#### 11.1.2 Package Specific

1. The TUSB8041-Q1 package has a 0.5-mm pin pitch.
2. The TUSB8041-Q1 package has a 4.64-mm x 4.64-mm thermal pad. This thermal pad must be connected to ground through a system of vias.
3. All vias under device, except for those connected to thermal pad, should be solder masked to avoid any potential issues with thermal pad layouts.

#### 11.1.3 Differential Pairs

This section describes the layout recommendations for all the TUSB8041-Q1 differential pairs: USB\_DP\_XX, USB\_DM\_XX, USB\_SSTXP\_XX, USB\_SSTXM\_XX, USB\_SSRXP\_XX, and USB\_SSRXM\_XX.

1. Must be designed with a differential impedance of  $90 \Omega \pm 10\%$ .
2. In order to minimize cross talk, it is recommended to keep high speed signals away from each other. Each pair should be separated by at least 5 times the signal trace width. Separating with ground as depicted in the layout example will also help minimize cross talk.
3. Route all differential pairs on the same layer adjacent to a solid ground plane.
4. Do not route differential pairs over any plane split.
5. Adding test points will cause impedance discontinuity and will therefore negative impact signal performance. If test points are used, they should be placed in series and symmetrically. They must not be placed in a manner that causes stub on the differential pair.
6. Avoid 90 degree turns in trace. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of left and right bends should be as equal as possible and the angle of the bend should be  $\geq 135$  degrees. This will minimize any length mismatch causes by the bends and therefore minimize the impact bends have on EMI.
7. Minimize the trace lengths of the differential pair traces. The maximum recommended trace length for SS differential pair signals and USB 2.0 differential pair signals is eight inches. Longer trace lengths require very careful routing to assure proper signal integrity.
8. Match the etch lengths of the differential pair traces (i.e. DP and DM or SSRXP and SSRXM or SSTXP and SSTXM). There should be less than 5 mils difference between a SS differential pair signal and its complement. The USB 2.0 differential pairs should not exceed 50 mils relative trace length difference.
9. The etch lengths of the differential pair groups do not need to match (i.e. the length of the SSRX pair to that of the SSTX pair), but all trace lengths should be minimized.
10. Minimize the use of vias in the differential pair paths as much as possible. If this is not practical, make sure that the same via type and placement are used for both signals in a pair. Any vias used should be placed as close as possible to the TUSB8041-Q1 device.
11. To ease routing, the polarity of the SS differential pairs can be swapped. This means that SSTXP can be routed to SSTXM or SSRXM can be routed to SSRXP.

## Layout Guidelines (接下页)

12. To ease routing of the USB2 DP and DM pair, the polarity of these pins can be swapped. If this is done, the appropriate Px\_usb2pol register, where  $x = 0, 1, 2, 3$ , or  $4$ , must be set.
13. Do not place power fuses across the differential pair traces.

## 11.2 Layout Examples

### 11.2.1 Upstream Port

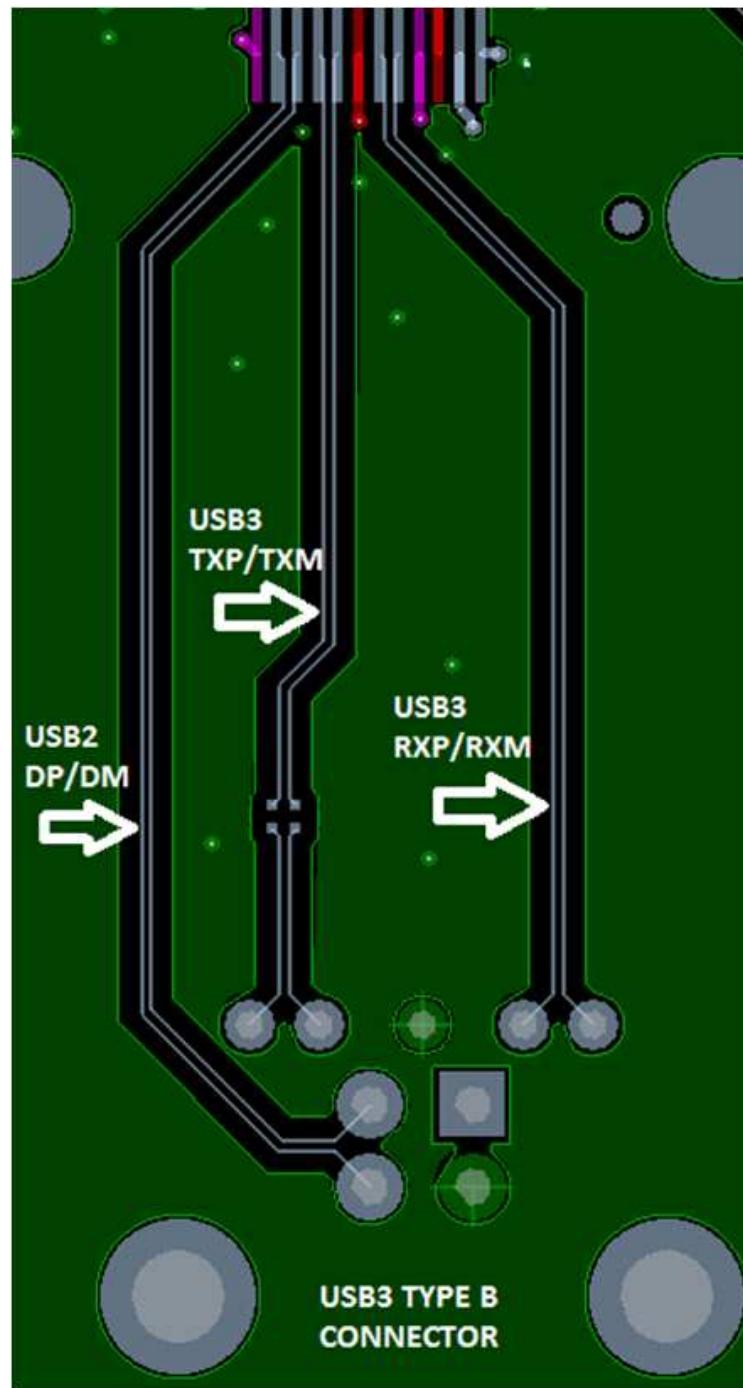



图 23. Example Routing of Upstream Port

## Layout Examples (接下页)

### 11.2.2 Downstream Port

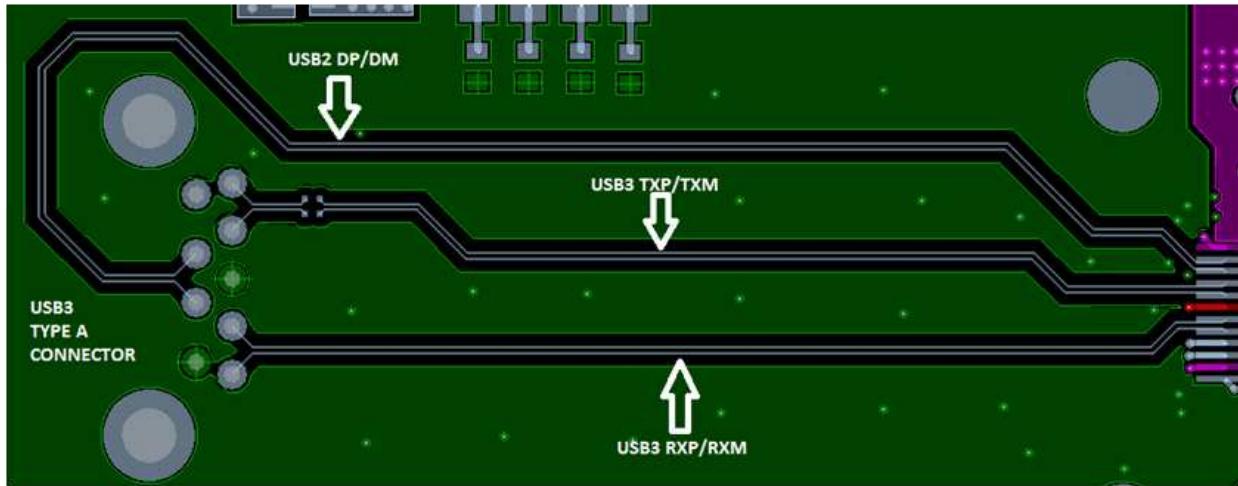



图 24. Example Routing of Downstream Port

The remaining three downstream ports routing can be similar to the example provided.

## 12 器件和文档支持

### 12.1 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

**TI E2E™ Online Community** *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At [e2e.ti.com](http://e2e.ti.com), you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

### 12.2 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

### 12.3 静电放电警告



这些装置包含有限的内置 ESD 保护。存储或装卸时, 应将导线一起截短或将装置放置于导电泡棉中, 以防止 MOS 门极遭受静电损伤。

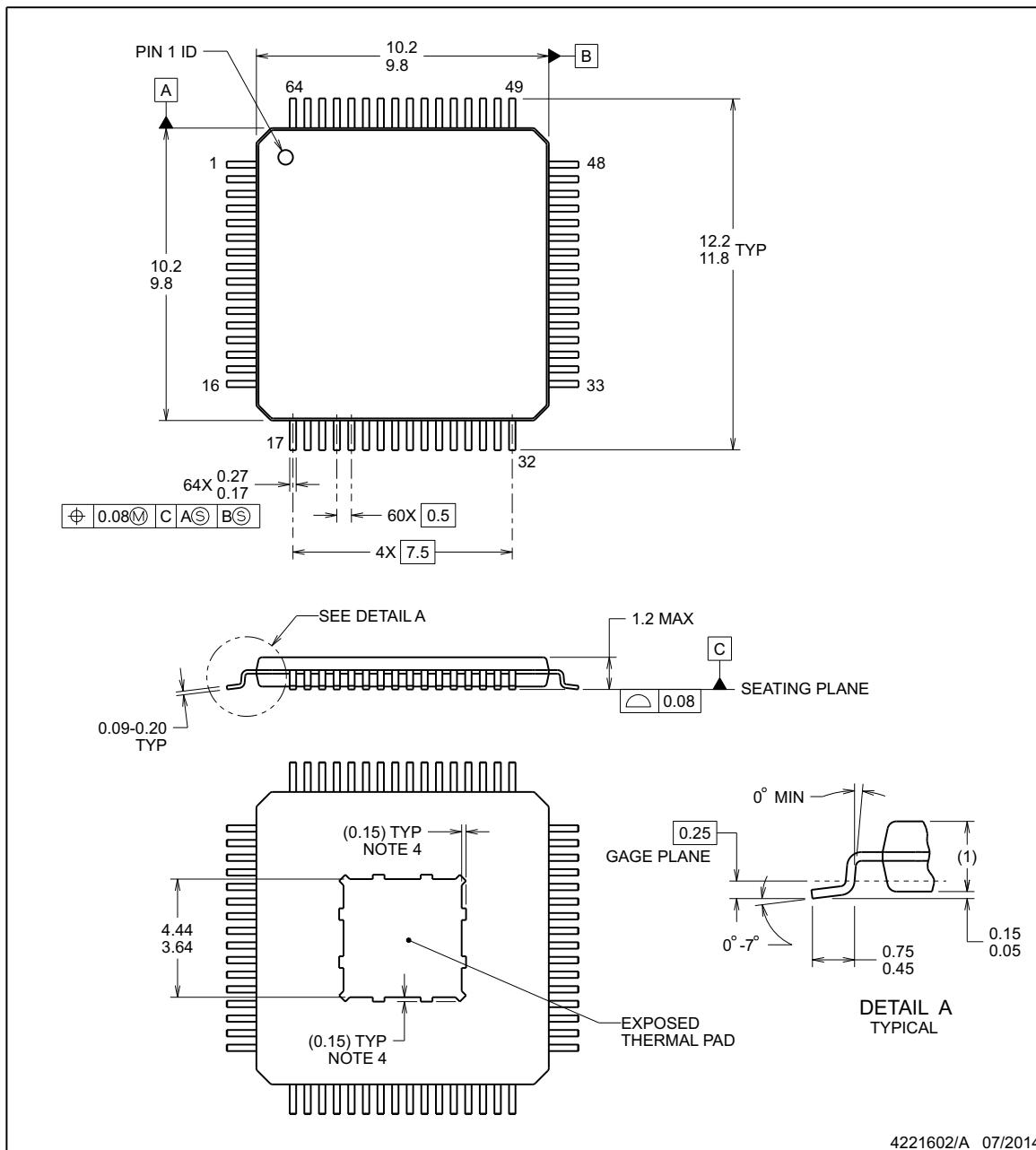
### 12.4 Glossary

[SLYZ022 — TI Glossary.](#)

This glossary lists and explains terms, acronyms, and definitions.

## 13 机械、封装和可订购信息

以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据发生变化时，我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本，请参见左侧的导航栏。


PAP0064M



## PACKAGE OUTLINE

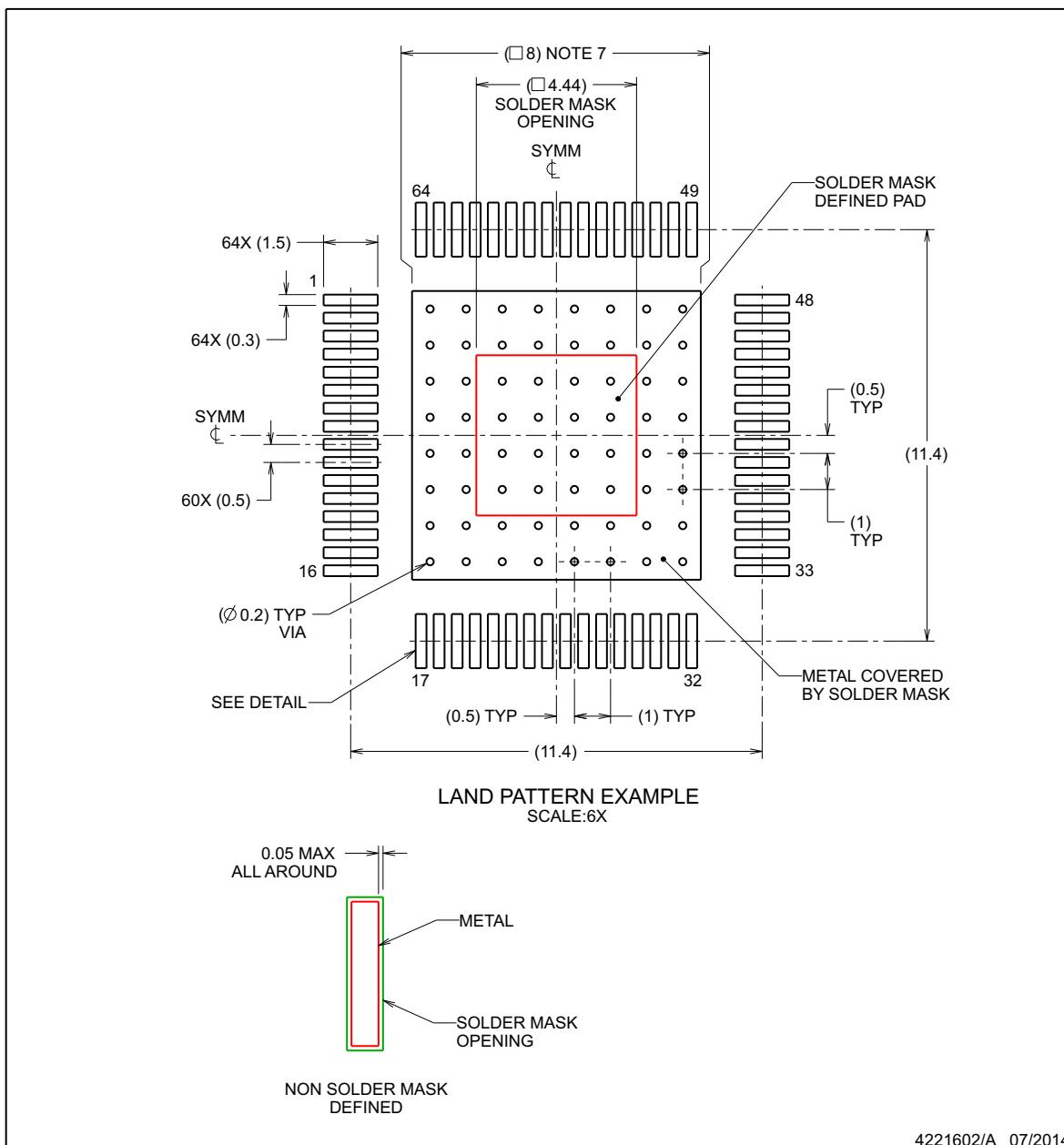
## PowerPAD™ - 1.2 mm max height

## PIASST COULD FEATURK



## NOTES:

PowerPAD is a trademark of Texas Instruments.

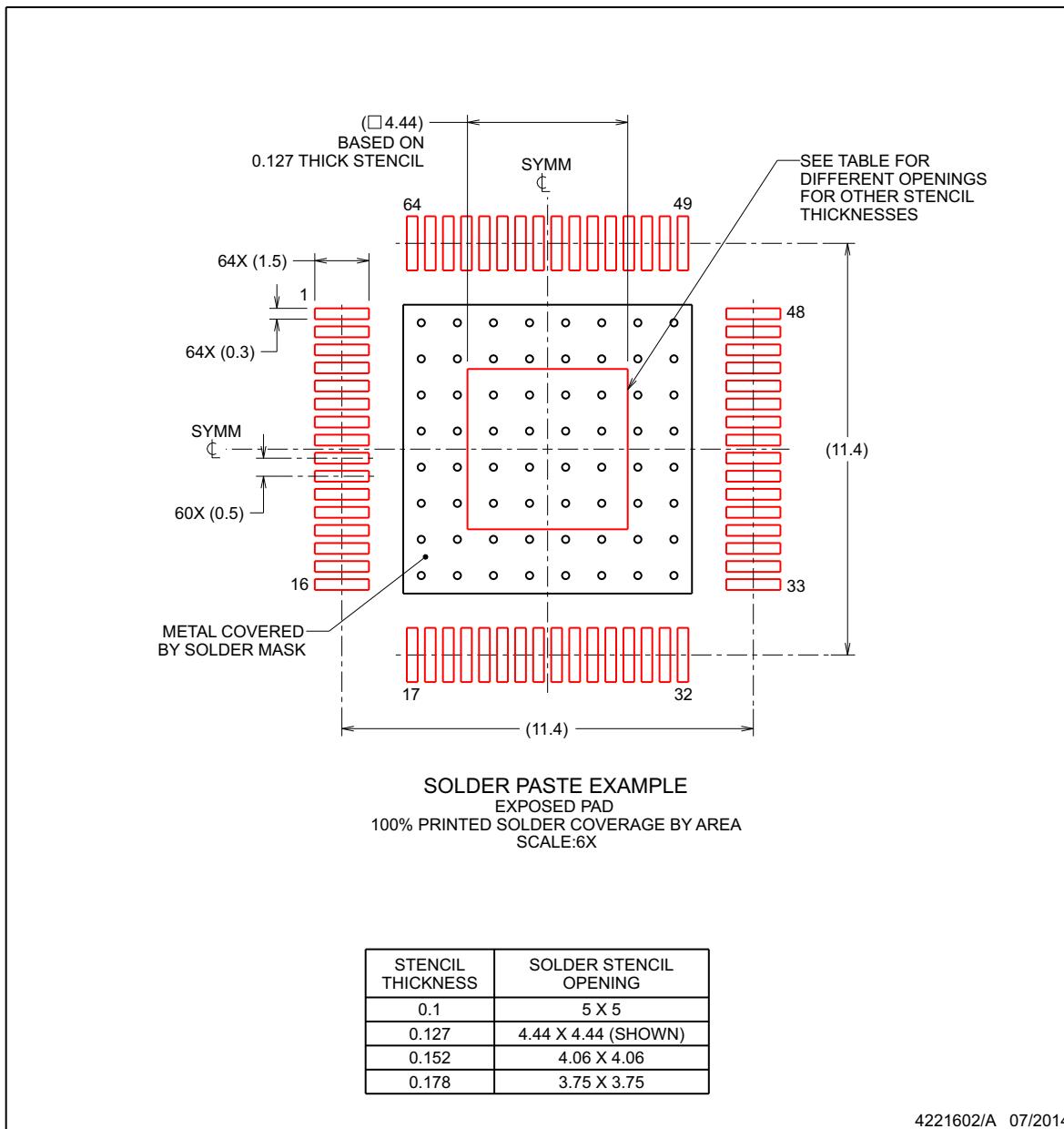

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration MS-026, variation ACD.
4. Strap features may not be present,

## PAP0064M

### EXAMPLE BOARD LAYOUT

#### PowerPAD™ - 1.2 mm max height

PLASTIC QUAD FLATPACK




NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 ([www.ti.com/lit/slma002](http://www.ti.com/lit/slma002)) and SLMA004 ([www.ti.com/lit/slma004](http://www.ti.com/lit/slma004)).
8. Size of metal pad may vary due to creepage requirement.

**PAP0064M**
**EXAMPLE STENCIL DESIGN**
**PowerPAD™ - 1.2 mm max height**

PLASTIC QUAD FLATPACK



NOTES: (continued)

9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
10. Board assembly site may have different recommendations for stencil design.

**PACKAGING INFORMATION**

| Orderable Device | Status<br>(1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan<br>(2) | Lead finish/<br>Ball material<br>(6) | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5) | Samples                                                                         |
|------------------|---------------|--------------|-----------------|------|-------------|-----------------|--------------------------------------|----------------------|--------------|-------------------------|---------------------------------------------------------------------------------|
| TUSB8041IPAPQ1   | ACTIVE        | HTQFP        | PAP             | 64   | 160         | RoHS & Green    | NIPDAU                               | Level-3-260C-168 HR  | -40 to 85    | TUSB8041I<br>Q1         | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |
| TUSB8041IPAPRQ1  | ACTIVE        | HTQFP        | PAP             | 64   | 1000        | RoHS & Green    | NIPDAU                               | Level-3-260C-168 HR  | -40 to 85    | TUSB8041I<br>Q1         | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

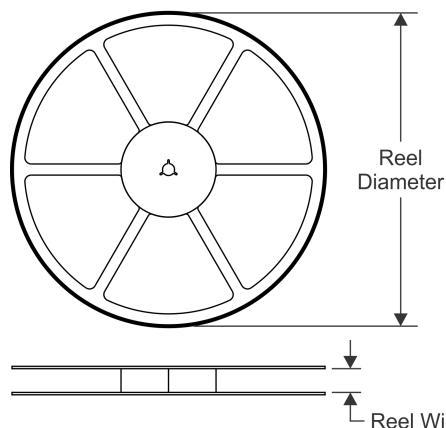
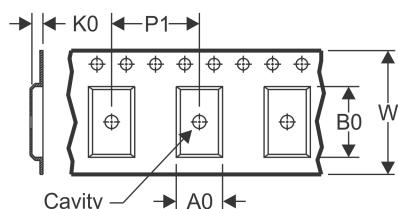
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

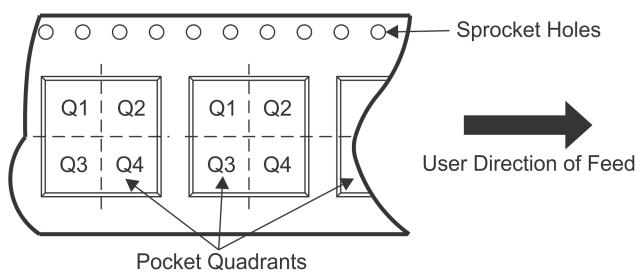
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


www.ti.com

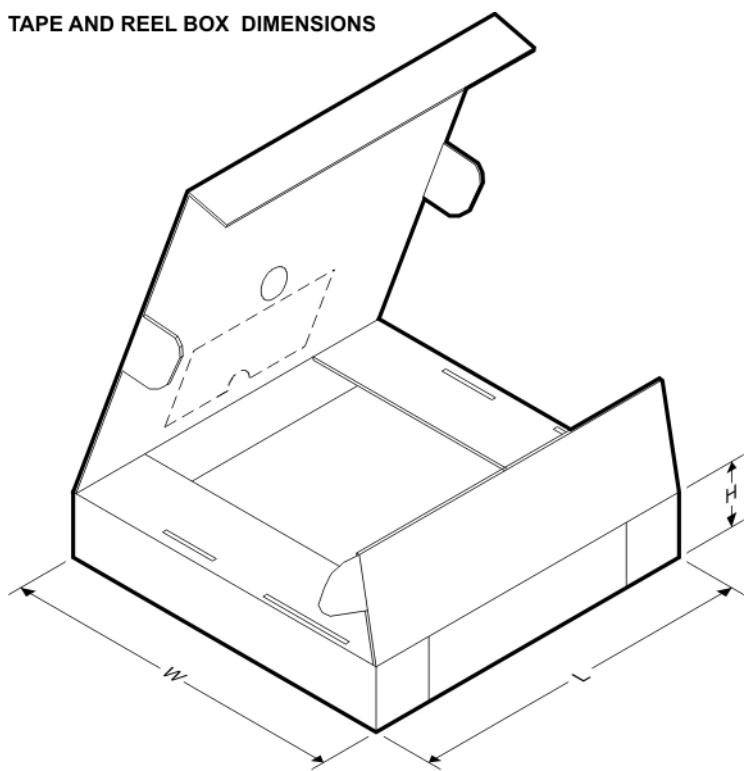

## PACKAGE OPTION ADDENDUM

10-Dec-2020

---

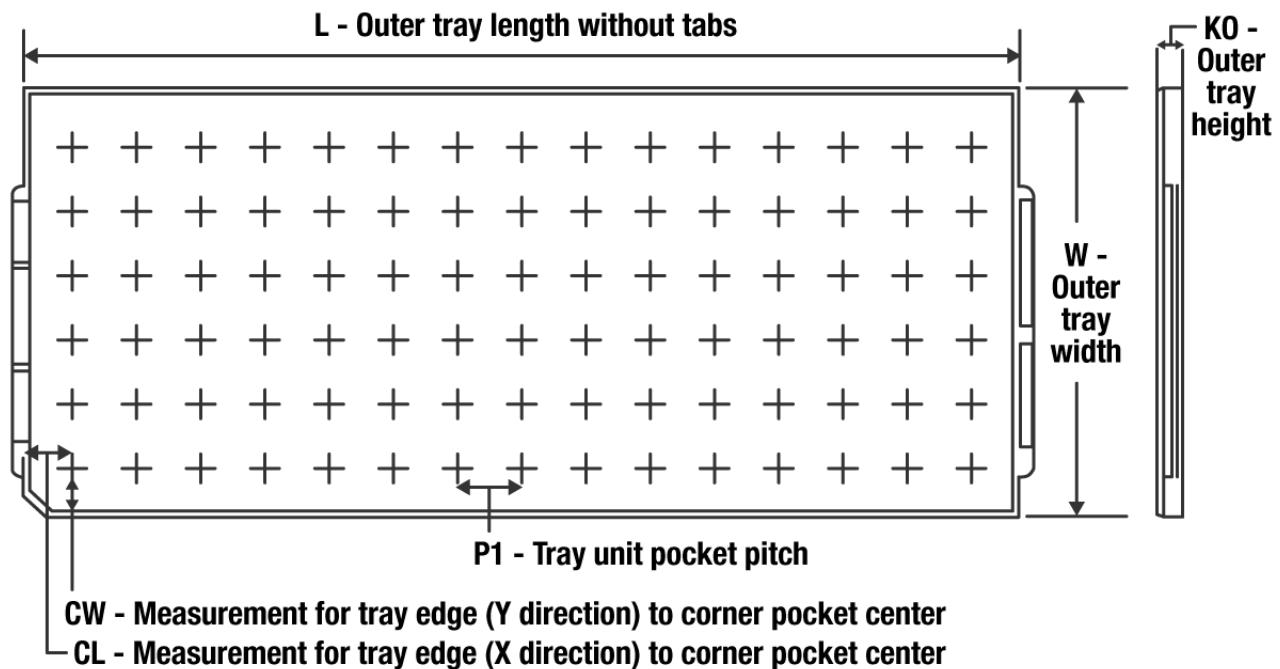
**TAPE AND REEL INFORMATION**
**REEL DIMENSIONS**

**TAPE DIMENSIONS**



|    |                                                           |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**


\*All dimensions are nominal


| Device          | Package Type | Package Drawing | Pins | SPQ  | Reel Diameter (mm) | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1 Quadrant |
|-----------------|--------------|-----------------|------|------|--------------------|--------------------|---------|---------|---------|---------|--------|---------------|
| TUSB8041IPAPRQ1 | HTQFP        | PAP             | 64   | 1000 | 330.0              | 24.4               | 13.0    | 13.0    | 1.5     | 16.0    | 24.0   | Q2            |

## TAPE AND REEL BOX DIMENSIONS



\*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TUSB8041IPAPRQ1 | HTQFP        | PAP             | 64   | 1000 | 367.0       | 367.0      | 55.0        |

**TRAY**


Chamfer on Tray corner indicates Pin 1 orientation of packed units.

\*All dimensions are nominal

| Device         | Package Name | Package Type | Pins | SPQ | Unit array matrix | Max temperature (°C) | L (mm) | W (mm) | K0 (µm) | P1 (mm) | CL (mm) | CW (mm) |
|----------------|--------------|--------------|------|-----|-------------------|----------------------|--------|--------|---------|---------|---------|---------|
| TUSB8041IPAPQ1 | PAP          | HTQFP        | 64   | 160 | 8 X 20            | 150                  | 322.6  | 135.9  | 7620    | 15.2    | 13.1    | 13      |

## 重要声明和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成任何索赔、损害、成本、损失和债务，TI 对此概不负责。

TI 提供的产品受 [TI 的销售条款](#) 或 [ti.com](#) 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址：Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, 德州仪器 (TI) 公司