

SNx4HC273 Octal D-Type Flip-Flops With Clear

1 Features

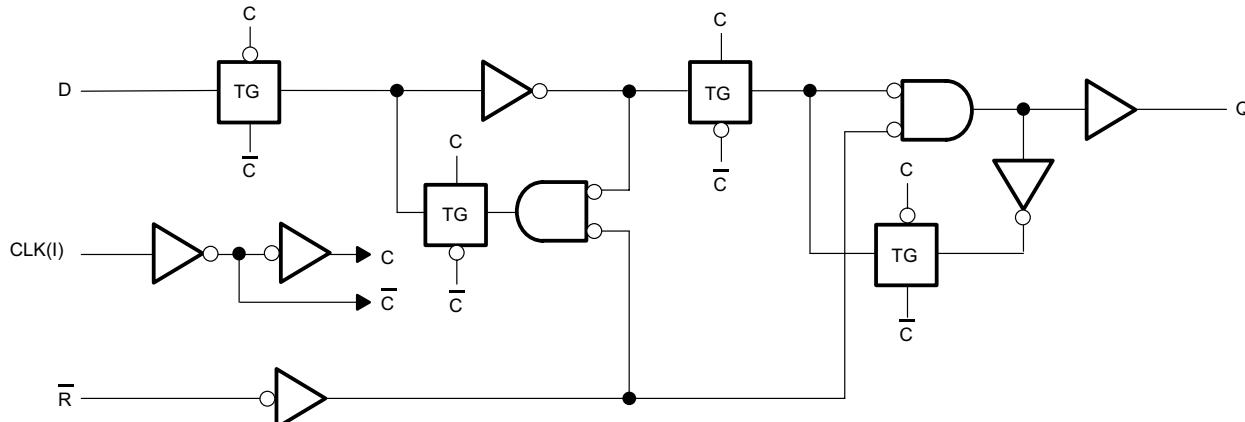
- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up to 10 LSTTL Loads
- Low Power Consumption, 80- μ A Maximum I_{CC}
- Typical $t_{pd} = 12$ ns
- ± 4 -mA Output Drive at 5 V
- Low Input Current of 1- μ A Maximum
- Contain Eight Flip-Flops With Single-Rail Outputs
- Direct Clear Input
- Individual Data Input to Each Flip-Flop
- On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

2 Applications

- Buffer or Storage Registers
- Shift Registers
- Pattern Generators

3 Description

The SNx4HC273 devices are positive-edge-triggered D-type flip-flops with a direct active low clear (CLR) input.


Information at the data (D) inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not related directly to the transition time of the positive-going pulse. When CLK is at either the high or low level, the D input has no effect at the output.

Device Information⁽¹⁾

PART NUMBER	PACKAGE (PINS)	BODY SIZE (NOM)
SN54HC273J	CDIP (20)	24.20 mm x 6.92 mm
SN54HC273W	CFP (20)	13.09 mm x 6.92 mm
SN54HC273FK	LCCC (20)	8.89 mm x 8.89 mm
SN74HC273D	SOIC (20)	12.80 mm x 7.50 mm
SN74HC273DB	SSOP (20)	7.20 mm x 5.30 mm
SN74HC273NS	SO (20)	12.60 mm x 5.30 mm
SN74HC273N	PDIP (20)	24.33 mm x 6.35 mm
SN74HC273PW	TSSOP (20)	6.50 mm x 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

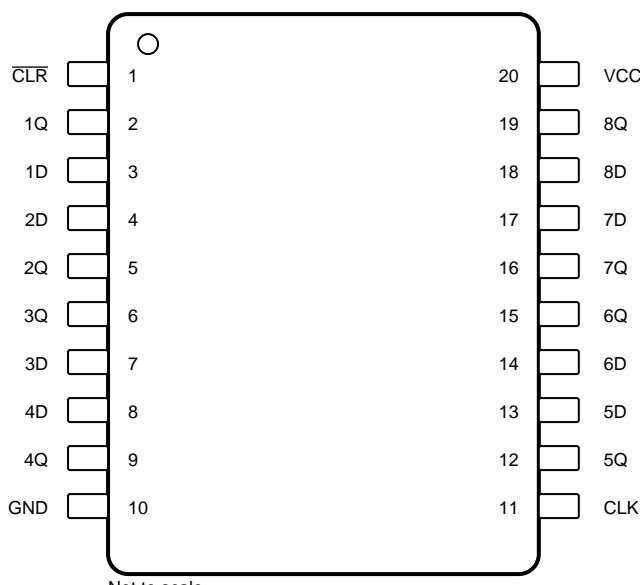
Logic Diagram, Each Flip-Flop (Positive Logic)

Copyright © 2016, Texas Instruments Incorporated

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

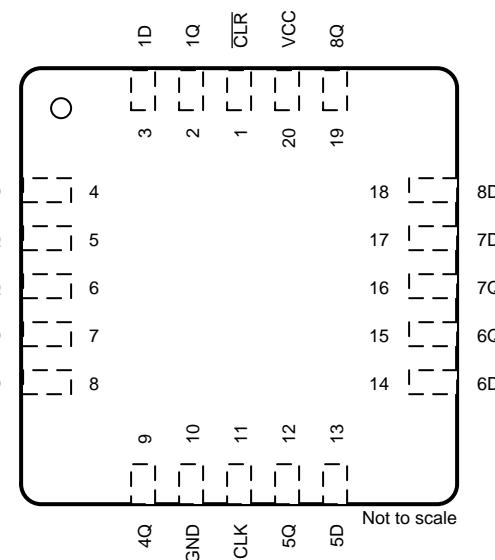
Table of Contents

1	Features	1	8	Detailed Description	11
2	Applications	1	8.1	Overview	11
3	Description	1	8.2	Functional Block Diagram	11
4	Revision History	2	8.3	Feature Description	11
5	Pin Configuration and Functions	3	8.4	Device Functional Modes	11
6	Specifications	4	9	Application and Implementation	12
6.1	Absolute Maximum Ratings	4	9.1	Application Information	12
6.2	ESD Ratings – SN74HC273	4	9.2	Typical Application	12
6.3	Recommended Operating Conditions	4	10	Power Supply Recommendations	13
6.4	Thermal Information	5	11	Layout	13
6.5	Electrical Characteristics	5	11.1	Layout Guidelines	13
6.6	Electrical Characteristics – SN54HC273	5	11.2	Layout Example	13
6.7	Electrical Characteristics – SN74HC273	6	12	Device and Documentation Support	14
6.8	Timing Requirements	6	12.1	Documentation Support	14
6.9	Timing Requirements – SN54HC273	7	12.2	Related Links	14
6.10	Timing Requirements – SN74HC273	7	12.3	Receiving Notification of Documentation Updates	14
6.11	Switching Characteristics	8	12.4	Community Resources	14
6.12	Switching Characteristics – SN54HC273	8	12.5	Trademarks	14
6.13	Switching Characteristics – SN74HC273	8	12.6	Electrostatic Discharge Caution	14
6.14	Operating Characteristics	9	12.7	Glossary	14
6.15	Typical Characteristics	9	13	Mechanical, Packaging, and Orderable	14
7	Parameter Measurement Information	10	Information		


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (August 2003) to Revision E	Page
• Added <i>Device Information</i> table, <i>ESD Ratings</i> table, <i>Feature Description</i> section, <i>Device Functional Modes</i> , <i>Application and Implementation</i> section, <i>Power Supply Recommendations</i> section, <i>Layout</i> section, <i>Device and Documentation Support</i> section, and <i>Mechanical, Packaging, and Orderable Information</i> section.	1
• Removed <i>Ordering Information</i> table, see POA at the end of the data sheet.	1
• Added Military Disclaimer to <i>Features</i> .	1
• Changed $R_{\theta JA}$ for DB package from 70°C/W : to 90.3°C/W	5
• Changed $R_{\theta JA}$ for DW package from 58°C/W : to 77.4°C/W	5
• Changed $R_{\theta JA}$ for N package from 69°C/W : to 45.1°C/W	5
• Changed $R_{\theta JA}$ for NS package from 60°C/W : to 72.6°C/W	5
• Changed $R_{\theta JA}$ for PW package from 83°C/W : to 98.3°C/W	5


5 Pin Configuration and Functions

J, W, DB, DW N, NS, or PW Package
CDIP, CFP, SSOP, SOIC, SO, PDIP, or TSSOP
Top View

Not to scale

FK Package
20-Pin LCCC
Top View

Not to scale

Pin Functions

PIN		I/O	DESCRIPTION
NO.	NAME		
1	CLR	I	Active low clear input
2	1Q	O	Output 1
3	1D	I	Input 1
4	2D	I	Input 2
5	2Q	O	Output 2
6	3Q	O	Output 3
7	3D	I	Input 3
8	4D	I	Input 4
9	4Q	O	Output 4
10	GND	—	Ground
11	CLK	I	Clock input
12	5Q	O	Output 5
13	5D	I	Input 5
14	6D	I	Input 6
15	6Q	O	Output 6
16	7Q	O	Output 7
17	7D	I	Input 7
18	8D	I	Input 8
19	8Q	O	Output 8
20	V _{CC}	—	Power

6 Specifications

6.1 Absolute Maximum Ratings

 over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V_{CC}	Supply voltage	-0.5	7	V
I_{IK}	Input clamp current ⁽²⁾	$V_I < 0$ or $V_I > V_{CC}$	± 20	mA
I_{OK}	Output clamp current ⁽²⁾	$V_O < 0$ or $V_O > V_{CC}$	± 20	mA
I_O	Continuous output current	$V_O = 0$ to V_{CC}	± 25	mA
	Continuous current through V_{CC} or GND		± 50	mA
T_J	Junction temperature		150	°C
T_{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings – SN74HC273

		VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	± 2000
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

 over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	2	5	6	V
V_{IH}	High-level input voltage	$V_{CC} = 2$ V	1.5		V
		$V_{CC} = 4.5$ V	3.15		
		$V_{CC} = 6$ V	4.2		
V_{IL}	Low-level input voltage	$V_{CC} = 2$ V		0.5	V
		$V_{CC} = 4.5$ V		1.35	
		$V_{CC} = 6$ V		1.8	
V_I	Input voltage	0		V_{CC}	V
V_O	Output voltage	0		V_{CC}	V
$\Delta t/\Delta v$	Input transition rise and fall time	$V_{CC} = 2$ V		1000	ns
		$V_{CC} = 4.5$ V		500	
		$V_{CC} = 6$ V		400	
T_A	Operating free-air temperature	SN54HC273	-55	125	°C
		SN74HC273	-40	85	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		SN74HC273					UNIT
		DB (SSOP)	DW (SOIC)	N (PDIP)	NS (SO)	PW (TSSOP)	
		20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽²⁾	90.3	77.4	45.1	72.6	98.3	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	51.7	42.8	31.1	38.9	33.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	45.5	45.2	26	40.1	49.3	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	17.7	16.7	16.6	15.7	2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	45.1	44.7	25.9	39.7	48.7	°C/W

(1) For more information about traditional and new thermal metrics, see [Semiconductor and IC Package Thermal Metrics](#).

