

TLV7011, TLV7021, TLV7012, TLV7022

ZHCSGK4E - SEPTEMBER 2017 - REVISED NOVEMBER 2019

TLV701x 和 TLV702x 小尺寸、低功耗、低电压比较器

1 特性

- 超小型封装: X2SON (0.8 x 0.8mm²)
- 标准封装: SOT23、SC70、VSSOP
- 1.6V 至 6.5V 的宽电源电压范围
- 5µA 静态电源电流
- 260ns 低传播延迟
- 轨至轨共模输入电压
- 内部迟滞
- 推挽和开漏输出选项
- 过驱动输入无相位反转
- -40°C 至 +125°C 的工作环境温度范围

2 应用

- 手机和平板电脑
- 便携式电池供电器件
- 红外接收器
- 电平转换器
- 阈值检测器与鉴别器
- 窗口比较器
- 过零检测器

3 说明

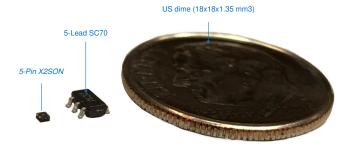
TLV7011/7021 (单通道)和 TLV7012/7022 (双通道)是微功耗比较器,采用低工作电压,具有轨至轨输入功能。这些比较器采用 0.8mm × 0.8mm 超小型无引线封装和标准引线式封装,适用于空间紧凑型设计,例如智能手机和其他便携式或电池供电应用。

TLV701x 和 TLV702x 提供出色的速度功率综合性能, 其传播延迟为 260ns,静态电源电流为 5μA。得益于 这种微功率下快速响应时间的综合性能,功率敏感型系 统能够监测故障状况并快速做出响应。这些比较器的工 作电压范围为 1.6V 至 6.5V,因此可与 3V 和 5V 系统 兼容。

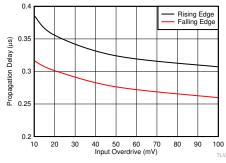
此外,这些比较器在发生过驱动输入和内部迟滞时,不会产生输出相位反转。这些 特性 该系列的比较器非常适合在恶劣嘈杂环境中进行精密电压监测,其中缓慢输入信号必须转换为无噪声数字输出。

TLV701x 具有推挽式输出级,能够灌/拉毫安级电流,同时可对 LED 进行控制或驱动容性负载。TLV702x 具有可上拉到 V_{CC} 之上的漏极开路输出级,因此适用于电平转换器和双极至单端转换器。

器件信息(1)


HH I I I I I I I I I I I I I I I I I I					
器件型号	封装 (引脚)	封装尺寸 (标称值)			
TLV7011、 TLV7021	X2SON (5)	0.80mm × 0.80mm			
	SC70 (5)	2.00mm x 1.25mm			
	SOT-23 (5)	2.90mm × 1.60mm			
TLV7012、 TLV7022	VSSOP (8)	3mm x 3mm			

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

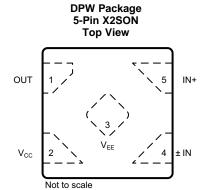

TLV70x1 系列低功耗比较器

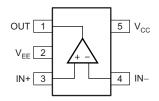
部件号	输出	IQ(典型值)	t _{PD} (典型值)
TLV701x	推挽	5µA	260ns
TLV702x	漏极开路	5µA	260ns
TLV703x	推挽	335nA	3µs
TLV704x	漏极开路	335nA	3µs

X2SON 封装与 SC70 和美元硬币对比

传播延迟与过驱动

 $T_A=25^{\circ}C,\ V_{CC}=5V,\ C_L=15pF$

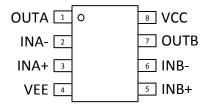

		目录			
1	特性	1		7.1 Overview	16
2	应用	1		7.2 Functional Block Diagram	16
3	说明	1		7.3 Feature Description	16
4	修订历史记录	2		7.4 Device Functional Modes	
5	Pin Configuration and Functions		8	Application and Implementation	
6	Specifications			8.1 Application Information	
	6.1 Absolute Maximum Ratings (Single)	5	_	8.2 Typical Applications	
	6.2 Absolute Maximum Ratings (Dual)	5	9	Power Supply Recommendations	
	6.3 ESD Ratings		10	Layout	
	6.4 Recommended Operating Conditions (Single)			10.1 Layout Guidelines	
	6.5 Recommended Operating Conditions (Dual)		44	10.2 Layout Example 器件和文档支持	
	6.6 Thermal Information (Single)		11	新什和又恒又行 11.1 器件支持	
	6.7 Thermal Information (Dual)			11.2 相关链接	
	6.8 Electrical Characteristics (Single)			11.3 接收文档更新通知	
	6.10 Electrical Characteristics (Dual)			11.4 社区资源	
	6.11 Switching Characteristics (Dual)			11.5 商标	26
	6.12 Timing Diagrams			11.6 静电放电警告	26
	6.13 Typical Characteristics			11.7 Glossary	26
7	Detailed Description		12	机械、封装和可订购信息	26
2	添加 添加了双通道选项				1
han	ges from Revision C (March 2018) to Revision D	1			Page
\exists	添加 添加了引线式封装选项,目标位置: 特性				1
₽	.删除 SOT23 封装的预览状态				1
D	eleted preview status of SOT23 package				3
	ges from Revision B (November 2017) to Revision				Page
将	:预览 SC70 封装更改为生产数据				1
han	ges from Revision A (July 2017) to Revision B				Page
	将传播延迟从 200ns 更改为 260ns				1
向	数据表添加了预览 SC70 和 SOT-23 封装				1
10	营销部门请求添加了 TLV70x1 系列微功耗比较器				1
	将重要图形标题从 <i>传播延迟与过驱电压 (TLV7011)</i> 问				
	emoved (TLV7011 only) text from several <i>Typical Ci</i>				
	emoved some Typical Characteristics graphs				
	dded 图 14				
A	dded 图 21				12
A	dded content to the Inputs section				16
۸	dded the IR Receiver Analog Front End section				21


Changes from Original (May 2017) to Revision A

Page

5 Pin Configuration and Functions

DBV and DCK Package 5-Pin SOT-23 and SC70 Top View


Pin Functions

	PIN		I/O/P ⁽¹⁾	DESCRIPTION	
NAME	X2SON	SOT-23, SC70	I/O/P(*)		
OUT	1	1	0	Output	
V _{CC}	2	5	Р	Positive (highest) power supply	
V _{EE}	3	2	Р	Negative (lowest) power supply	
IN-	4	4	I	Inverting input	
IN+	5	3	I	Noninverting input	

(1) I = Input, O = Output, P = Power

TLV7012/22 DGK Packages 8-Pin VSSOP Top View

Pin Functions: TLV7012/22

PIN		1/0	DECORIDATION	
NAME	NO.	1/0	DESCRIPTION	
INA-	2	I	Inverting input, channel A	
INA+	3	1	Noninverting input, channel A	
INB-	6	1	Inverting input, channel B	
INB+	5	1	Noninverting input, channel B	
OUTA	1	0	Output, channel A	
OUTB	7	0	Output, channel B	
VEE	4	_	Negative (lowest) supply or ground (for single-supply operation)	
VCC	8	_	Positive (highest) supply	

6 Specifications

6.1 Absolute Maximum Ratings (Single)

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT	
Supply voltage ($V_S = V_{CC} - V_{EE}$)			6	V	
Input pins (IN+, IN-) ⁽²⁾		V _{EE} - 0.3	6	V	
Current into Input pins (IN+, IN-)(2)			±10	mA	
Output (OUT)	TLV7011/7012 ⁽³⁾	V _{EE} - 0.3	V _{CC} + 0.3		
	TLV7021/7022	V _{EE} - 0.3	6	V	
Output short-circuit duration (4)			10	S	
Junction temperature, T _J			150	°C	
Storage temperature, T _{stg}		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) Input terminals are diode-clamped to V_{EE}. Input signals that can swing 0.3V below V_{EE} must be current-limited to 10mA or less.
- (3) Output maximum is (V_{CC} + 0.3V) or 6V, whichever is less.
- (4) Short-circuit to ground, one comparator per package.

6.2 Absolute Maximum Ratings (Dual)

over operating free-air temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
Supply voltage $V_S = V_{CC} - V_{EE}$	-0.3	7	V
Input pins (IN+, IN-) ⁽²⁾	V _{EE} - 0.3	7	V
Current into Input pins (IN+, IN-)		±10	mA
Output (OUT) (TLV7012) ⁽³⁾	V _{EE} - 0.3	V _{CC} + 0.3	V
Output (OUT) (TLV7022)	V _{EE} - 0.3	7	V
Output short-circuit duration (4)		10	S
Junction temperature, T _J		150	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.3 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	\/
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.4 Recommended Operating Conditions (Single)

over operating free-air temperature range (unless otherwise noted)

1 0 1			
	MIN	NOM MAX	UNIT
Supply voltage $(V_S = V_{CC} - V_{EE})$	1.6	5.5	V
Input Voltage Range	V _{EE} - 0.1	V _{CC} + 0.2	V
Ambient temperature, T _A	-40	125	°C

⁽²⁾ Input terminals are diode-clamped to V_{EE}. Input signals that can swing 0.3V below V_{EE} must be current-limited to 10mÅ or less

³⁾ Output maximum is (V_{CC} + 0.3 V) or 7 V, whichever is less.

⁽⁴⁾ Short-circuit to ground, one comparator per package.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Recommended Operating Conditions (Dual)

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Supply voltage $V_S = V_{CC} - V_{EE}$	1.6	6.5	V
Input voltage range	V _{CC} - 0.1	V _{EE} + 0.2	V
Ambient temperature, T _A	-40	125	°C

6.6 Thermal Information (Single)

			TLV7011/TLV7021		
	THERMAL METRIC ⁽¹⁾	DPW (X2SON)	DBV (SOT23)	DCK (SC70)	UNIT
		5 PINS	5 PINS	5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	497.5	306.3	278.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	275.5	228.4	188.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	372.2	166.5	113.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	55.5	138.5	82.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	370.3	165.3	112.4	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	165.1	N/A	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.7 Thermal Information (Dual)

		TLV7012/TLV7022	
	THERMAL METRIC ⁽¹⁾	DGK (VSSOP)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	211.7	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	96.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	133.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	28.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	131.7	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.8 Electrical Characteristics (Single)

 V_S = 1.8 V to 5 V, V_{CM} = V_S / 2; minimum and maximum values are at T_A = -40°C to +125°C (unless otherwise noted). Typical values are at T_A = 25°C.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	$V_S = 1.8 \text{ V} \text{ and 5 V}, V_{CM} = V_S / 2$		±0.5	±8	mV
V _{HYS}	Hysteresis	$V_S = 1.8 \text{ V}$ and 5 V, $V_{CM} = V_S / 2$	1.2	4.2	14	mV
\/	Common mode veltage range	V _S = 2.5 V to 5 V	V _{EE}		V _{CC} + 0.1	V
V_{CM}	Common-mode voltage range	V _S = 1.8 V to 2.5 V	V _{EE} + 0.1		V _{CC} + 0.1	V
I _B	Input bias current			5		pA
Ios	Input offset current			1		pA
V _{OH}	Output voltage high (for TLV7011 only)	V _S = 5 V, I _O = 3 mA	4.7	4.8		V
V _{OL}	Output voltage low	$V_S = 5 \text{ V}, I_O = 3 \text{ mA}$		120	220	mV
I _{LKG}	Open-drain output leakage current (TLV7021 only)	$V_S = 5 \text{ V}, V_{ID} = +0.1 \text{ V} \text{ (output high)}, V_{PULLUP} = V_{CC}$		100		pA
CMRR	Common-mode rejection ratio	$V_{EE} < V_{CM} < V_{CC}$, $V_{S} = 5 \text{ V}$		78		dB
PSRR	Power supply rejection ratio	$V_S = 1.8 \text{ V to 5 V}, V_{CM} = V_S / 2$		78		dB
I _{SC}	Chart circuit ourrent	V _S = 5 V, sourcing		65		A
	Short-circuit current	V _S = 5 V, sinking	44			mA
I _{cc}	Supply current	$V_S = 1.8 \text{ V}$, no load, $V_{ID} = -0.1 \text{ V}$ (Output Low)		5	10	μA

6.9 Switching Characteristics (Single)

Typical values are at $T_A = 25$ °C, $V_{CC} = 5$ V, $V_{CM} = 2.5$ V; $C_L = 15$ pF, input overdrive = 100 mV (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay time, high-to-low ($R_P = 2.5 \text{ k}\Omega$ TLV7021 only)	Midpoint of input to midpoint of output, $V_{OD} = 100 \text{ mV}$	260			ns
t _{PLH}	Propagation delay time, low-to-high ($R_P = 2.5 \text{ k}\Omega$ TLV7021 only)	Midpoint of input to midpoint of output, $V_{OD} = 100 \text{ mV}$		310		ns
t _R	Rise time (for TLV7011 only)	20% to 80%		5		ns
t _F	Fall time	80% to 20%		5		ns
t _{ON}	Power-up time (1)			20		μs

⁽¹⁾ During power on, V_S must exceed 1.6 V for t_{ON} before the output tracks the input.

6.10 Electrical Characteristics (Dual)

 V_S = 1.8 V to 5 V, V_{CM} = V_S / 2; minimum and maximum values are at T_A = -40°C to +125°C (unless otherwise noted).

Typical values are at $T_A = 25$ °C.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IO}	Input Offset Voltage	$V_S = 1.8 \text{ V}$ and 5 V, $V_{CM} = VS / 2$		±0.1	±8	mV
V _{HYS}	Hysteresis	$V_S = 1.8 \text{ V}$ and 5 V, $V_{CM} = VS / 2$	2	9	15	mV
V _{CM}	Common-mode voltage range		V_{EE}		V _{CC} + 0.1	V
I _B	Input bias current			2		pA
Ios	Input offset current			1		pA
V _{OH}	Output voltage high (for TLV7012 only)	$V_S = 5 \text{ V}, \ V_{EE} = 0 \text{ V}, \ I_O = 3 \text{ mA}$	4.65	4.8		V
V _{OL}	Output voltage low	$V_S = 5 \text{ V}, V_{EE} = 0 \text{ V}, I_O = 3 \text{ mA}$		250	350	mV
I _{LKG}	Open-drain output leakage current (TLV7022 only)	$V_S = 5 \text{ V}, V_{ID} = +0.1 \text{ V (output high)},$ $V_{PULLUP} = V_{CC}$	100			pA
CMRR	Common-mode rejection ratio	$V_{EE} < V_{CM} < V_{CC}$, $V_{S} = 5 \text{ V}$		73		dB
PSRR	Power supply rejection ratio	$V_S = 1.8 \text{ V to 5 V}, V_{CM} = V_S / 2$		77		dB
	Chart circuit ourrent	VS = 5 V, sourcing (for TLV7012 only)		29		A
I _{SC}	Short-circuit current	VS = 5 V, sinking		33		mA
I _{CC}	Supply current / Channel	$V_S = 1.8 \text{ V}$, no load, $V_{ID} = -0.1 \text{ V}$ (Output Low)		4.7	9	μA

6.11 Switching Characteristics (Dual)

Typical values are at $T_A = 25$ °C, $V_S = 5$ V, $V_{CM} = V_S / 2$; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay time, high to- low (RP = 4.99 k Ω TLV7022 only) $^{(1)}$	Midpoint of input to midpoint of output, $V_{OD} = 100 \text{ mV}$		310		ns
t _{PLH}	Propagation delay time, low-to high (RP = $4.99 \text{ k}\Omega$ TLV7022 only) (1)	Midpoint of input to midpoint of output, $V_{OD} = 100 \text{ mV}$		ns		
t _R	Rise time (TLV7012 only)	Measured from 20% to 80%	5			ns
t _F	Fall time	Measured from 20% to 80%		5		ns
t _{ON}	Power-up time	During power on, V _{CC} must exceed 1.6V for 200 µs before the output is in correct state.		20		μs

(1) The lower limit for RP is 650 Ω

6.12 Timing Diagrams

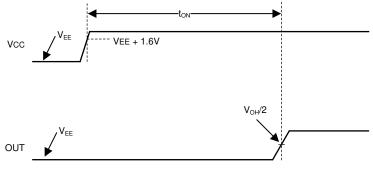


图 1. Start-Up Time Timing Diagram (IN+ > IN-)

Timing Diagrams (接下页)

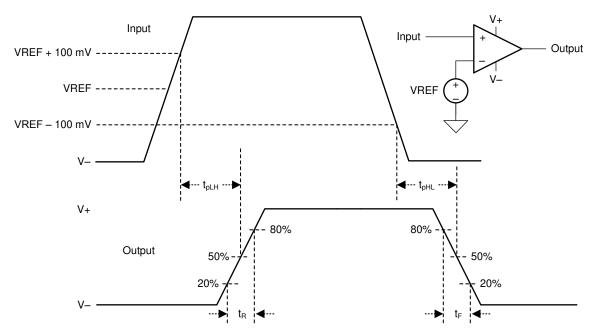
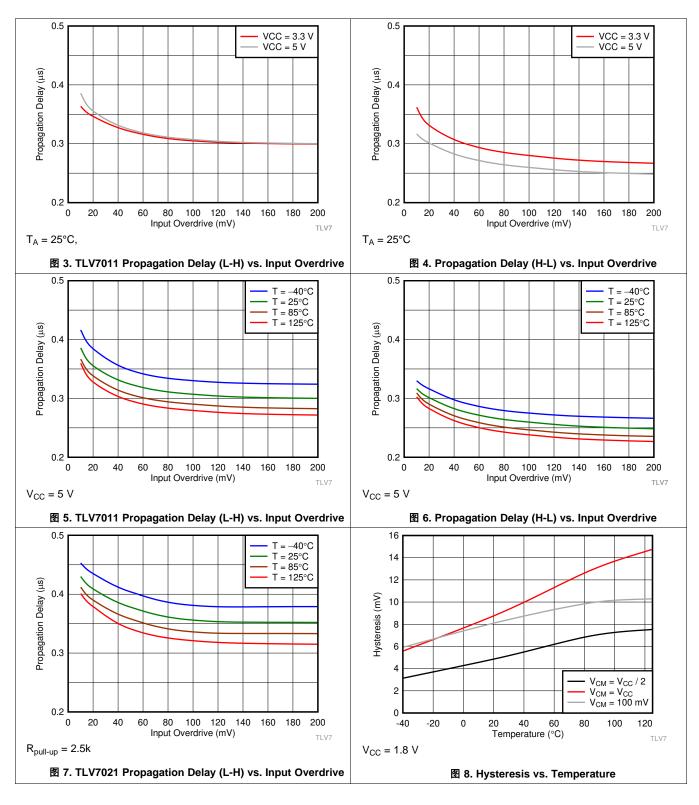
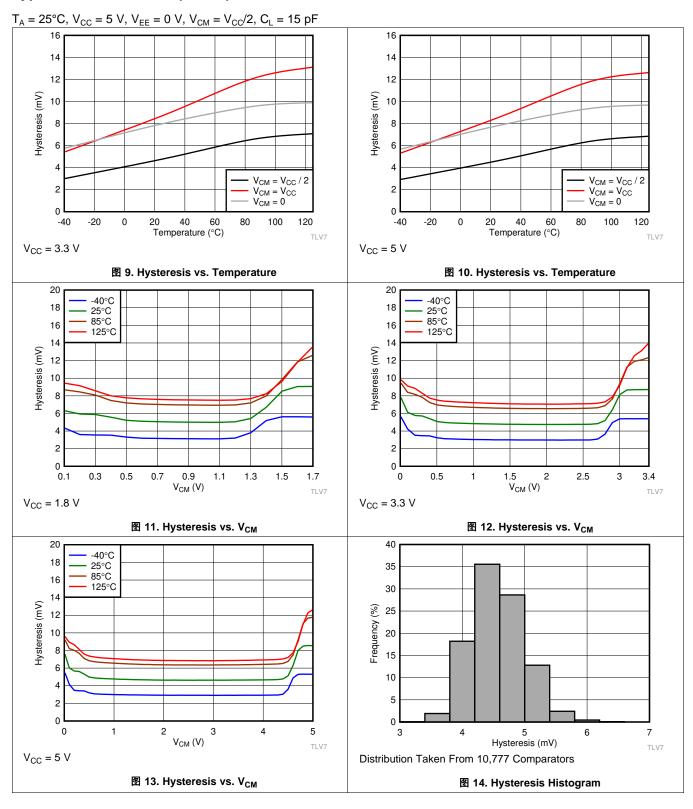
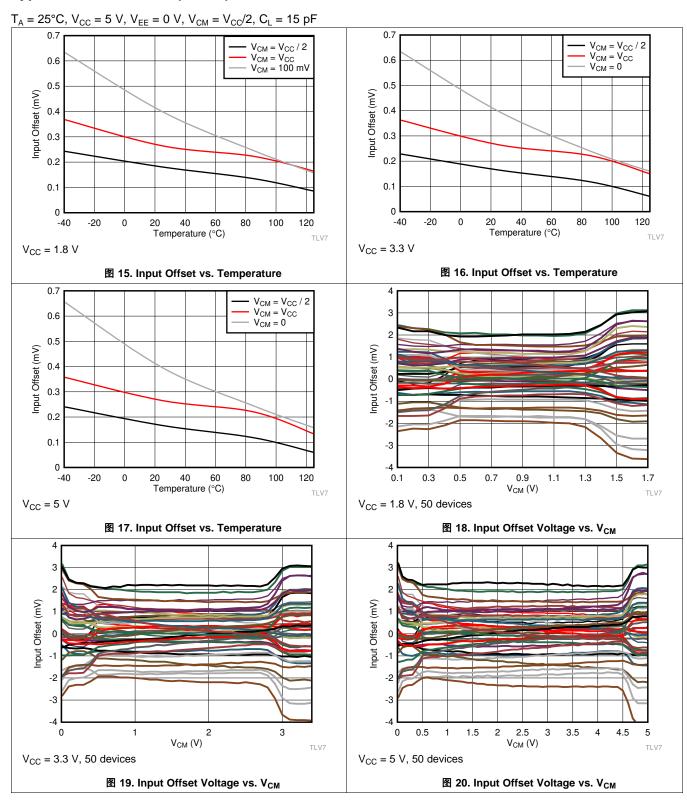
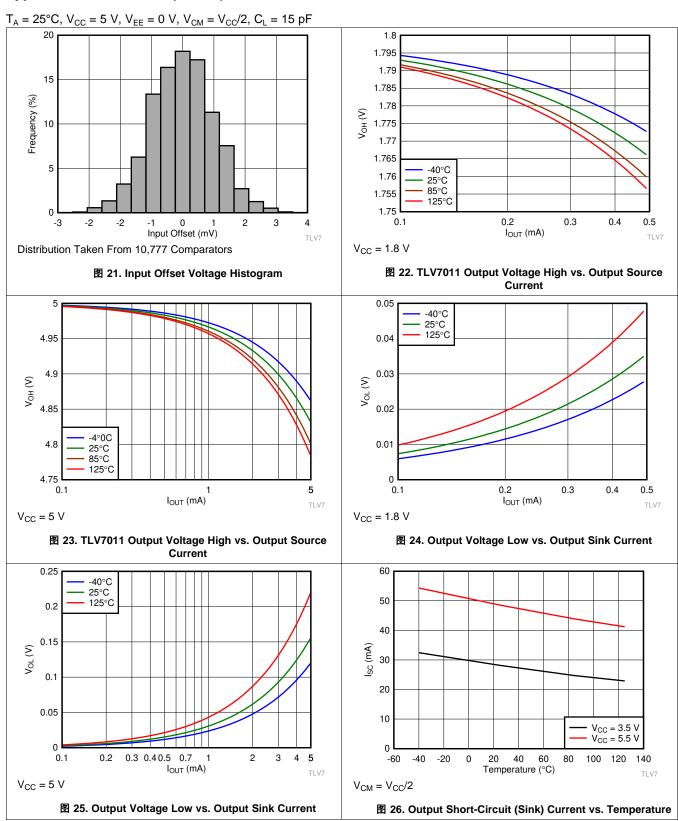



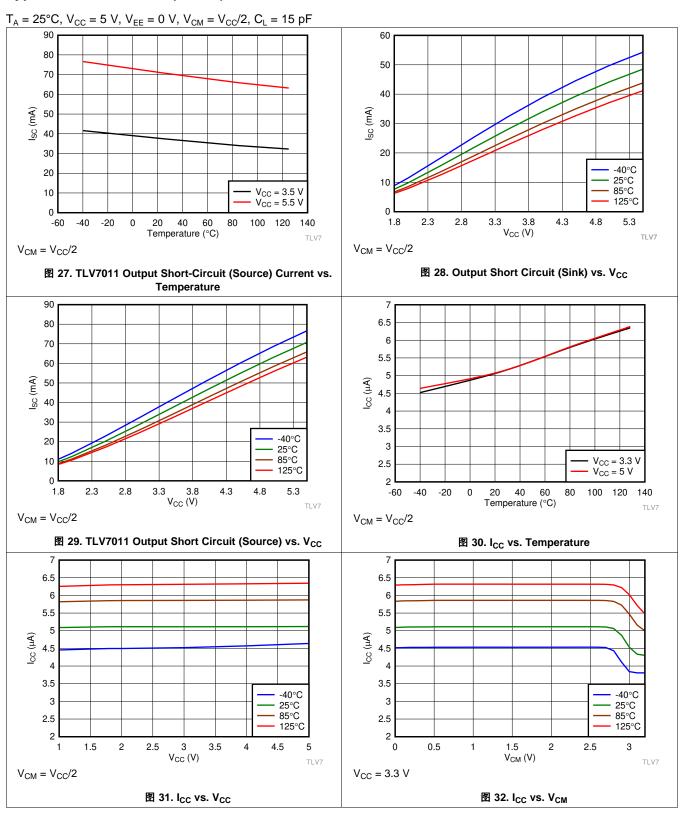
图 2. Propagation Delay Timing Diagram



6.13 Typical Characteristics


 $T_A = 25^{\circ}C$, $V_{CC} = 5$ V, $V_{EE} = 0$ V, $V_{CM} = V_{CC}/2$, $C_L = 15$ pF





10

10

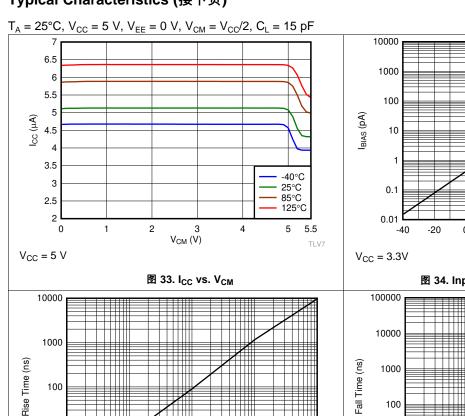
 $V_{OD} = 100 \text{mV}$

100

1000

Load Capacitance (pF)

图 35. TLV7011 Output Rise Time vs. Load Capacitance


10000

100000

TLV7

Typical Characteristics (接下页)

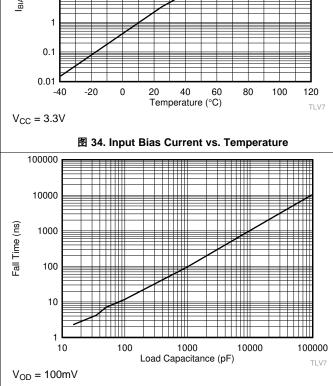
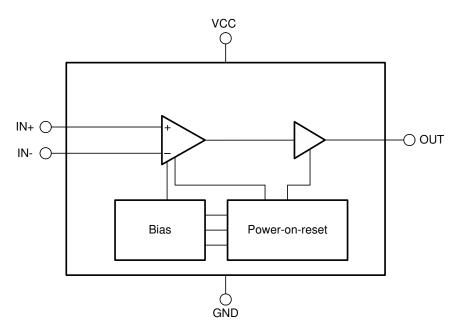


图 36. Output Fall Time vs. Load Capacitance



7 Detailed Description

7.1 Overview

The TLV701x and TLV702x devices are single-channel, micro-power comparators with push-pull and open-drain outputs. Operating down to 1.6 V and consuming only 5 µA, the TLV701x and TLV702x are ideally suited for portable and industrial applications. The comparators are available in leadless and leaded packages to offer significant board space saving in space-challenged designs.

7.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

7.3 Feature Description

The TLV701x (push-pull) and TLV702x (open-drain) devices are micro-power comparators that are capable of operating at low voltages. The TLV701x and TLV702x feature a rail-to-rail input stage capable of operating up to 100 mV beyond the VCC power supply rail. The comparators also feature a push-pull and open-drain output stage with internal hysteresis.

7.4 Device Functional Modes

The TLV701x and TLV702x have a Power-on-Reset (POR) circuit. While the power supply (V_S) is ramping up or ramping down, the POR circuitry will be activated.

For the TLV701x, the POR circuit will hold the output low (at V_{EE}) while activated.

For the TLV702x, the POR circuit will keep the output high impedance (logical high) while activated.

When the supply voltage is greater than, or equal to, the minimum supply voltage, the comparator output reflects the state of the differential input (V_{ID}) .

7.4.1 Inputs

The TLV701x and TLV702x input common-mode extends from V_{EE} to 100 mV above V_{CC} . The differential input voltage (V_{ID}) can be any voltage within these limits. No phase-inversion of the comparator output will occur when the input pins exceed V_{CC} and V_{EE} .

Device Functional Modes (接下页)

While TI recommends operating the TLV701x and TLV702x within the specified common-mode range, the inputs are fault tolerant to voltages up to 5.5 V independent of the applied V_{CC} value. Fault tolerant is defined as maintaining the same high input impedance when V_{CC} is unpowered or within the recommended operating range. Because the inputs of the TLV701x and TLV702x are fault tolerant, the inputs to the comparator can be any value between 0 V and 5.5 V while V_{CC} is ramping up. This feature allows any supply and input driven sequence as long as the input value and supply are within the specified ranges. In this case, no current limiting resistor is required. This is possible since the V_{CC} is isolated from the inputs such that it maintains its value even when a higher voltage is applied to the input.

The input bias current is typically 1 pA for input voltages between V_{CC} and V_{EE} . The comparator inputs are protected from undervoltage by internal diodes connected to V_{EE} . As the input voltage goes under V_{EE} , the protection diodes become forward biased and begin to conduct causing the input bias current to increase exponentially. Input bias current typically doubles for $10^{\circ}C$ temperature increases.

7.4.2 Internal Hysteresis

The device hysteresis transfer curve is shown in \boxtimes 37. This curve is a function of three components: V_{TH} , V_{OS} , and V_{HYST} :

- V_{TH} is the actual set voltage or threshold trip voltage.
- V_{OS} is the internal offset voltage between V_{IN+} and V_{IN-}. This voltage is added to V_{TH} to form the actual trip
 point at which the comparator must respond to change output states.
- V_{HYST} is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise (4.2 mV for the TLV7011).

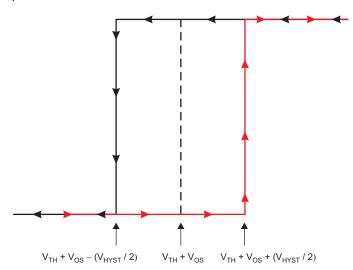


图 37. Hysteresis Transfer Curve

7.4.3 Output

The TLV701x feature a push-pull output stage eliminating the need for an external pull-up resistor. On the other hand, the TLV702x feature an open-drain output stage enabling the output logic levels to be pulled up to an external source independent of the supply voltage.

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TLV701x and TLV702x are micro-power comparators with reasonable response time. The comparators have a rail-to-rail input stage that can monitor signals beyond the positive supply rail with integrated hysteresis. When higher levels of hysteresis are required, positive feedback can be externally added. The push-pull output stage of the TLV701x is optimal for reduced power budget applications and features no shoot-through current. When level shifting or wire-ORing of the comparator outputs is needed, the TLV702x with its open-drain output stage is well suited to meet the system needs. In either case, the wide operating voltage range, low quiescent current, and micro-package of the TLV701x and TLV702x make these comparators excellent candidates for battery-operated and portable, handheld designs.

8.1.1 Inverting Comparator With Hysteresis for TLV701x

The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator supply voltage (V_{CC}), as shown in 图 38. When V_{IN} at the inverting input is less than V_A , the output voltage is high (for simplicity, assume V_O switches as high as V_{CC}). The three network resistors can be represented as R1 || R3 in series with R2. 公式 1 defines the high-to-low trip voltage (V_{A1}).

$$V_{A1} = V_{CC} \times \frac{R2}{(R1 \parallel R3) + R2}$$
 (1)

When V_{IN} is greater than V_A , the output voltage is low, very close to ground. In this case, the three network resistors can be presented as R2 || R3 in series with R1. Use $\Delta \pm 2$ to define the low to high trip voltage (V_{A2}).

$$V_{A2} = V_{CC} \times \frac{R2 \parallel R3}{R1 + (R2 \parallel R3)}$$
 (2)

公式 3 defines the total hysteresis provided by the network.

$$\Delta V_{A} = V_{A1} - V_{A2} \tag{3}$$

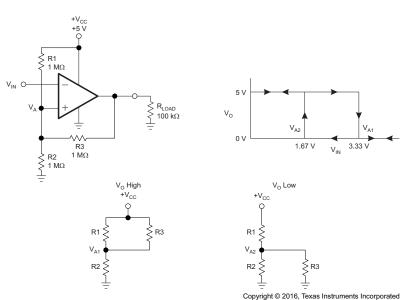
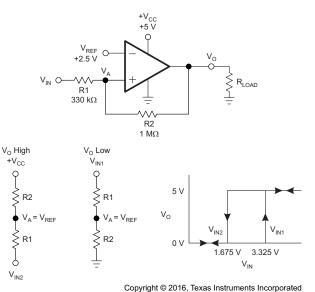


图 38. TLV701x in an Inverting Configuration With Hysteresis

Application Information (接下页)

8.1.2 Noninverting Comparator With Hysteresis for TLV701x

A noninverting comparator with hysteresis requires a two-resistor network, as shown in \boxtimes 39, and a voltage reference (V_{REF}) at the inverting input. When V_{IN} is low, the output is also low. For the output to switch from low to high, V_{IN} must rise to V_{IN1} . