

INA282-Q1, INA283-Q1, INA284-Q1, INA285-Q1, INA286-Q1

ZHCS793B -MARCH 2012-REVISED DECEMBER 2015

INA28x-Q1 汽车级、-14V 至 +80V、双向、高精度、低侧/高侧、电压输出、分流监控器

1 特性

- 符合汽车 应用标准
- 具有符合 AEC-Q100 标准的下列结果
 - 器件温度 1 级: -40°C 至 +125°C 环境工作温度范围
 - 器件人体放电模式 (HBM) 静电放电 (ESD) 分类 等级 H2
 - 器件组件充电模式 (CDM) ESD 分类等级 C5
- 宽共模电压范围: -14V 至 +80V
- 偏移电压: ±20µV
- 共模抑制比 (CMRR): 140dB
- 精度:
 - ±1.4% 增益误差(最大值)
 - 0.3µV/°C 偏移漂移
 - 0.005%/°C 增益漂移(最大值)
- 可用的增益:
 - 50 V/V: INA282-Q1
 - 100 V/V: INA286-Q1
 - 200 V/V: INA283-Q1
 - 500 V/V: INA284-Q1
 - 1000 V/V: INA285-Q1
- 静态电流: 900µA(最大值)

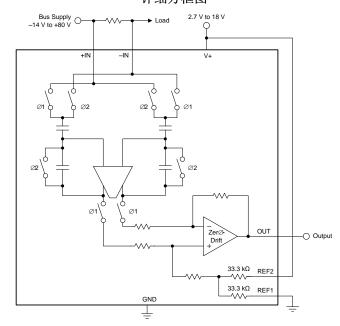
2 应用

- 电动车 (EV) 和混合动力汽车 (HEV) 电池管理
- EV 和 HEV 充电器
- 电动助力转向 (EPS) 系统
- 车身控制模块
- 刹车系统
- 电子稳定性控制 (ESC) 系统

3 说明

INA28x-Q1 系列包括 INA282-Q1、INA283-Q1、

INA284-Q1、INA285-Q1 和 INA286-Q1 器件。这些器件是电压输出分流监控器,能够在 -14V 至 +80V 范围内的共模电压下感测分流器两端的压降,与电源电压无关。零漂移架构的低偏移使得电流感测的分流器两端的最大压降低至 10 mV 的满量程。


这些电流感测放大器可由电压为 2.7V 至 18V 的单电源供电,最大电源电流消耗为 900μA。这些器件的额定扩展工作温度范围为 -40°C 至 +125°C,并且采用 SOIC-8 和 VSSOP-8 封装。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
INA28xAQDRQ1	SOIC (8)	4.90mm x 3.91mm
INA28xAQDGKRQ1	VSSOP (8)	3.00mm × 3.00mm

(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。

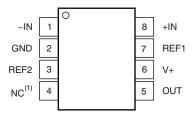
详细方框图

· =.
712
71

1	特性		7.4 Device Functional Modes	15
2	应用	8	Application and Implementation	
3			8.1 Application Information	
4	修订历史记录		8.2 Typical Applications	21
5	Pin Configuration and Functions	9	Power Supply Recommendations	2 <mark>5</mark>
6	Specifications4	10	Layout	25
•	6.1 Absolute Maximum Ratings		10.1 Layout Guidelines	
	6.2 ESD Ratings		10.2 Layout Example	25
	6.3 Recommended Operating Conditions	11	器件和文档支持	26
	6.4 Thermal Information		11.1 相关链接	26
	6.5 Electrical Characteristics5		11.2 社区资源	26
	6.6 Typical Characteristics		11.3 商标	
7	Detailed Description 13		11.4 静电放电警告	26
	7.1 Overview 13		11.5 Glossary	26
	7.2 Functional Block Diagram	12	机械、封装和可订购信息	26
	7.3 Feature Description			

4 修订历史记录

Changes from Revision A (July 2015) to Revision B


Page

Cł	nanges from Original (March 2012) to Revision A	Page
•	已将 VSSOP 封装从产品预览改为量产数据	1
•	已将数据表标题从高精度、宽共模范围、双向电流监控器零漂移系列改为 INA28x-Q1 汽车级、-14V 至 +80V、双向、高精度、低侧/高侧、电压输出、分流监控器	1
•	已添加 DGK (VSSOP) 封装至数据表	1
•	已更改应用	1
•	更改了首页图	1
•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	3
•	Added RVRR as symbol for reference rejection ratio	5
•	Changed order of figures in Typical Characteristics section	<mark>7</mark>
•	Changed Figure 16	9
•	Changed V _{DRIVE} condition in Figure 20 and Figure 21	
•	Added functional block diagram	13
•	Changed Figure 32 and Figure 33	15
•	Changed Figure 34 and Figure 35	16
•	Changed Figure 36 and Figure 37	17
•	Changed Figure 38	17
•	Changed Reference Common-Mode Rejection to Reference Voltage Rejection Ratio	18
•	Changed R _{CMR} to RVRR in Table 1 and Table 2	19
•	Changed Figure 39	20
•	Changed Figure 40	21
•	Changed Figure 42	23

5 Pin Configuration and Functions

D and DGK Package 8-Pin SOIC and VSSOP Top View

(1) NC: This pin is not internally connected. The NC pin should either be left floating or connected to GND.

Pin Functions

	PIN	1/0	DECEDIDATION	
NO.	NAME	I/O	DESCRIPTION	
1	-IN	Analog input	Connection to negative side of shunt resistor.	
2	GND	Analog	Ground	
3	REF2	Analog input	Reference voltage, 0 V to V+. See <i>Reference Pin Connection Options</i> section for connection options.	
4	NC	_	This pin is not internally connected. The NC pin should either be left floating or connected to GND.	
5	OUT	Analog output	Output voltage	
6	V+	Analog	Power supply, 2.7 V to 18 V	
7	REF1	Analog input	Reference voltage, 0 V to V+. See <i>Reference Pin Connection Options</i> section for connection options.	
8	+IN	Analog input	Connection to positive side of shunt resistor.	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range, unless otherwise noted. (1)

		MIN	MAX	UNIT
Supply voltage, V-	+		18	V
Analog inputs, V _{+IN} , V _{-IN} ⁽²⁾	Differential $(V_{+IN}) - (V_{-IN})^{(3)}$	- 5	5	V
	Common-Mode	-14	80	V
REF1, REF2, OUT		GND-0.3	(V+) + 0.3	V
Input current into any pin			5	mA
Junction temperature			150	°C
Storage temperatu	Storage temperature, T _{stq}		150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Floatroototic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
V _(ESD) Electrostatic discha	Electrostatic discharge	Charged device model (CDM), per AEC Q100-011	±750	V

⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{CM}	Common-mode input voltage		12		V
V+	Operating supply voltage		5		V
T _A	Operating free-air temperature	-40		125	°C

6.4 Thermal Information

		INA2		
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DGK (VSSOP)	UNIT
		8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	134.9	164.1	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	72.9	56.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	61.3	85.0	°C/W
ΨЈТ	Junction-to-top characterization parameter	18.9	6.5	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	54.3	83.3	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁾ $V_{+|N}$ and $V_{-|N}$ are the voltages at the +IN and -IN pins, respectively.

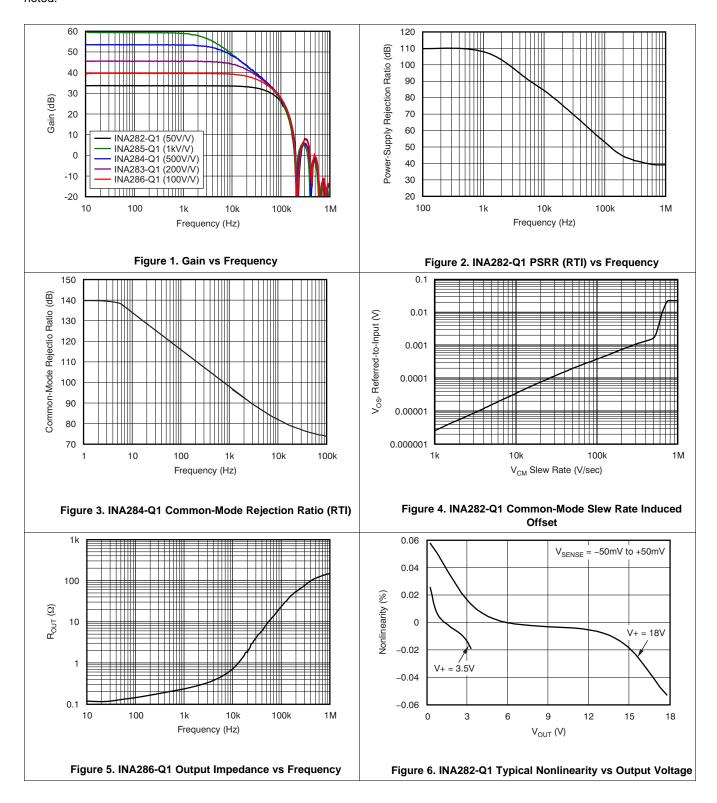
⁽³⁾ Input voltages must not exceed common-mode rating.

6.5 Electrical Characteristics

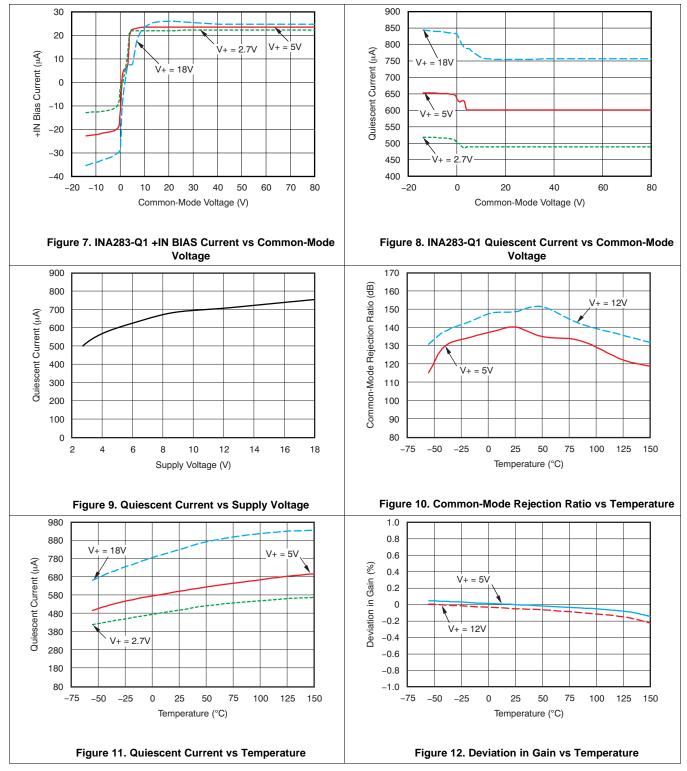
	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
INPUT			I				
Vos	Offset Voltage, RTI ⁽¹⁾	V _{SENSE} = 0 mV			±20	±70	μV
dV _{OS} /dT	vs Temperature	$T_A = -40$ °C to	125°C		±0.3	±1.5	μV/°C
PSRR	vs Power Supply	$V_S = 2.7 \text{ V to } 1$	8 V, V _{SENSE} = 0 mV		3		μV/V
V _{CM}	Common-Mode Input Range	$T_A = -40$ °C to	125°C	-14		+80	V
CMRR	Common-Mode Rejection	$V_{+IN} = -14 \text{ V to}$ $T_A = -40^{\circ}\text{C to}$	80 V, V _{SENSE} = 0 mV 125°C	120	140		dB
I _B	Input Bias Current per Pin (2)	V _{SENSE} = 0 mV			25		μΑ
I _{OS}	Input Offset Current	V _{SENSE} = 0 mV			1		μΑ
	Differential Input Impedance				6		kΩ
REFERE	NCE INPUTS						
	Reference Input Gain				1		V/V
	Reference Input Voltage Range (3)			0		V _{GND} + 9	V
	Divider Accuracy ⁽⁴⁾				±0.2%	±0.5%	
		INA282-Q1			±25	±75	μV/V
			$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		0.055		μV/V/°C
		INA283-Q1			±13	±30	μV/V
			$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		0.040		μV/V/°C
D)/DD	Reference Voltage Rejection Ratio	INA284-Q1			±6	±25	μV/V
RVRR	$(V_{REF}1 = V_{REF}2 = 40 \text{ mV to } 9 \text{ V}, V+ = 18 \text{ V})$		$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		0.015		μV/V/°C
	,	INA285-Q1			±4	±10	μV/V
			$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		0.010		μV/V/°C
		INA286-Q1			±17	±45	μV/V
		INAZOO-Q1	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		0.040		μV/V/°C
GAIN ⁽⁵⁾ (GND + $0.5 \text{ V} \le \text{V}_{\text{OUT}} \le (\text{V+}) - 0.5 \text{ V}; \text{ V}$	/ _{REF1} = V _{REF2} =	(V+) / 2 for all devices)				
		INA282-Q1, V+	· = 5 V		50		V/V
		INA283-Q1, V+	· = 5 V		200		V/V
G	Gain	INA284-Q1, V+	· = 5 V		500		V/V
		INA285-Q1, V+ = 5 V			1000		V/V
		INA286-Q1, V+	- = 5 V		100		V/V
		INA282-Q1, IN	A283-Q1, INA286-Q1		±0.4%	±1.4%	
	Gain Error	INA284-Q1, IN	A285-Q1		±0.4%	±1.6%	
		$T_A = -40^{\circ}C$ to	125°C		0.0008	0.005	%/°C

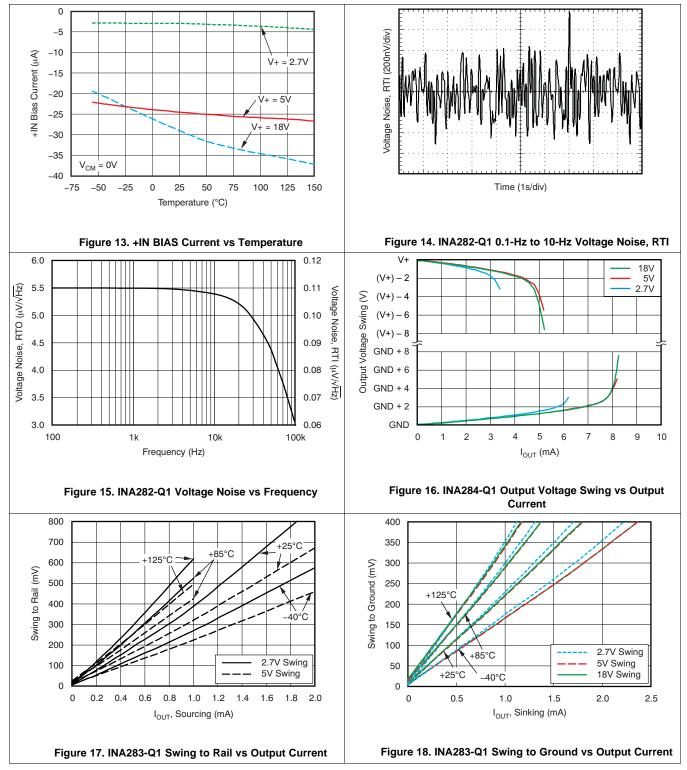
 ⁽²⁾ See typical characteristic graph Figure 7.
 (3) The average of the voltage on pins REF1 and REF2 must be between V_{GND} and the lesser of (V_{GND}+9 V) and V+.
 (4) Reference divider accuracy specifies the match between the reference divider resistors using the configuration in Figure 36.
 (5) See typical characteristic graph Figure 12.

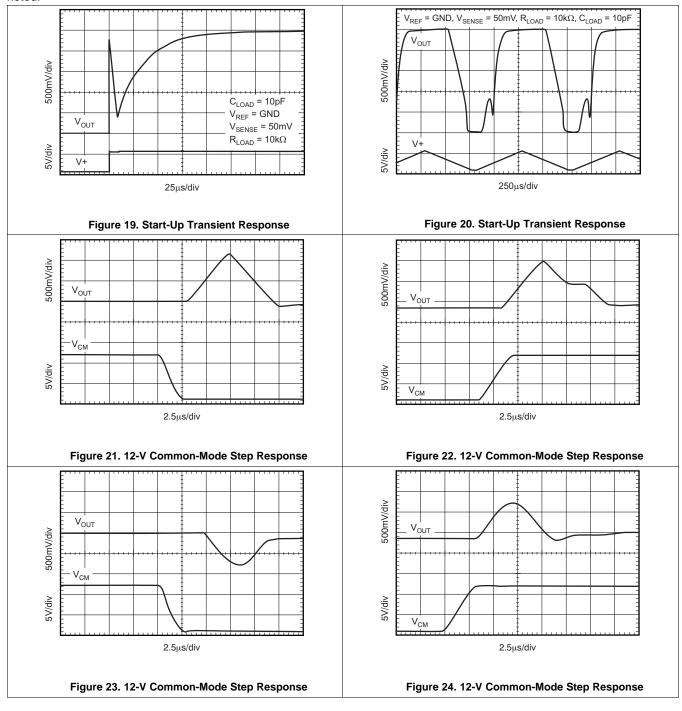
Electrical Characteristics (continued)

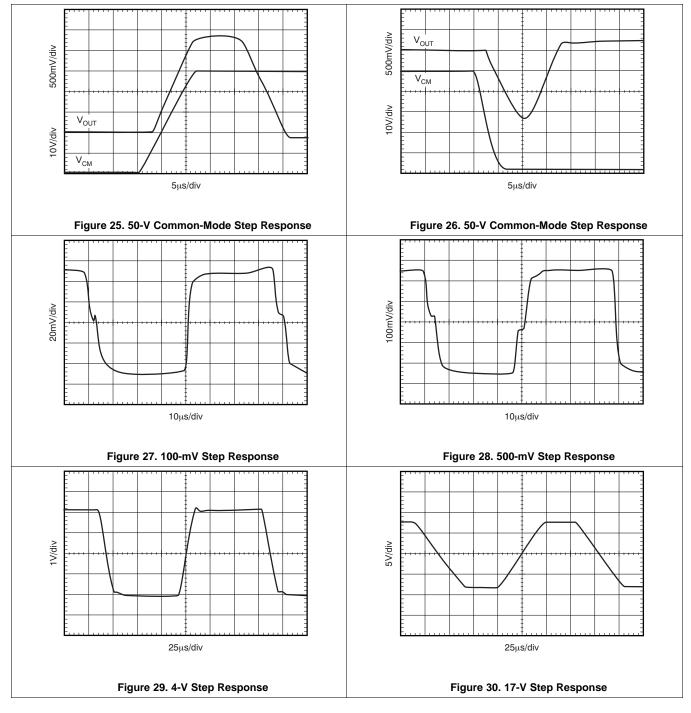

	PARAMETER	TEST CONDITIONS	MIN TY	P MAX	UNIT
OUTPU	JT				
	Nonlinearity Error		±0.01°	%	
	Output Impedance		1.	5	Ω
	Maximum Capacitive Load	No sustained oscillation		1	nF
VOLTA	AGE OUTPUT (6)				
	Swing to V+ Power-Supply Rail	V+ = 5 V, R _{LOAD} = 10 kΩ to GND $T_A = -40$ °C to 125°C	(V+)-0.1	7 (V+)-0.4	V
	Swing to GND	$T_A = -40$ °C to 125°C	GND+0.01	5 GND+0.04	V
FREQU	JENCY RESPONSE				
		INA282-Q1	1	0	
		INA283-Q1	1	0	
BW	Effective Bandwidth (7)	INA284-Q1		4	kHz
		INA285-Q1		2	
		INA286-Q1	1	0	
NOISE	, RTI ⁽¹⁾				
	Voltage Noise Density	1 kHz	11	0	nV/√ Hz
POWE	R SUPPLY				
Vs	Specified Voltage Range	$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	2.7	18	V
IQ	Quiescent Current		60	0 900	μΑ
TEMPE	RATURE RANGE				
Specific	ed Range		-40	125	°C

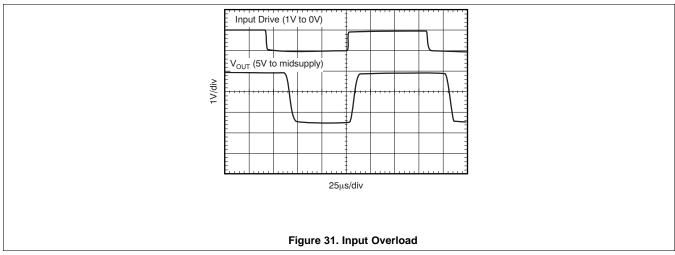
See typical characteristic graphs Figure 16 through Figure 18.

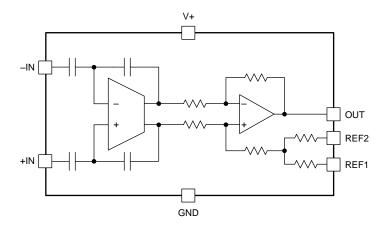

See typical characteristic graph Figure 1 and the *Effective Bandwidth* section in the Applications Information.


6.6 Typical Characteristics








7 Detailed Description

7.1 Overview

The INA28x-Q1 family of voltage output current-sensing amplifiers are specifically designed to accurately measure voltages developed across current-sensing resistors on common-mode voltages that far exceed the supply voltage powering the devices. This family features a common-mode range that extends 14 V less than the negative supply rail, as well as up to 80 V, allowing for either low-side or high-side current sensing while the device is powered from supply voltages as low as 2.7 V.

The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as 70 μ V with a maximum temperature contribution of 1.5 μ V/°C over the full temperature range of –40°C to 125°C.

7.2 Functional Block Diagram

7.3 Feature Description

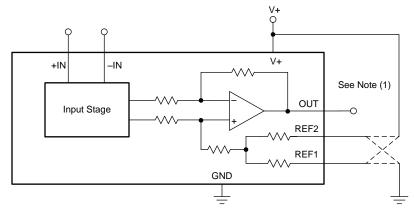
7.3.1 Selecting R_S

The zero-drift offset performance of the INA28x-Q1 family offers several benefits. Most often, the primary advantage of the low offset characteristic enables lower full-scale drops across the shunt. For example, nonzero-drift, current-shunt monitors typically require a full-scale range of 100 mV. The INA28x-Q1 family gives equivalent accuracy at a full-scale range on the order of 10 mV. This accuracy reduces shunt dissipation by an order of magnitude, with many additional benefits. Alternatively, applications that must measure current over a wide dynamic range can take advantage of the low offset on the low end of the measurement. Most often, these applications can use the lower gains of the INA282-Q1, INA286-Q1, or INA283-Q1 to accommodate larger shunt drops on the upper end of the scale. For instance, an INA282-Q1 operating on a 3.3-V supply can easily handle a full-scale shunt drop of 55 mV, with only 70 μ V of offset.

7.3.2 Effective Bandwidth

The extremely high DC CMRR of the INA28x-Q1 results from the switched capacitor input structure. Because of this architecture, the INA28x-Q1 exhibits discrete time system behaviors as illustrated in the gain versus frequency graph of Figure 3 and the step response curves of Figure 21 through Figure 28. The response to a step input depends somewhat on the phase of the internal INA28x-Q1 clock when the input step occurs. It is possible to overload the input amplifier with a rapid change in input common-mode voltage (see Figure 4). Errors as a result of common-mode voltage steps and/or overload situations typically disappear within 15 µs after the disturbance is removed.

7.3.3 Transient Protection


The -14-V to 80-V common-mode range of the INA28x-Q1 is ideal for withstanding automotive fault conditions that range from 12-V battery reversal up to 80-V transients; no additional protective components are needed up to those levels. In the event that the INA28x-Q1 is exposed to transients on the inputs in excess of its ratings, then external transient absorption with semiconductor transient absorbers (Zener or *Transzorbs*) will be necessary. Use of MOVs or VDRs is not recommended except when they are used in addition to a semiconductor transient absorber. Select the transient absorber such that it cannot allow the INA28x-Q1 to be exposed to transients greater than 80 V (that is, allow for transient absorber tolerance, as well as additional voltage as a result of transient absorber dynamic impedance). Despite the use of internal zener-type electrostatic discharge (ESD) protection, the INA28x-Q1 does not lend itself to using external resistors in series with the inputs without degrading gain accuracy.

7.4 Device Functional Modes

7.4.1 Reference Pin Connection Options

Figure 32 illustrates a test circuit for reference divider accuracy. The output of the INA28x-Q1 can be connected for unidirectional or bidirectional operation. Neither the REF1 pin nor the REF2 pin may be connected to any voltage source lower than GND or higher than V+, and that the effective reference voltage (REF1 + REF2)/2 must be 9 V or less. This parameter means that the V+ reference output connection shown in Figure 34 is not allowed for V+ greater than 9 V. However, the split-supply reference connection shown in Figure 36 is allowed for all values of V+ up to 18 V.

(1) Reference divider accuracy is determined by measuring the output with the reference voltage applied to alternate reference resistors, and calculating a result such that the amplifier offset is cancelled in the final measurement.

Figure 32. Test Circuit for Reference Divider Accuracy

7.4.1.1 Unidirectional Operation

Unidirectional operation allows the INA28x-Q1 to measure currents through a resistive shunt in one direction. In the case of unidirectional operation, the output could be set at the negative rail (near ground, and the most common connection) or at the positive rail (near V+) when the differential input is 0V. The output moves to the opposite rail when a correct polarity differential input voltage is applied.

The required polarity of the differential input depends on the output voltage setting. If the output is set at the positive rail, the input polarity must be negative to move the output down. If the output is set at ground, the polarity is positive to move the output up.

The following sections describe how to configure the output for unidirectional operation.

7.4.1.1.1 Ground Referenced Output

When using the INA28x-Q1 in this mode, both reference inputs are connected to ground; this configuration takes the output to the negative rail when there is 0V differential at the input (as Figure 33 shows).

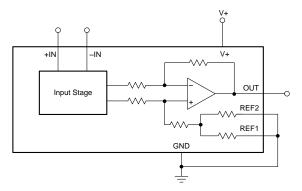


Figure 33. Ground Referenced Output

7.4.1.1.2 V+ Referenced Output

This mode is set when both reference pins are connected to the positive supply. It is typically used when a diagnostic scheme requires detection of the amplifier and the wiring before power is applied to the load (as shown in Figure 34).

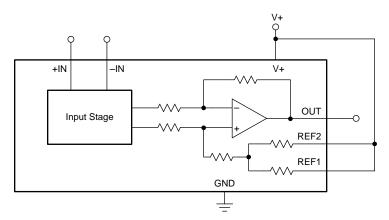


Figure 34. V+ Referenced Output

7.4.1.2 Bidirectional Operation

Bidirectional operation allows the INA28x-Q1 to measure currents through a resistive shunt in two directions. In this case, the output can be set anywhere within the limits of what the reference inputs allow (that is, from 0 V to 9 V, but never to exceed the supply voltage). Typically, it is set at half-scale for equal range in both directions. In some cases, however, it is set at a voltage other than half-scale when the bidirectional current is nonsymmetrical.

The quiescent output voltage is set by applying voltage(s) to the reference inputs. REF1 and REF2 are connected to internal resistors that connect to an internal offset node. There is no operational difference between the pins.

7.4.1.2.1 External Reference Output

Connecting both pins together and to a reference produces an output at the reference voltage when there is no differential input; this configuration is illustrated in Figure 35. The output moves down from the reference voltage when the input is negative relative to the –IN pin and up when the input is positive relative to the –IN pin. This technique is the most accurate way to bias the output to a precise voltage.

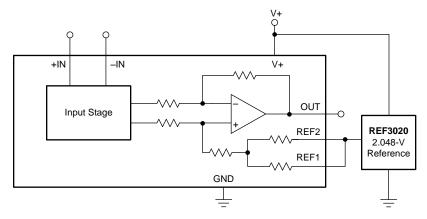


Figure 35. External Reference Output

7.4.1.2.2 Splitting the Supply

By connecting one reference pin to V+ and the other to the ground pin, the output is set at half of the supply when there is no differential input, as shown in Figure 36. This method creates a midscale offset that is ratiometric to the supply voltage; thus, if the supply increases or decreases, the output remains at half the supply.

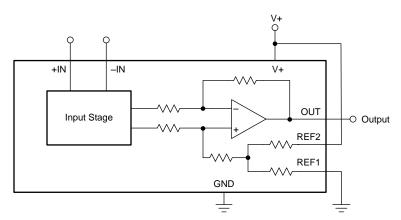


Figure 36. Split-Supply Output

7.4.1.2.3 Splitting an External Reference

In this case, an external reference is divided by 2 with an accuracy of approximately 0.5% by connecting one REF pin to ground and the other REF pin to the reference (as Figure 37 illustrates).

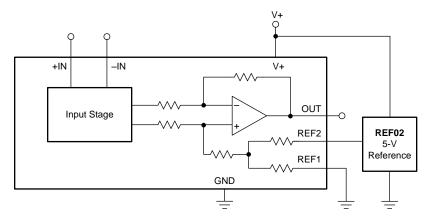
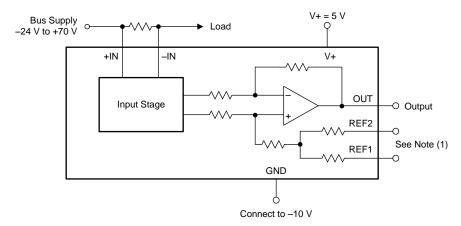


Figure 37. Split Reference Output

7.4.2 Shutdown


While the INA28x-Q1 family does not provide a shutdown pin, the quiescent current of 600 μ A enables the device to be powered from the output of a logic gate. Take the gate low to shut down the INA28x-Q1 family devices.

7.4.3 Extended Negative Common-Mode Range

Using a negative power supply can extend the common-mode range 14 V more negative than the supply used. For instance, a -10 V supply allows up to -24-V negative common-mode. Remember to keep the total voltage between the GND pin and V+ pin to less than 18 V. The positive common-mode decreases by the same amount.

The reference input simplifies this type of operation because the output quiescent bias point is always based on the reference connections. Figure 38 shows a circuit configuration for common-mode ranges from –24 V to 70 V.

(1) Connect the REF pins as desired; however, they cannot exceed 9 V greater than the GND pin voltage.

Figure 38. Circuit Configuration for Common-Mode Ranges from -24 V to 70 V

7.4.4 Calculating Total Error

The electrical specifications for the INA28x-Q1 family of devices include the typical individual errors terms such as gain error, offset error, and nonlinearity error. Total error including all of these individual error components is not specified in the *Electrical Characteristics* table. To accurately calculate the expected error of the device, the operating conditions of the device must first be known. Some current shunt monitors specify a total error in the product data sheet. However, this total error term is accurate under only one particular set of operating conditions. Specifying the total error at this one point has little practical value because any deviation from these specific operating conditions no longer yields the same total error value. This section discusses the individual error sources, with information on how to apply them to calculate the total error value for the device under any normal operating conditions.

The typical error sources that have the largest impact on the total error of the device are input offset voltage, common-mode rejection ratio, gain error, and nonlinearity error. For the INA28x-Q1, an additional error source referred to as *reference voltage rejection ratio* is also included in the total error value.

The nonlinearity error of the INA28x-Q1 is relatively low compared to the gain error specification. This low error results in a gain error that can be expected to be relatively constant throughout the linear input range of the device. While the gain error remains constant across the linear input range of the device, the error associated with the input offset voltage does not. As the differential input voltage developed across a shunt resistor at the input of the INA28x-Q1 decreases, the inherent input offset voltage of the device becomes a larger percentage of the measured input signal resulting in an increase in error in the measurement. This varying error is present among all current shunt monitors, given the input offset voltage ratio to the voltage being sensed by the device. The relatively low input offset voltages present in the INA28x-Q1 devices limit the amount of contribution the offset voltage has on the total error term.

The term *reference voltage rejection ratio* refers to the amount of error induced by applying a reference voltage to the INA28x-Q1 device that deviates from the inherent bias voltage present at the output of the first stage of the device. The output of the switched-capacitor network and first-stage amplifier has an inherent bias voltage of approximately 2.048 V. Applying a reference voltage of 2.048 V to the INA28x-Q1 reference pins results in no additional error term contribution. Applying a voltage to the reference pins that differs from 2.048 V creates a voltage potential in the internal difference amplifier, resulting in additional current flowing through the resistor network. As a result of resistor tolerances, this additional error at the output because of resistor mismatches. Additionally, as a result of resistor tolerances, this additional current flow causes additional error at the output based on the common-mode rejection ratio of the output stage amplifier. This error term is referred back to the input of the device as additional input offset voltage. Increasing the difference between the 2.048-V internal bias and the external reference voltage results in a higher input offset voltage. Also, as the error at the output is referred back to the input, there is a larger impact on the input-referred offset, V_{OS}, for the lower-gain versions of the device.

Two examples are provided that detail how different operating conditions can affect the total error calculations. Typical and maximum calculations are shown as well, to provide the user more information on how much error variance is present from device to device.

7.4.4.1 Example 1 INA282-Q1

Table 1. V+ = 5 V; V_{CM} = 12 V; V_{REF1} = V_{REF2} = 2.048 V; V_{SENSE} = 10 mV

		-		
TERM	SYMBOL	EQUATION	TYPICAL VALUE	MAXIMUM VALUE
Initial input offset voltage	V _{OS}	_	20 μV	70 μV
Added input offset voltage because of common-mode voltage	Vos_cm	$\frac{1}{10^{\left(\frac{CMRR_dB}{20}\right)}} \times (V_{CM} - 12V)$	$\frac{1}{10^{\left(\frac{\text{CMRR_dB}}{20}\right)}} \times (V_{\text{CM}} - 12V)$ 0 µV	
Added input offset voltage because of reference voltage	V_{OS_REF}	RVRR × (2.048 V - V _{REF})	0 μV	0 μV
Total input offset voltage	V_{OS_Total}	$\sqrt{(V_{OS})^2 + (V_{OS_CM})^2 + (V_{OS_REF})^2}$	20 μV	70 μV
Error from input offset voltage	Error_V _{OS}	$\frac{V_{OS_Total}}{V_{SENSE}} \times 100$	0.20%	0.70%
Gain error	Error_Gain	_	0.40%	1.40%
Nonlinearity error	Error_Lin	_	0.01%	0.01%
Total error	_	$\sqrt{(\text{Error}_V_{OS})^2 + (\text{Error}_Gain)^2 + (\text{Error}_Lin)^2}$	0.45%	1.56%

7.4.4.2 Example 2 INA286-Q1

Table 2. V+ = 5 V; $V_{CM} = 24 \text{ V}$; $V_{REF1} = V_{REF2} = 0 \text{ V}$; $V_{SENSE} = 10 \text{ mV}$

TERM	SYMBOL	EQUATION	TYPICAL VALUE	MAXIMUM VALUE
Initial input offset voltage	V _{OS}	_	20 μV	70 μV
Added input offset voltage because of common-mode voltage	Vos_cm	$\frac{1}{10^{\left(\frac{CMRR_dB}{20}\right)}} \times (V_{CM} - 12V)$	1.2 μV	12 μV
Added input offset voltage because of reference voltage	V_{OS_REF}	RVRR × (2.048 V - V _{REF})	34.8 μV	92.2 μV
Total input offset voltage	V_{OS_Total}	$\sqrt{(V_{OS})^2 + (V_{OS_CM})^2 + (V_{OS_REF})^2}$	40.2 μV	116.4 µV
Error from input offset voltage	Error_V _{OS}	$\frac{V_{OS_Total}}{V_{SENSE}} \times 100$	0.40%	1.16%
Gain error	Error_Gain	_	0.40%	1.40%
Nonlinearity error	Error_Lin	_	0.01%	0.01%
Total error	_	$\sqrt{(\text{Error}_V_{OS})^2 + (\text{Error}_Gain)^2 + (\text{Error}_Lin)^2}$	0.57%	1.82%

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The INA28x-Q1 family of devices measure the voltage developed across a current-sensing resistor when current passes through it. The ability to drive the reference pins to adjust the functionality of the output signal is shown in multiple configurations.

8.1.1 Basic Connections

Figure 39 shows the basic connection of an INA28x-Q1 family device. Connect the input pins, +IN and -IN, as close as possible to the shunt resistor to minimize any resistance in series with the shunt resistance.

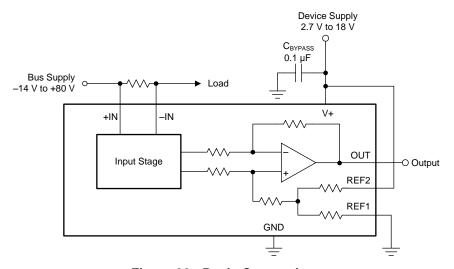
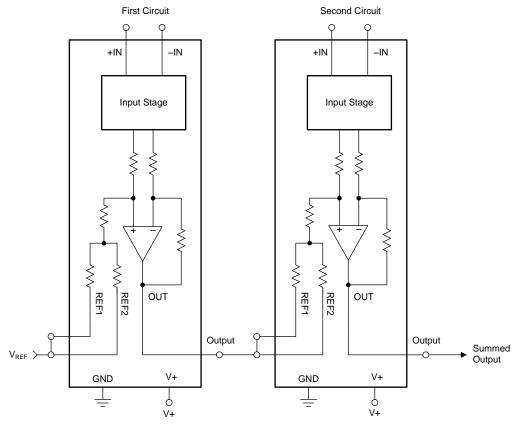


Figure 39. Basic Connections


Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors close to the device pins.

8.2 Typical Applications

8.2.1 Current Summing

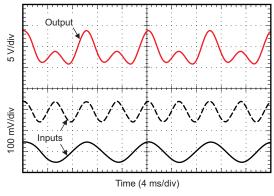
The outputs of multiple INA28x-Q1 family devices are easily summed by connecting the output of one INA28x-Q1 family device to the reference input of a second INA28x-Q1 family device. The circuit configuration shown in Figure 39 is an easy way to achieve current summing.

NOTE: The voltage applied to the reference inputs must not exceed 9 V.

Figure 40. Summing the Outputs of Multiple INA28x-Q1 Family Devices

Typical Applications (continued)

8.2.1.1 Design Requirements


In order to sum multiple load currents, multiple INA28x-Q1 devices must be connected. Figure 40 shows summing for two devices. Summing beyond two devices is possible by repeating this connection. The reference input of the first INA28x-Q1 family device sets the output quiescent level for all the devices in the string.

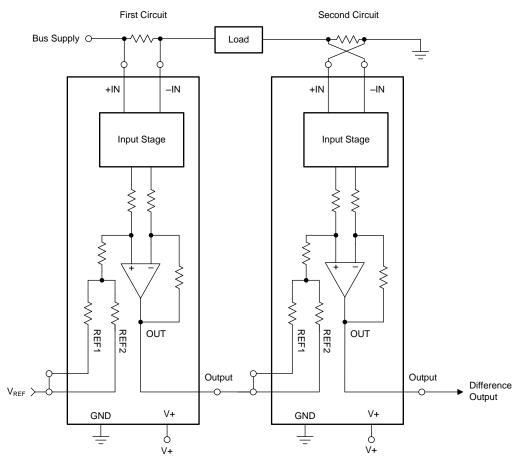
8.2.1.2 Detailed Design Procedures

Connect the output of one INA28x-Q1 family device to the reference input of the next INA28x-Q1 family device in the chain. Use the reference input of the first circuit to set the reference of the final summed output. The currents sensed at each circuit in the chain are summed at the output of the last device in the chain.

8.2.1.3 Application Curve

Figure 41 shows an example output response of a summing configuration. The reference pins of the first circuit are connected to ground, and sine waves at different frequencies are applied to the two circuits to produce a summed output as shown. The sine wave voltage input for the first circuit is offset so that the whole wave is above GND.

 $V_{RFF} = 0 V$


Figure 41. Current Summing Application Output Response

Typical Applications (continued)

8.2.2 Current Differencing

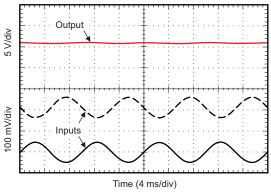
Occasionally, the need arises to confirm that the current into a load is identical to the current out of a load, usually as part of diagnostic testing or fault detection. This situation requires precision current differencing, which is the same as summing except that the two amplifiers have the inputs connected opposite of each other.

NOTE: The voltage applied to the reference inputs must not exceed 9 V.

Figure 42. Current Differencing Using an INA28x-Q1 Device

Typical Applications (continued)

8.2.2.1 Design Requirements


For current differencing, connect two INA28x-Q1 devices, and connect the inputs opposite to each other, as shown in Figure 42. The reference input of the first INA28x-Q1 family device sets the output quiescent level for all the devices in the string.

8.2.2.2 Detailed Design Procedure

Connect the output of one INA28x-Q1 family device to the reference input of the second INA28x-Q1 family device. The reference input of the first circuit sets the reference at the output. This circuit example is identical to the current summing example, except that the two shunt inputs are reversed in polarity. Under normal operating conditions, the final output is very close to the reference value and proportional to any current difference. This current differencing circuit is useful in detecting when current into and out of a load do not match.

8.2.2.3 Application Curves

Figure 43 shows an example output response of a difference configuration. The reference pins of the first circuit are connected to a reference voltage of 2.048 V. The inputs to each circuit is a 100-Hz sine wave, 180° out of phase with each other, resulting in a zero output as shown. The sine wave input to the first circuit is offset so that the input wave is completely above GND.

 $V_{REF} = 2.048 V$

Figure 43. Current Differencing Application Output Response

9 Power Supply Recommendations

The INA28x-Q1 can make accurate measurements well outside of its own power-supply voltage, V+, because its inputs (+IN and -IN) may operate anywhere from -14 V to 80 V independent of V+. For example, the V+ power supply can be 5 V while the common-mode voltage being monitored by the shunt may be as high as 80 V. Of course, the output voltage range of the INA28x-Q1 is constrained by the supply voltage that powers it on V+. When the power to the INA28x-Q1 is off (that is, no voltage is supplied to the V+ pin), the input pins (+IN and -IN) are high impedance with respect to ground and typically leak less than $\pm 1~\mu$ A over the full common-mode range of -14 V to 80 V.

10 Layout

10.1 Layout Guidelines

Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing of the current-sensing resistor commonly results in additional resistance present between the input pins. Given the very low ohmic value of the current resistor, any additional high-current carrying impedance causes significant measurement errors.

Place the power-supply bypass capacitor as close as possible to the supply and ground pins. TI recommends a bypass capacitor with a value of 0.1 uF. Add additional decoupling capacitance to compensate for noisy or high-impedance power supplies.

10.2 Layout Example

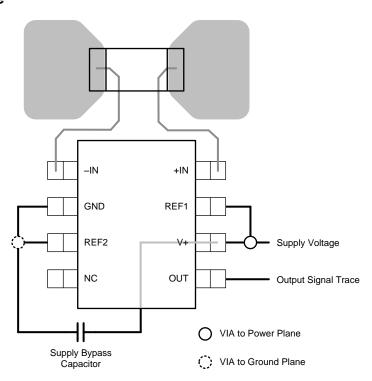


Figure 44. Layout Example

25

11 器件和文档支持

11.1 相关链接

下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访问。

表 3. 相关链接

器件	产品文件夹	样片与购买	技术文档	工具与软件	支持与社区
INA282-Q1	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
INA283-Q1	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
INA284-Q1	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
INA285-Q1	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
INA286-Q1	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处

11.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2016, 德州仪器半导体技术(上海)有限公司

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
INA282AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	11GF	Samples
INA282AQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	282Q1	Samples
INA283AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	11FF	Samples
INA283AQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	283Q1	Samples
INA284AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	11HF	Samples
INA284AQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	284Q1	Samples
INA285AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	11IF	Samples
INA285AQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	285Q1	Samples
INA286AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	11JF	Samples
INA286AQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	286Q1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: Til defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

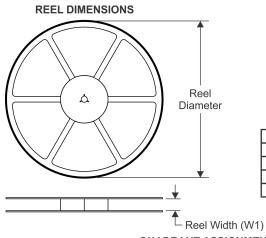
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

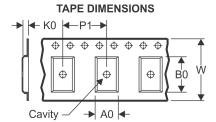
PACKAGE OPTION ADDENDUM

10-Dec-2020

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

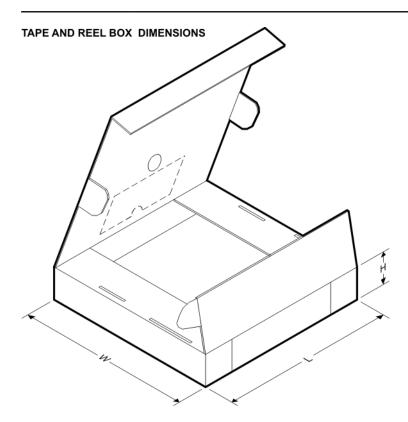

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Oct-2020

TAPE AND REEL INFORMATION

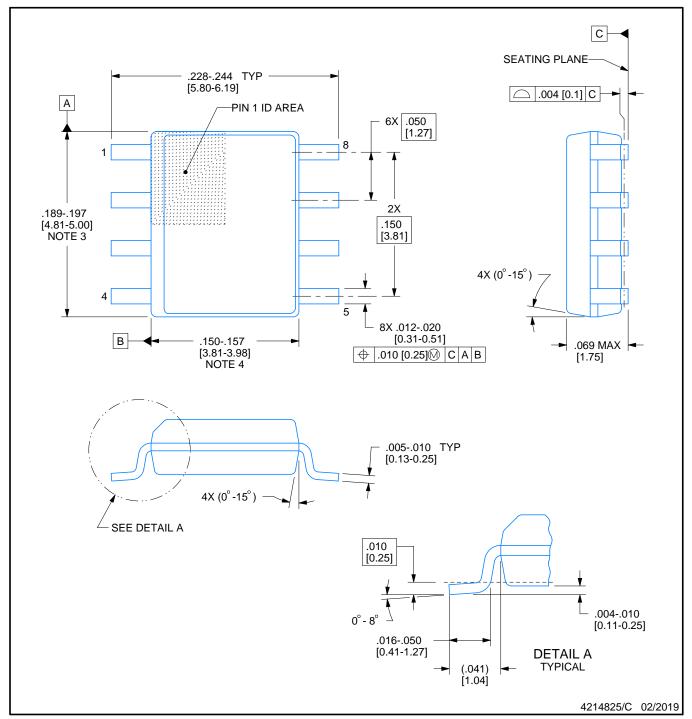
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA282AQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA282AQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA283AQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA283AQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA284AQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA284AQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA285AQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA285AQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA286AQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA286AQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

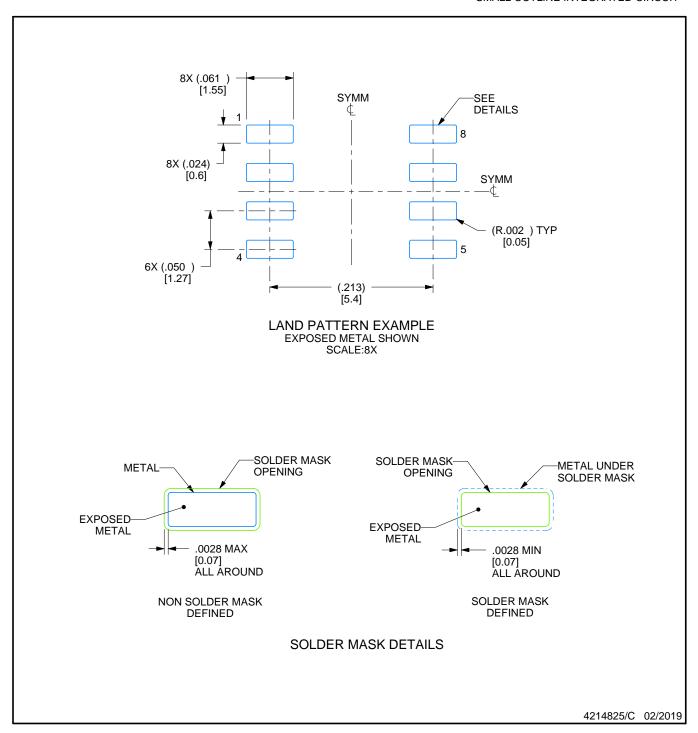
www.ti.com 16-Oct-2020



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA282AQDGKRQ1	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA282AQDRQ1	SOIC	D	8	2500	853.0	449.0	35.0
INA283AQDGKRQ1	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA283AQDRQ1	SOIC	D	8	2500	853.0	449.0	35.0
INA284AQDGKRQ1	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA284AQDRQ1	SOIC	D	8	2500	853.0	449.0	35.0
INA285AQDGKRQ1	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA285AQDRQ1	SOIC	D	8	2500	853.0	449.0	35.0
INA286AQDGKRQ1	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA286AQDRQ1	SOIC	D	8	2500	853.0	449.0	35.0

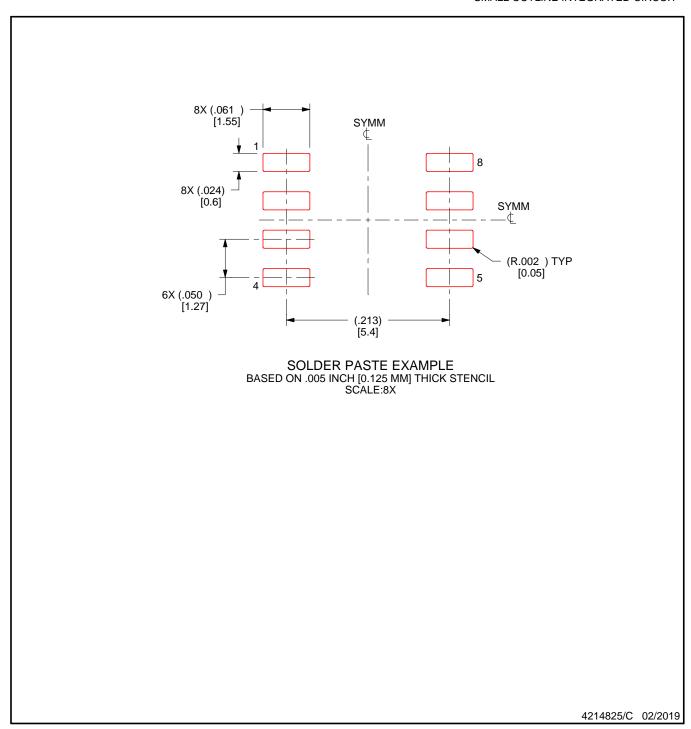
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

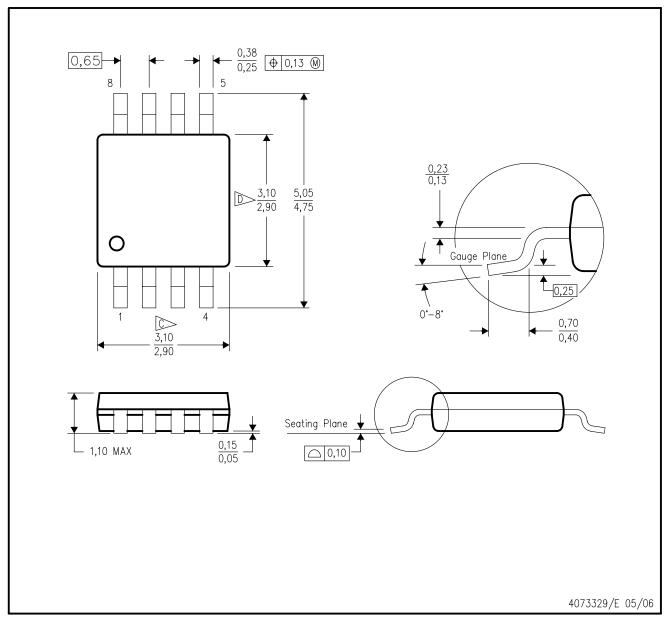
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

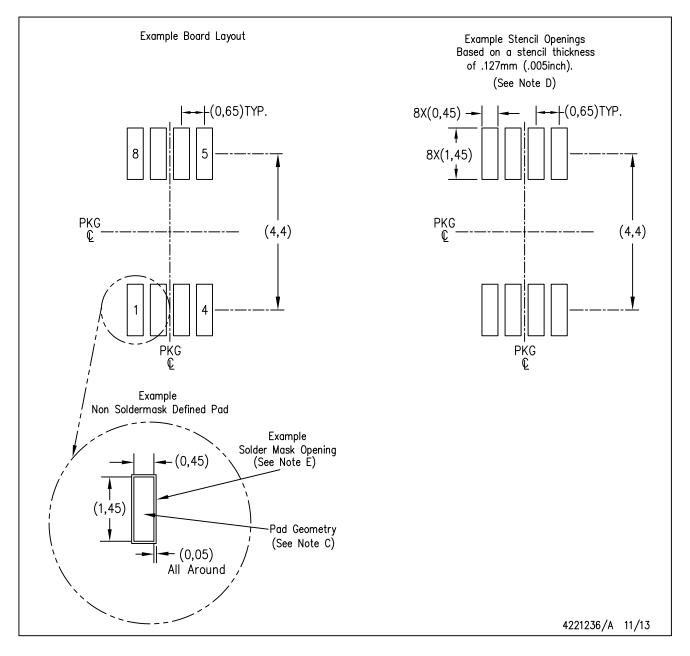
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司