(2) The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Electrical Characteristics

$T_A = 25^\circ\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
V_{OH}	$V_I = V_{IH}$ or V_{IL}	$I_{OH} = -20 \mu\text{A}$	$V_{CC} = 2 \text{ V}$	1.9	1.998		V
			$V_{CC} = 4.5 \text{ V}$	4.4	4.499		
			$V_{CC} = 6 \text{ V}$	5.9	5.999		
		$I_{OH} = -4 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$		3.98	4.3		
		$I_{OH} = -5.2 \text{ mA}$, $V_{CC} = 6 \text{ V}$		5.48	5.8		
V_{OL}	$V_I = V_{IH}$ or V_{IL}	$I_{OL} = 20 \mu\text{A}$	$V_{CC} = 2 \text{ V}$	0.002	0.1		V
			$V_{CC} = 4.5 \text{ V}$	0.001	0.1		
			$V_{CC} = 6 \text{ V}$	0.001	0.1		
		$I_{OL} = 4 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$		0.17	0.26		
		$I_{OL} = 5.2 \text{ mA}$, $V_{CC} = 6 \text{ V}$		0.15	0.26		
I_I	$V_I = V_{CC}$ or 0, $V_{CC} = 6 \text{ V}$				± 0.1	± 100	nA
I_{CC}	$V_I = V_{CC}$ or 0, $I_O = 0$, $V_{CC} = 6 \text{ V}$					8	μA
C_i	$V_{CC} = 2 \text{ V}$ to 6 V				3	10	pF

6.6 Electrical Characteristics – SN54HC273

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
V_{OH}	$V_I = V_{IH}$ or V_{IL}	$I_{OH} = -20 \mu\text{A}$	$V_{CC} = 2 \text{ V}$	1.9			V
			$V_{CC} = 4.5 \text{ V}$	4.4			
			$V_{CC} = 6 \text{ V}$	5.9			
		$I_{OH} = -4 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$		3.7			
		$I_{OH} = -5.2 \text{ mA}$, $V_{CC} = 6 \text{ V}$		5.2			
V_{OL}	$V_I = V_{IH}$ or V_{IL}	$I_{OL} = 20 \mu\text{A}$	$V_{CC} = 2 \text{ V}$	0.1			V
			$V_{CC} = 4.5 \text{ V}$	0.1			
			$V_{CC} = 6 \text{ V}$	0.1			
		$I_{OL} = 4 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$		0.4			
		$I_{OL} = 5.2 \text{ mA}$, $V_{CC} = 6 \text{ V}$		0.4			
I_I	$V_I = V_{CC}$ or 0, $V_{CC} = 6 \text{ V}$				± 1000	nA	
I_{CC}	$V_I = V_{CC}$ or 0, $I_O = 0$, $V_{CC} = 6 \text{ V}$				160	μA	
C_i	$V_{CC} = 2 \text{ V}$ to 6 V				10	pF	

6.7 Electrical Characteristics – SN74HC273

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
V_{OH}	$V_I = V_{IH}$ or V_{IL}	$I_{OH} = -20 \mu A$	$V_{CC} = 2 V$	1.9			V
			$V_{CC} = 4.5 V$	4.4			
			$V_{CC} = 6 V$	5.9			
		$I_{OH} = -4 mA, V_{CC} = 4.5 V$		3.84			
		$I_{OH} = -5.2 mA, V_{CC} = 6 V$		5.34			
V_{OL}	$V_I = V_{IH}$ or V_{IL}	$I_{OL} = 20 \mu A$	$V_{CC} = 2 V$		0.1		V
			$V_{CC} = 4.5 V$		0.1		
			$V_{CC} = 6 V$		0.1		
		$I_{OL} = 4 mA, V_{CC} = 4.5 V$			0.33		
		$I_{OL} = 5.2 mA, V_{CC} = 6 V$			0.33		
I_I	$V_I = V_{CC}$ or 0, $V_{CC} = 6 V$				± 1000		nA
I_{CC}	$V_I = V_{CC}$ or 0, $I_O = 0$, $V_{CC} = 6 V$				80		μA
C_I	$V_{CC} = 2 V$ to $6 V$				10		pF

6.8 Timing Requirements

$T_A = 25^\circ C$ (unless otherwise noted)

			MIN	MAX	UNIT	
f_{clock}	Clock frequency		$V_{CC} = 2 V$	5	MHz	
			$V_{CC} = 4.5 V$	27		
			$V_{CC} = 6 V$	32		
t_w	Pulse duration	\overline{CLR} low	$V_{CC} = 2 V$	80	ns	
			$V_{CC} = 4.5 V$	16		
			$V_{CC} = 6 V$	14		
		CLK high or low	$V_{CC} = 2 V$	80		
			$V_{CC} = 4.5 V$	16		
			$V_{CC} = 6 V$	14		
t_{su}	Setup time before CLK↑	Data	$V_{CC} = 2 V$	100	ns	
			$V_{CC} = 4.5 V$	20		
			$V_{CC} = 6 V$	17		
		\overline{CLR} inactive	$V_{CC} = 2 V$	100		
			$V_{CC} = 4.5 V$	20		
			$V_{CC} = 6 V$	17		
t_h	Hold time, data after CLK↑		$V_{CC} = 2 V$	0	ns	
			$V_{CC} = 4.5 V$	0		
			$V_{CC} = 6 V$	0		

6.9 Timing Requirements – SN54HC273

over recommended operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
f_{clock}	Clock frequency	$V_{CC} = 2\text{ V}$		4	MHz
		$V_{CC} = 4.5\text{ V}$		18	
		$V_{CC} = 6\text{ V}$		21	
t_w	Pulse duration	\overline{CLR} low	$V_{CC} = 2\text{ V}$	120	ns
			$V_{CC} = 4.5\text{ V}$	24	
			$V_{CC} = 6\text{ V}$	20	
	CLK high or low		$V_{CC} = 2\text{ V}$	120	
			$V_{CC} = 4.5\text{ V}$	24	
			$V_{CC} = 6\text{ V}$	20	
t_{su}	Setup time before CLK↑	Data	$V_{CC} = 2\text{ V}$	150	ns
			$V_{CC} = 4.5\text{ V}$	30	
			$V_{CC} = 6\text{ V}$	25	
	CLR inactive		$V_{CC} = 2\text{ V}$	150	
			$V_{CC} = 4.5\text{ V}$	30	
			$V_{CC} = 6\text{ V}$	25	
t_h	Hold time, data after CLK↑	$V_{CC} = 2\text{ V}$		0	ns
		$V_{CC} = 4.5\text{ V}$		0	
		$V_{CC} = 6\text{ V}$		0	

6.10 Timing Requirements – SN74HC273

over recommended operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
f_{clock}	Clock frequency	$V_{CC} = 2\text{ V}$		4	MHz
		$V_{CC} = 4.5\text{ V}$		21	
		$V_{CC} = 6\text{ V}$		25	
t_w	Pulse duration	\overline{CLR} low	$V_{CC} = 2\text{ V}$	100	ns
			$V_{CC} = 4.5\text{ V}$	20	
			$V_{CC} = 6\text{ V}$	17	
	CLK high or low		$V_{CC} = 2\text{ V}$	100	
			$V_{CC} = 4.5\text{ V}$	20	
			$V_{CC} = 6\text{ V}$	17	
t_{su}	Setup time before CLK↑	Data	$V_{CC} = 2\text{ V}$	125	ns
			$V_{CC} = 4.5\text{ V}$	25	
			$V_{CC} = 6\text{ V}$	21	
	CLR inactive		$V_{CC} = 2\text{ V}$	125	
			$V_{CC} = 4.5\text{ V}$	25	
			$V_{CC} = 6\text{ V}$	21	
t_h	Hold time, data after CLK↑	$V_{CC} = 2\text{ V}$		0	ns
		$V_{CC} = 4.5\text{ V}$		0	
		$V_{CC} = 6\text{ V}$		0	

6.11 Switching Characteristics

$T_A = 25^\circ\text{C}$ and $C_L = 50 \text{ pF}$ (unless otherwise noted; see [Figure 2](#))

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{max}		$V_{\text{CC}} = 2 \text{ V}$	5	11	MHz
		$V_{\text{CC}} = 4.5 \text{ V}$	27	50	
		$V_{\text{CC}} = 6 \text{ V}$	32	60	
t_{PHL}	From $\overline{\text{CLR}}$ (input) to any (output)	$V_{\text{CC}} = 2 \text{ V}$	55	160	ns
		$V_{\text{CC}} = 4.5 \text{ V}$	15	32	
		$V_{\text{CC}} = 6 \text{ V}$	12	27	
t_{pd}	From CLK (input) to any (output)	$V_{\text{CC}} = 2 \text{ V}$	56	160	ns
		$V_{\text{CC}} = 4.5 \text{ V}$	15	32	
		$V_{\text{CC}} = 6 \text{ V}$	13	27	
t_t	To any (output)	$V_{\text{CC}} = 2 \text{ V}$	38	75	ns
		$V_{\text{CC}} = 4.5 \text{ V}$	8	15	
		$V_{\text{CC}} = 6 \text{ V}$	6	13	

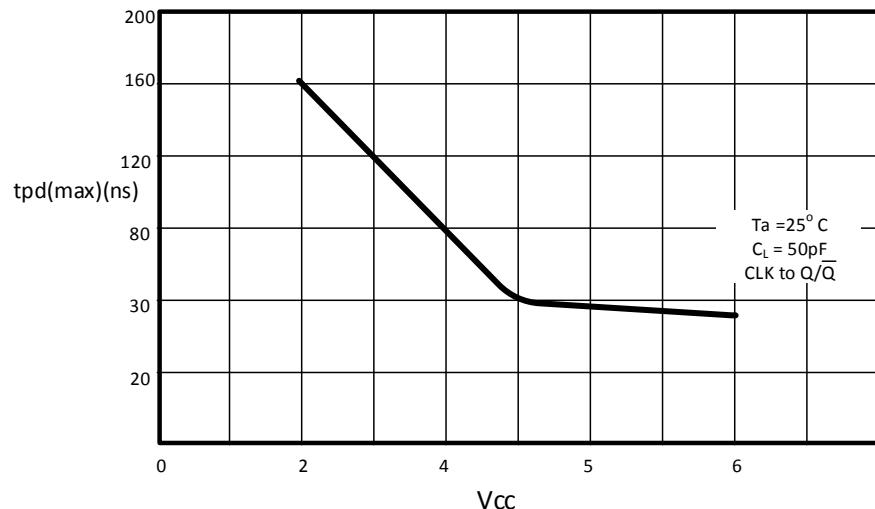
6.12 Switching Characteristics – SN54HC273

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted; see [Figure 2](#))

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f_{max}		$V_{\text{CC}} = 2 \text{ V}$	4	MHz
		$V_{\text{CC}} = 4.5 \text{ V}$	18	
		$V_{\text{CC}} = 6 \text{ V}$	21	
t_{PHL}	From $\overline{\text{CLR}}$ (input) to any (output)	$V_{\text{CC}} = 2 \text{ V}$	240	ns
		$V_{\text{CC}} = 4.5 \text{ V}$	48	
		$V_{\text{CC}} = 6 \text{ V}$	41	
t_{pd}	From CLK (input) to any (output)	$V_{\text{CC}} = 2 \text{ V}$	240	ns
		$V_{\text{CC}} = 4.5 \text{ V}$	48	
		$V_{\text{CC}} = 6 \text{ V}$	41	
t_t	To any (output)	$V_{\text{CC}} = 2 \text{ V}$	110	ns
		$V_{\text{CC}} = 4.5 \text{ V}$	22	
		$V_{\text{CC}} = 6 \text{ V}$	19	

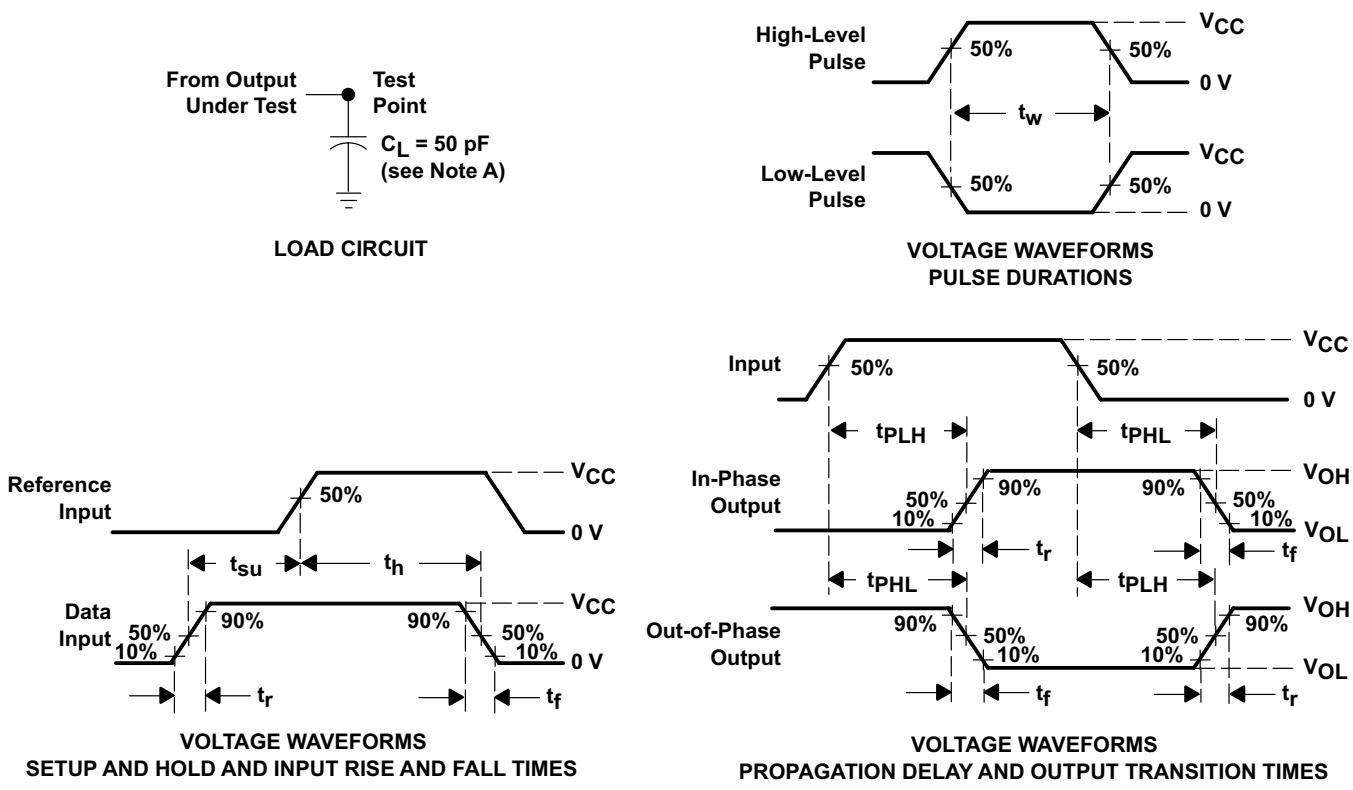
6.13 Switching Characteristics – SN74HC273

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted; see [Figure 2](#))


PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f_{max}		$V_{\text{CC}} = 2 \text{ V}$	4	MHz
		$V_{\text{CC}} = 4.5 \text{ V}$	21	
		$V_{\text{CC}} = 6 \text{ V}$	25	
t_{PHL}	From $\overline{\text{CLR}}$ (input) to any (output)	$V_{\text{CC}} = 2 \text{ V}$	200	ns
		$V_{\text{CC}} = 4.5 \text{ V}$	40	
		$V_{\text{CC}} = 6 \text{ V}$	34	
t_{pd}	From CLK (input) to any (output)	$V_{\text{CC}} = 2 \text{ V}$	200	ns
		$V_{\text{CC}} = 4.5 \text{ V}$	40	
		$V_{\text{CC}} = 6 \text{ V}$	34	
t_t	To any (output)	$V_{\text{CC}} = 2 \text{ V}$	95	ns
		$V_{\text{CC}} = 4.5 \text{ V}$	19	
		$V_{\text{CC}} = 6 \text{ V}$	16	

6.14 Operating Characteristics

$T_A = 25^\circ\text{C}$

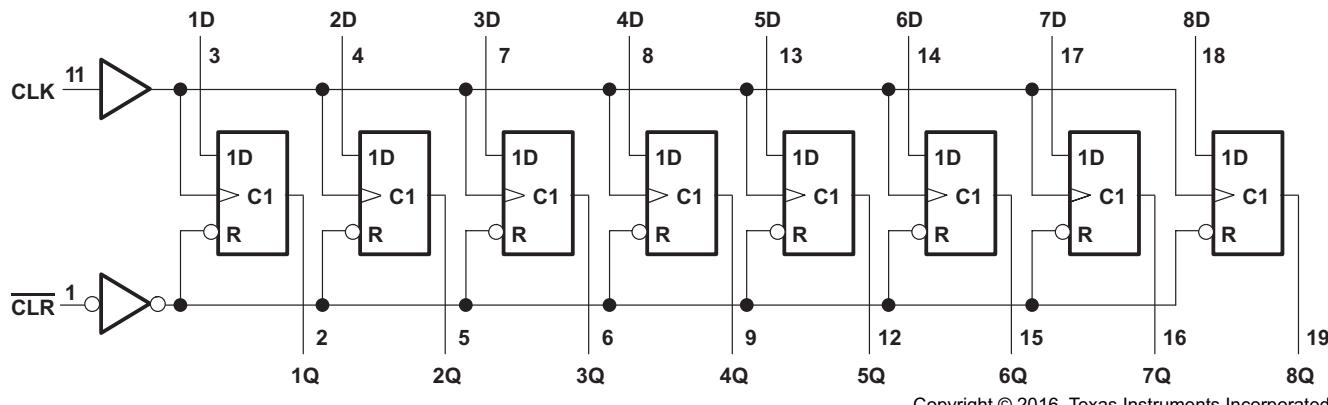

PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd} Power dissipation capacitance per flip-flop	No load	35	pF

6.15 Typical Characteristics

Figure 1. Max t_{pd} vs V_{cc}

7 Parameter Measurement Information

- NOTES:
- C_L includes probe and test-fixture capacitance.
 - Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r = 6$ ns, $t_f = 6$ ns.
 - For clock inputs, f_{max} is measured when the input duty cycle is 50%.
 - The outputs are measured one at a time with one input transition per measurement.
 - t_{PLH} and t_{PHL} are the same as t_{pd} .


Figure 2. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SNx4HC273 contains eight flip-flops with single-rail outputs with individual data input to each flip-flop. The outputs can drive up to 10 LSTTL loads. The device has direct active low clear input.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

The SNx4HC273 has low power consumption with a maximum I_{CC} of 80 μ A.

The typical t_{pd} for the SNx4HC273 is 12 ns and the output drive is ± 4 mA at 5 V.

The SNx4HC273 also has very low input current, with the maximum set at 1 μ A.

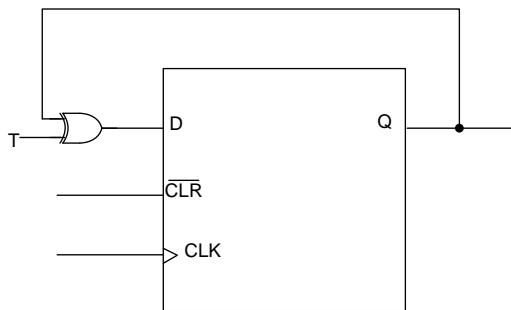
8.4 Device Functional Modes

Table 1 lists the functional modes of the SNx4HC273.

Table 1. Function Table (Each Flip-Flop)

INPUTS			OUTPUT Q
CLR	CLK	D	
L	X	X	L
H	↑	H	H
H	↑	L	L
H	L	X	Q_0

9 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

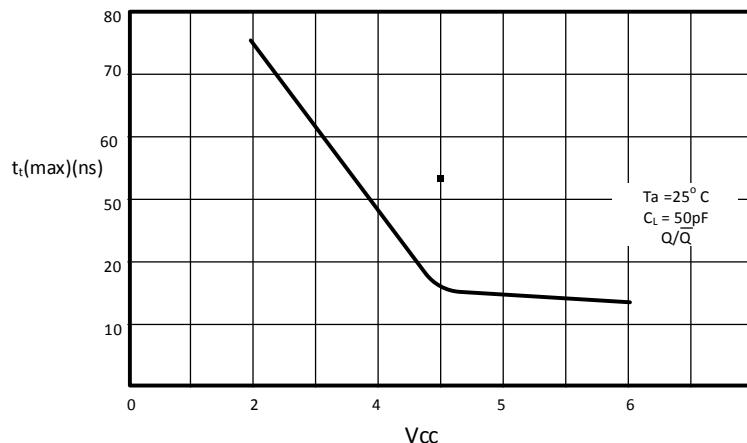
9.1 Application Information

The SNx4HC273 is octal D Flip flop with active low clear input. It has low input current and low power consumption. The D flip-flop can be used as a Toggle flip flop using an XOR gate at the input. The output toggles from the previous state whenever the T input is high.

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

9.2.1 Design Requirements


This SNx4HC273 device uses CMOS technology and has balanced output drive.

9.2.2 Detailed Design Procedure

1. Recommended input conditions:
 - Rise time and fall time specifications: see $(\Delta t/\Delta V)$ in [Recommended Operating Conditions](#).
 - Specified high and low levels: see $(V_{IH}$ and V_{IL}) in [Recommended Operating Conditions](#).
 - Inputs are not overvoltage tolerant and must not be above any valid V_{CC} as per [Recommended Operating Conditions](#).
2. Absolute maximum output conditions:
 - Continuous output currents must not exceed $(I_O \text{ max})$ per output and must not exceed total current (continuous current through V_{CC} or GND) for the part. These limits are located in the [Absolute Maximum Ratings](#).
 - Outputs must not be pulled above V_{CC} .

Typical Application (continued)

9.2.3 Application Curve

Figure 3. Max Transition Time vs V_{CC}

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in *Recommended Operating Conditions*.

Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor. If there are multiple V_{CC} pins, TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs must not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances:

- All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating.
- The logic level that must be applied to any particular unused input depends on the function of the device.
- Generally they are tied to GND or V_{CC} whichever make more sense or is more convenient.

11.2 Layout Example

Figure 4. SNx4HC273 Layout

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

[Implications of Slow or Floating CMOS Inputs](#)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54HC273	Click here				
SN74HC273	Click here				

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community*. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

[SLYZ022](#) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8409901VRA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8409901VR A SNV54HC273J	Samples
5962-8409901VSA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8409901VS A SNV54HC273W	Samples
84099012A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	84099012A SNJ54HC 273FK	Samples
8409901RA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8409901RA SNJ54HC273J	Samples
8409901SA	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8409901SA SNJ54HC273W	Samples
JM38510/65601BRA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65601BRA	Samples
JM38510/65601BSA	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65601BSA	Samples
M38510/65601BRA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65601BRA	Samples
M38510/65601BSA	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65601BSA	Samples
SN54HC273J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54HC273J	Samples
SN74HC273DBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273DWRE4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273DWRG4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273N	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC273N	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74HC273NE4	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC273N	Samples
SN74HC273NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273PW	ACTIVE	TSSOP	PW	20	70	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273PWRG4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273PWT	ACTIVE	TSSOP	PW	20	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SNJ54HC273FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	84099012A SNJ54HC 273FK	Samples
SNJ54HC273J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8409901RA SNJ54HC273J	Samples
SNJ54HC273W	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8409901SA SNJ54HC273W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

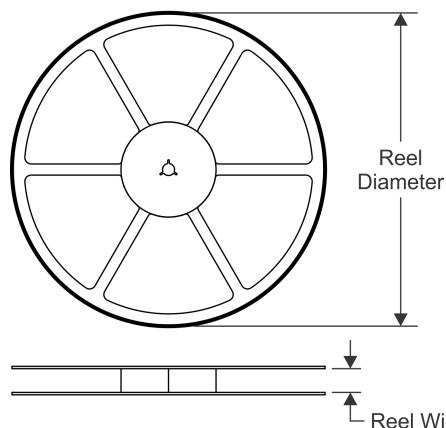
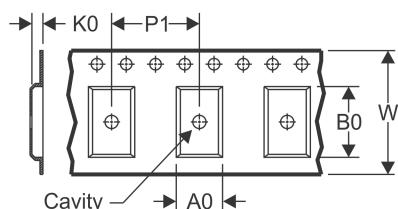
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

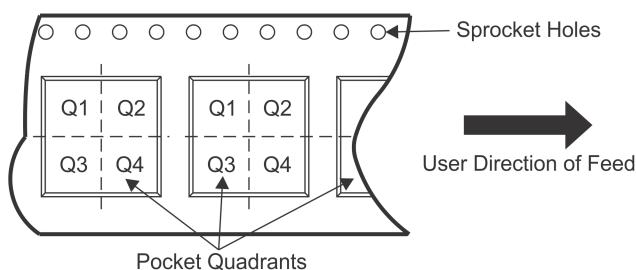
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

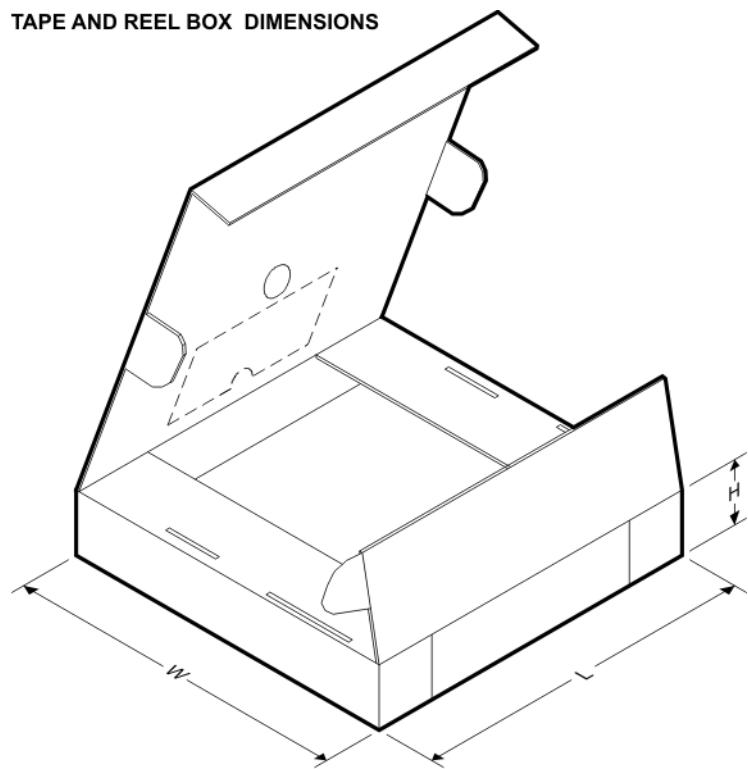


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HC273, SN54HC273-SP, SN74HC273 :


- Catalog : [SN74HC273](#), [SN54HC273](#)
- Automotive : [SN74HC273-Q1](#), [SN74HC273-Q1](#)
- Military : [SN54HC273](#)
- Space : [SN54HC273-SP](#)

NOTE: Qualified Version Definitions:

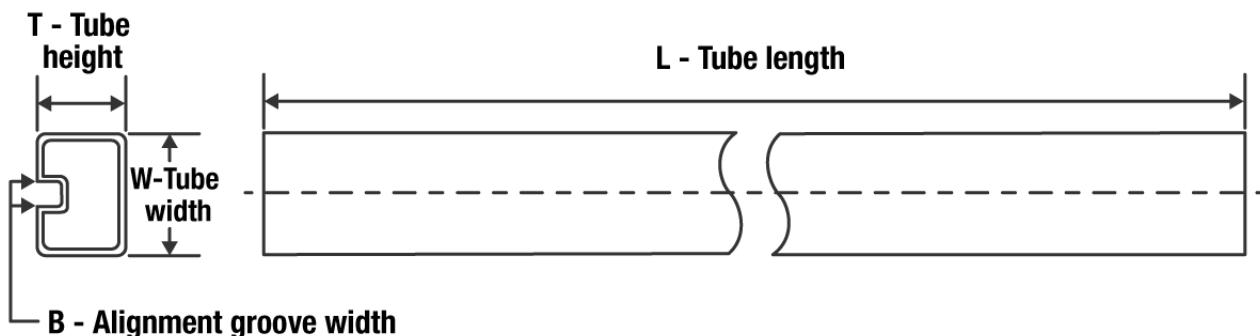
- Catalog - TI's standard catalog product
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military - QML certified for Military and Defense Applications
- Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

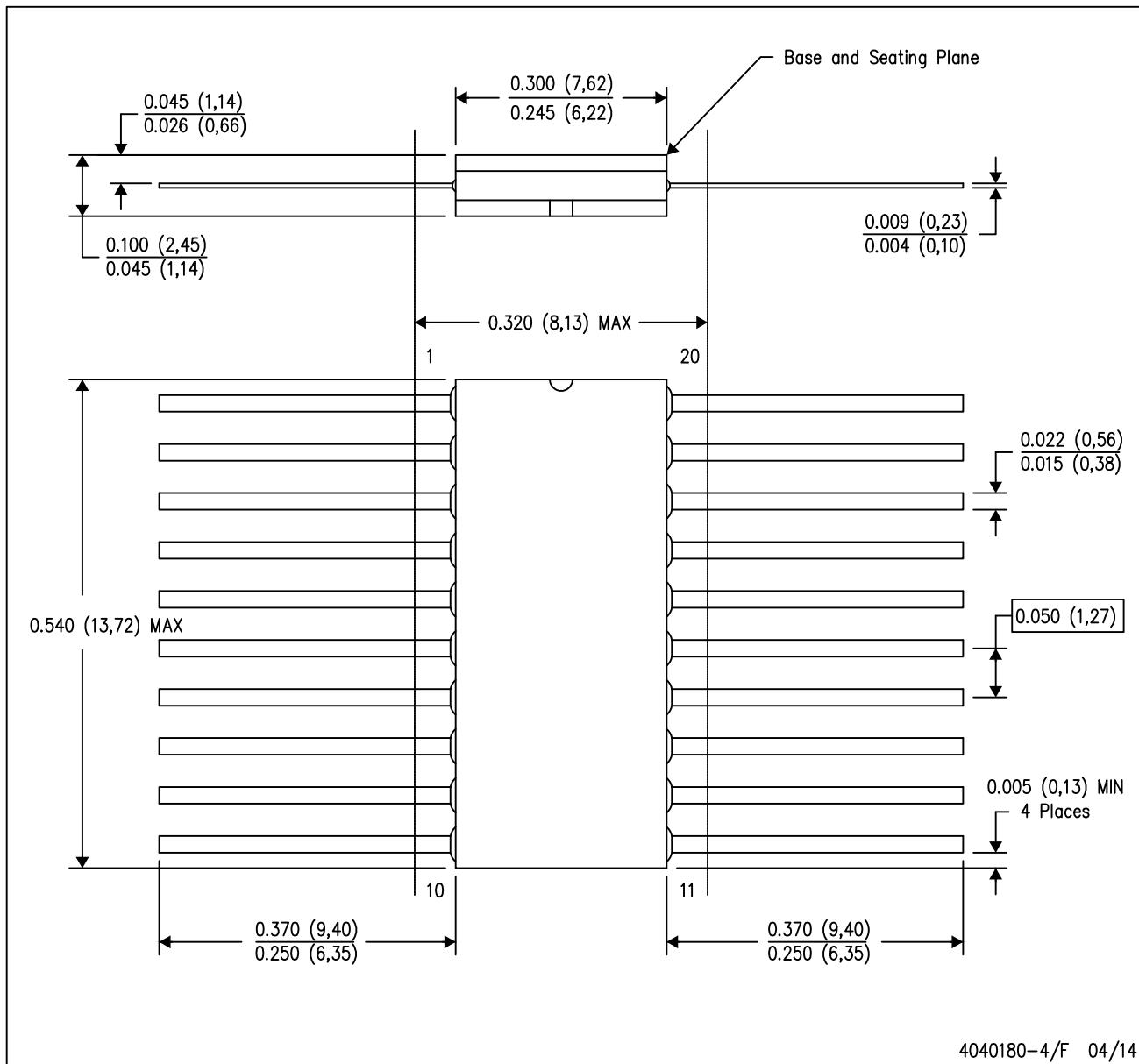

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC273DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74HC273DWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74HC273DWRG4	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74HC273NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74HC273PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74HC273PWT	TSSOP	PW	20	250	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC273DBR	SSOP	DB	20	2000	853.0	449.0	35.0
SN74HC273DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74HC273DWRG4	SOIC	DW	20	2000	367.0	367.0	45.0
SN74HC273NSR	SO	NS	20	2000	367.0	367.0	45.0
SN74HC273PWR	TSSOP	PW	20	2000	853.0	449.0	35.0
SN74HC273PWT	TSSOP	PW	20	250	853.0	449.0	35.0


TUBE

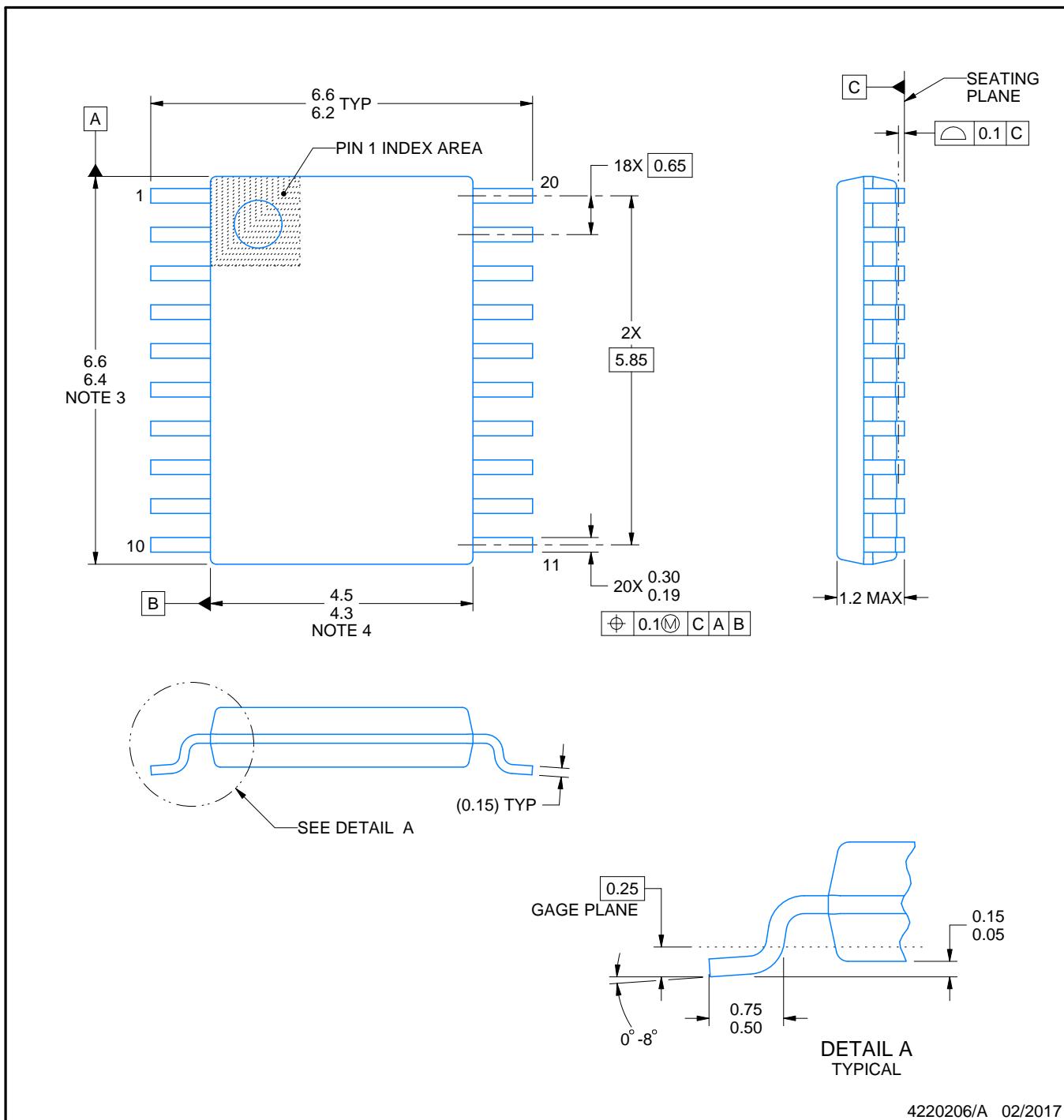
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
5962-8409901VSA	W	CFP	20	25	506.98	26.16	6220	NA
84099012A	FK	LCCC	20	1	506.98	12.06	2030	NA
SN74HC273DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74HC273N	N	PDIP	20	20	506	13.97	11230	4.32
SN74HC273NE4	N	PDIP	20	20	506	13.97	11230	4.32
SN74HC273PW	PW	TSSOP	20	70	530	10.2	3600	3.5
SNJ54HC273FK	FK	LCCC	20	1	506.98	12.06	2030	NA

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- NOTES:
- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within Mil-Std 1835 GDFP2-F20

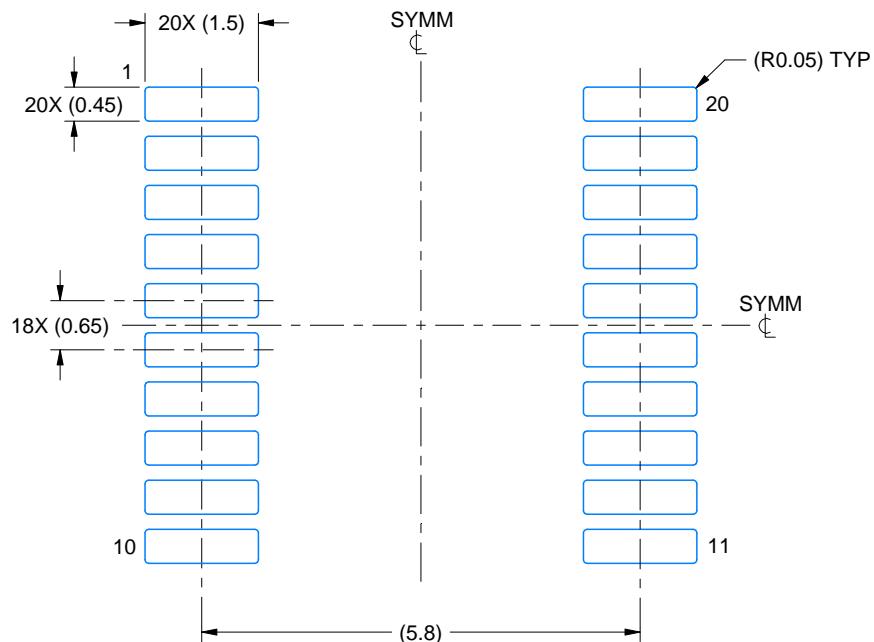

PACKAGE OUTLINE

PW0020A

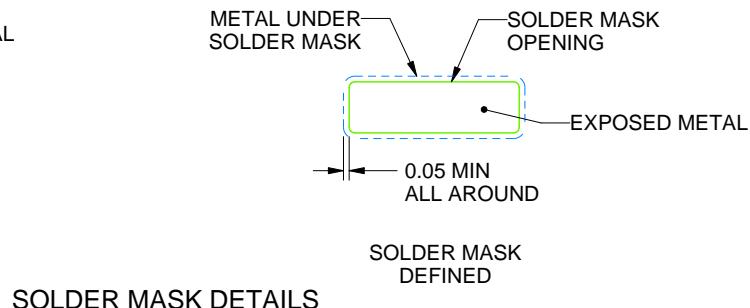
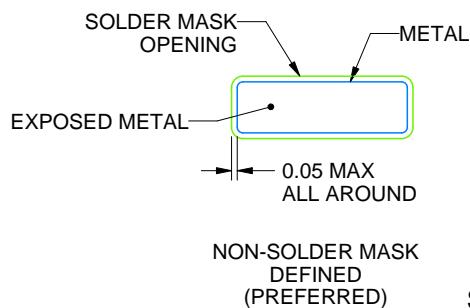
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
 5. Reference JEDEC registration MO-153.

EXAMPLE BOARD LAYOUT



PW0020A

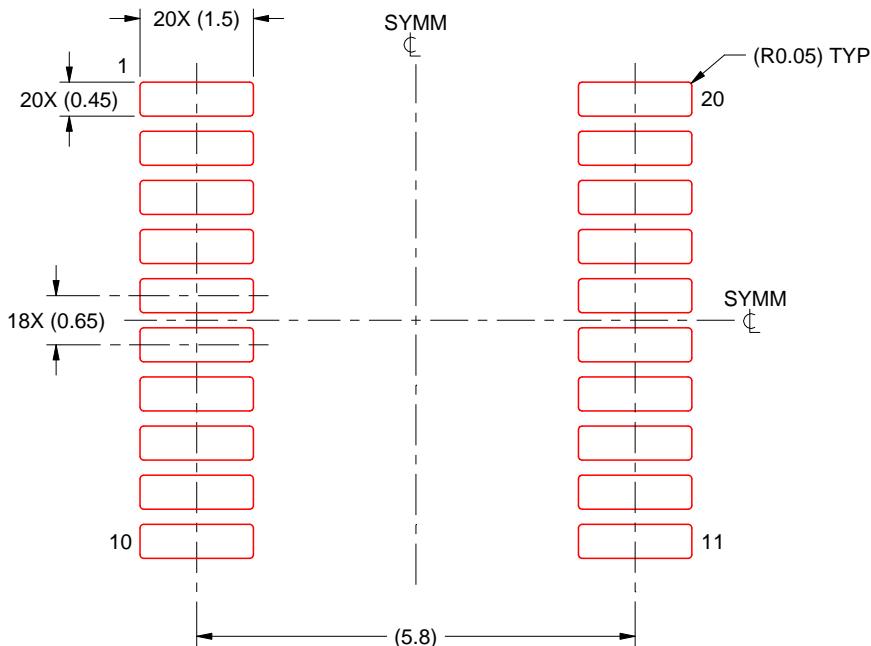
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 10X

4220206/A 02/2017

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

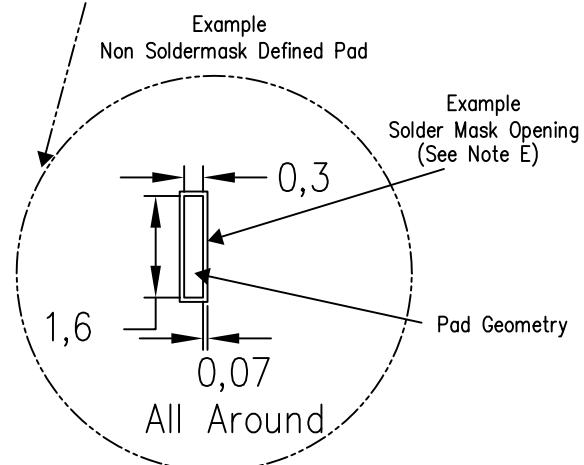
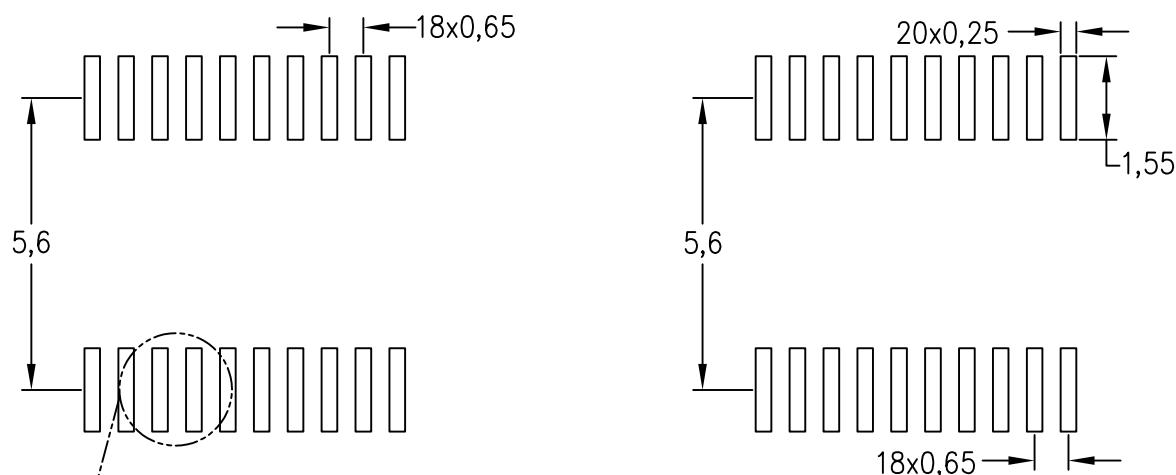
PW0020A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 10X

4220206/A 02/2017



NOTES: (continued)

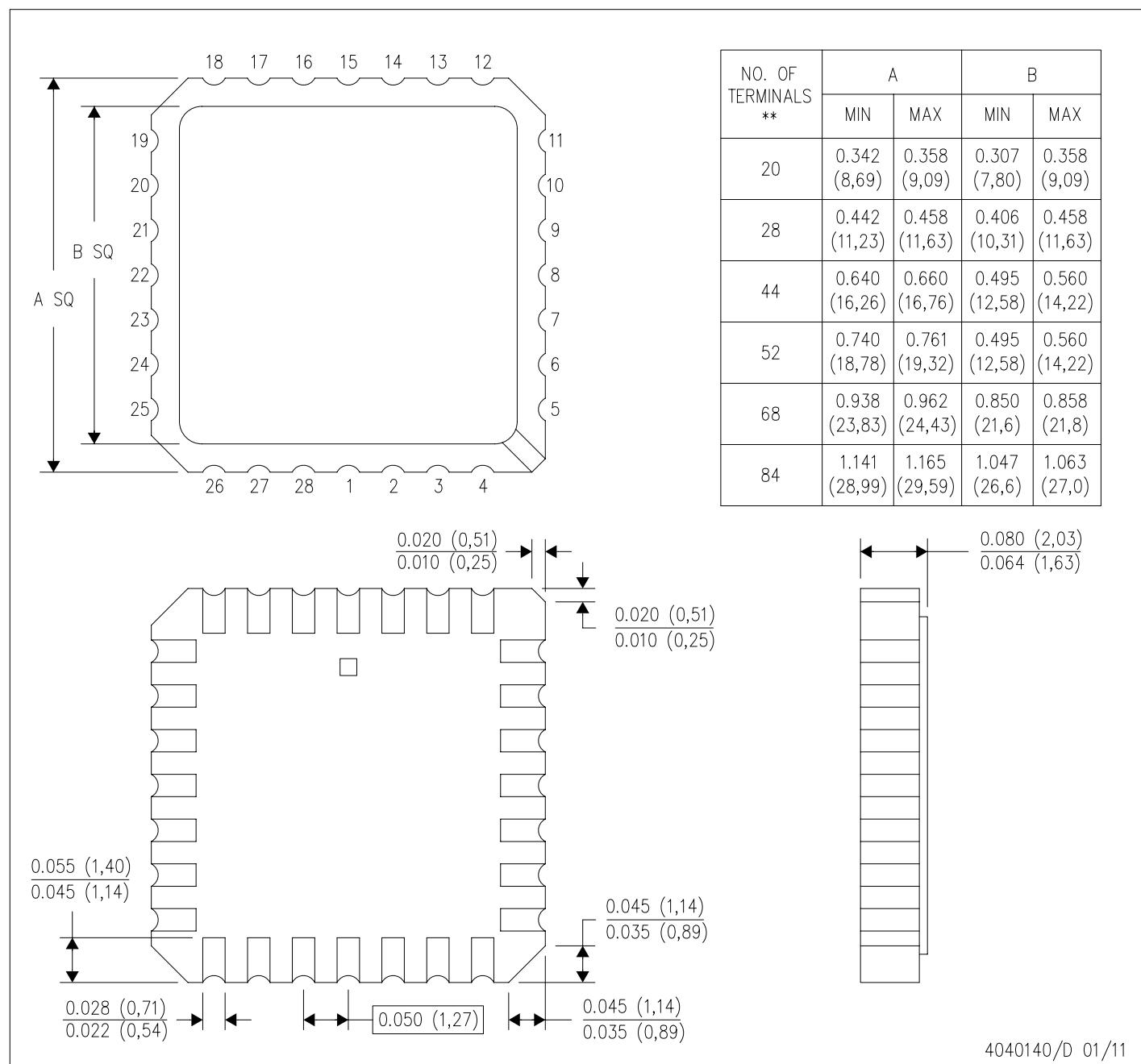
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

Example Board Layout

Based on a stencil thickness
of .127mm (.005inch).


4211284-5/G 08/15

- NOTES:
- All linear dimensions are in millimeters.
 - This drawing is subject to change without notice.
 - Publication IPC-7351 is recommended for alternate design.
 - Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

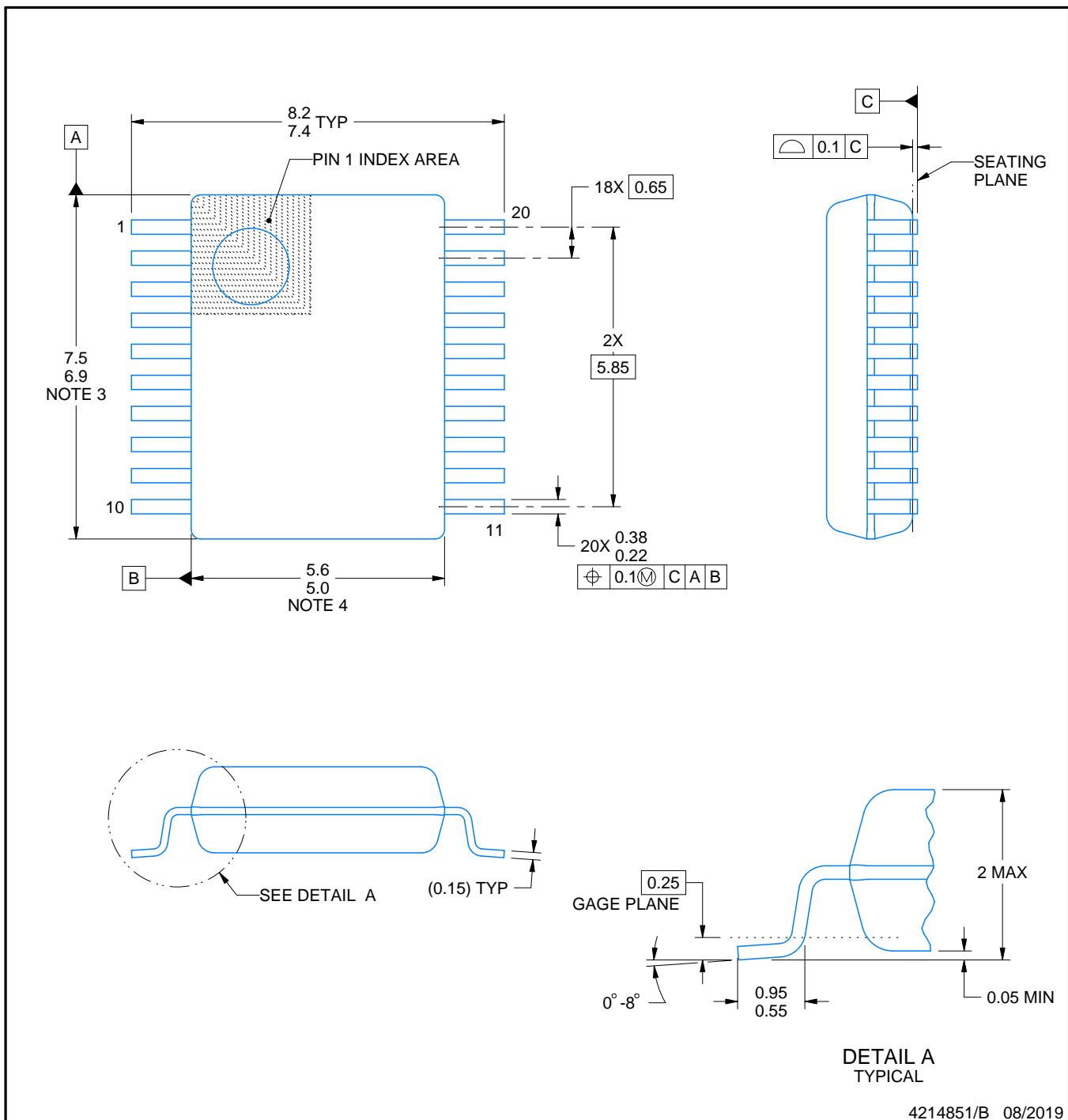
FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

- NOTES:
- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a metal lid.
 - D. Falls within JEDEC MS-004

4040140/D 01/11

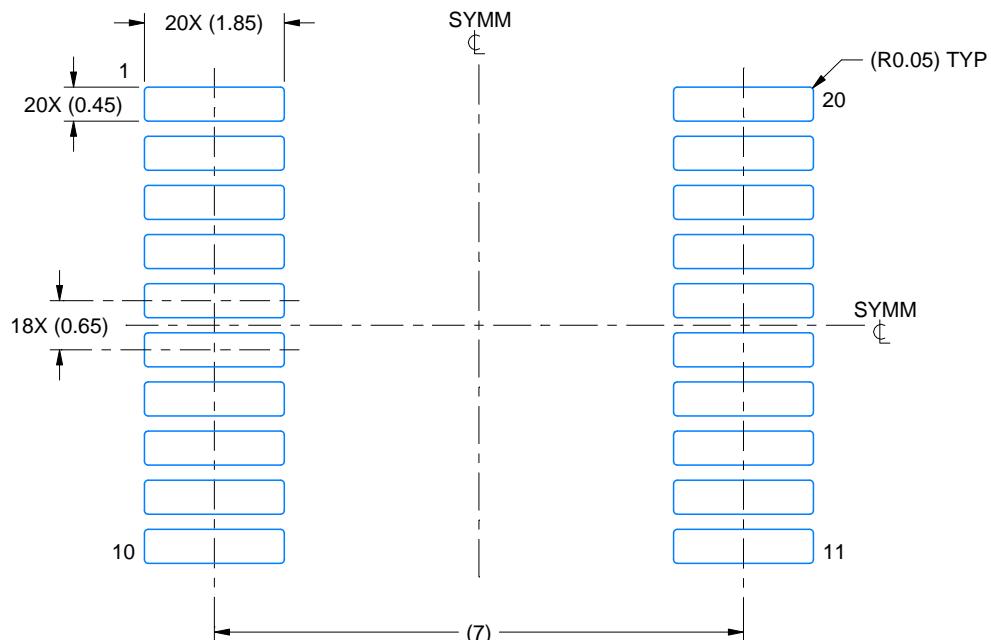

PACKAGE OUTLINE

DB0020A

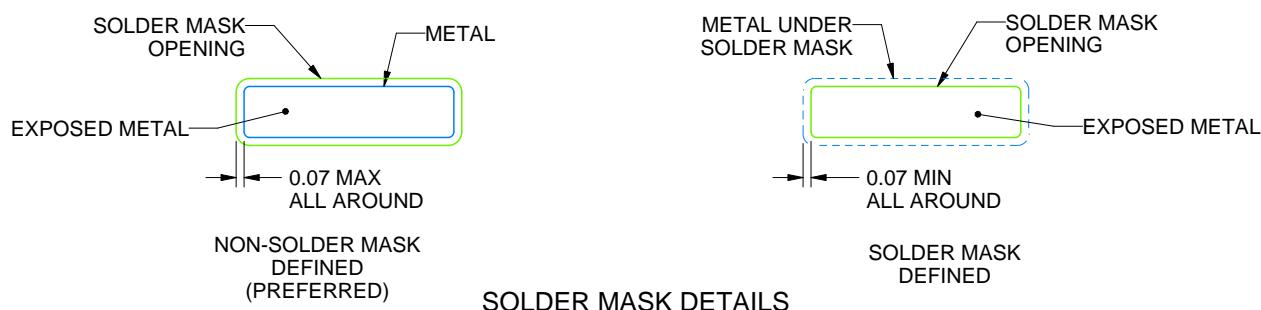
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-150.

EXAMPLE BOARD LAYOUT


DB0020A

SSOP - 2 mm max height

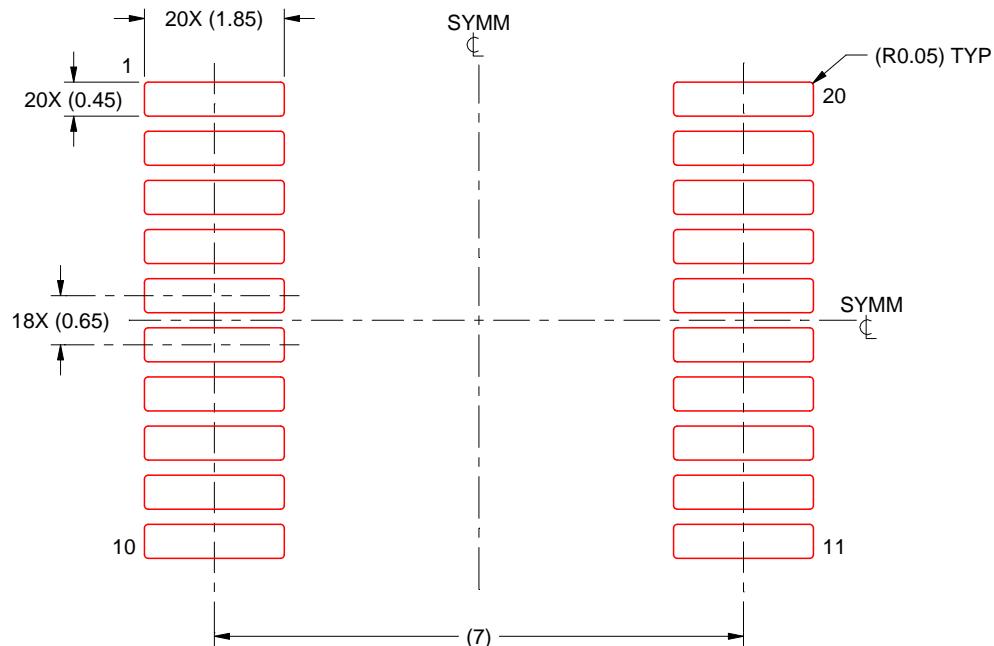
SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 10X

4214851/B 08/2019

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DB0020A

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 10X

4214851/B 08/2019

NOTES: (continued)

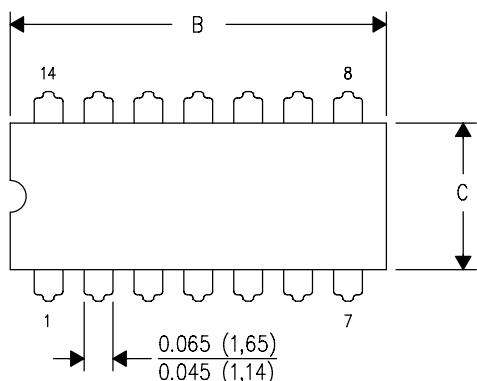
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

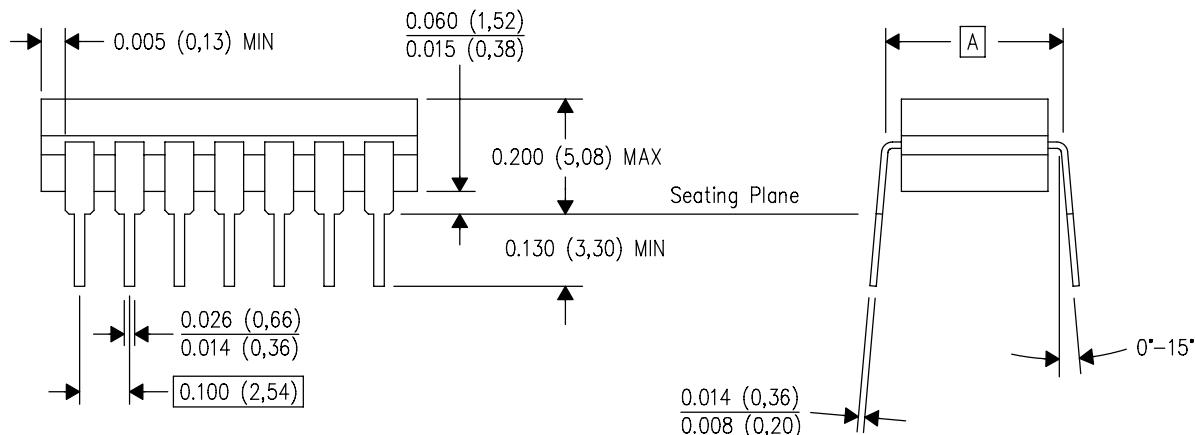
NS (R-PDSO-G)**

PLASTIC SMALL-OUTLINE PACKAGE

14-PINS SHOWN


NOTES:

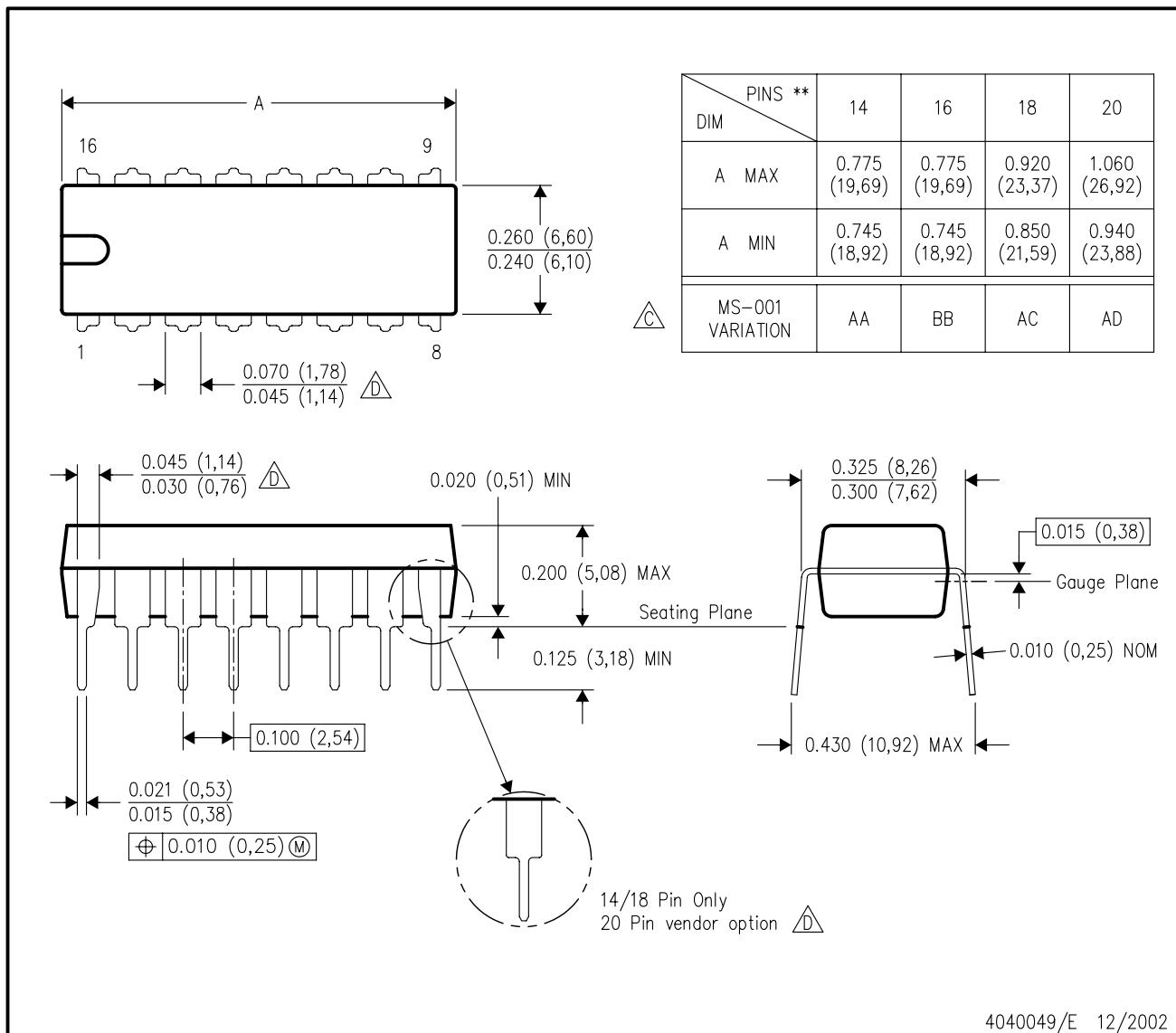
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


J (R-GDIP-T**)

14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

PINS ** DIM	14	16	18	20
A	0.300 (7,62) BSC	0.300 (7,62) BSC	0.300 (7,62) BSC	0.300 (7,62) BSC
B MAX	0.785 (19,94)	.840 (21,34)	0.960 (24,38)	1.060 (26,92)
B MIN	—	—	—	—
C MAX	0.300 (7,62)	0.300 (7,62)	0.310 (7,87)	0.300 (7,62)
C MIN	0.245 (6,22)	0.245 (6,22)	0.220 (5,59)	0.245 (6,22)


4040083/F 03/03

- NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

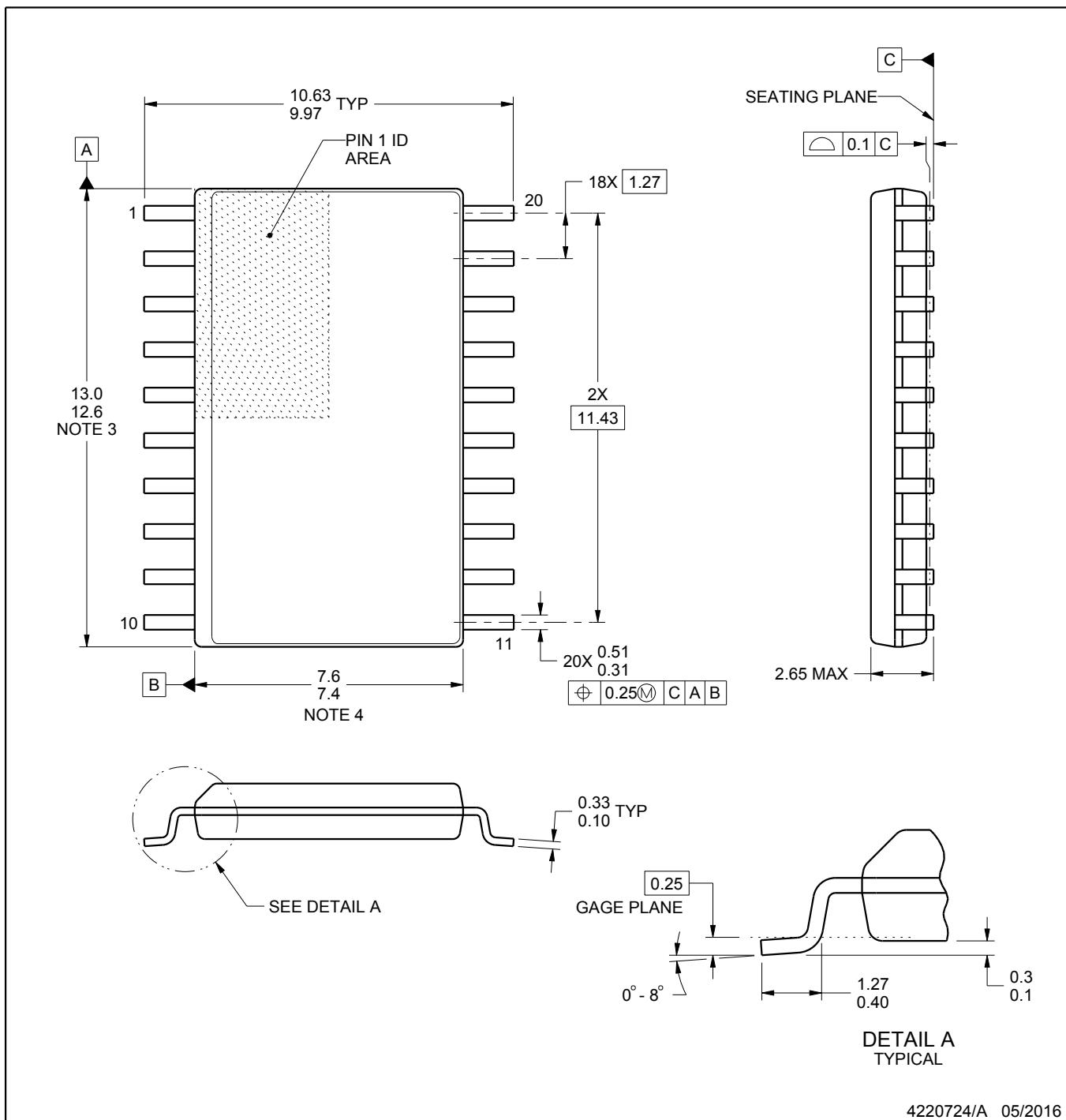
16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.

△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

△ The 20 pin end lead shoulder width is a vendor option, either half or full width.


PACKAGE OUTLINE

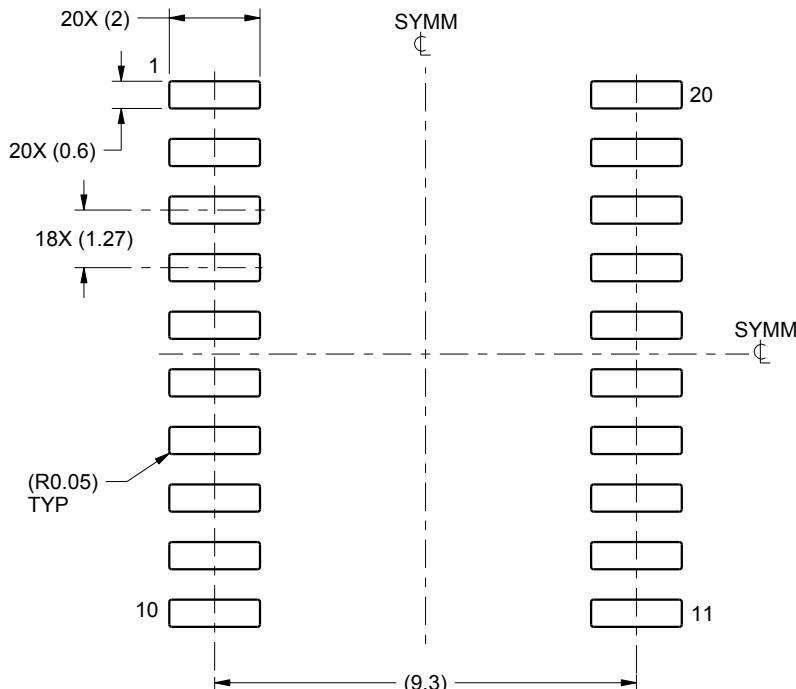
DW0020A

SOIC - 2.65 mm max height

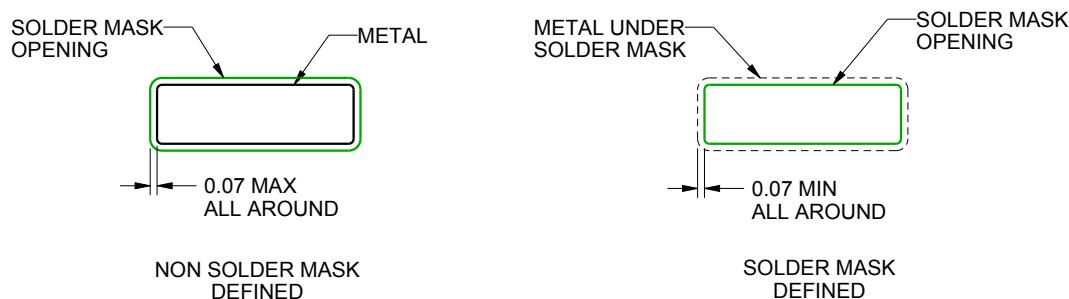
SOIC

4220724/A 05/2016

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
5. Reference JEDEC registration MS-013.

EXAMPLE BOARD LAYOUT


DW0020A

SOIC - 2.65 mm max height

SOIC

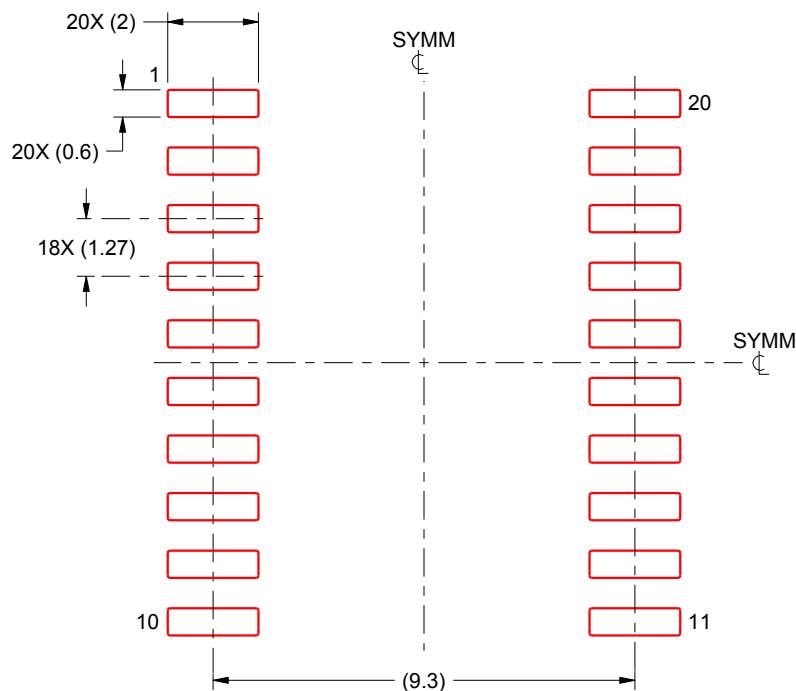
LAND PATTERN EXAMPLE
SCALE:6X

SOLDER MASK DETAILS

4220724/A 05/2016

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DW0020A

SOIC - 2.65 mm max height

SOIC

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X

4220724/A 05/2016

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated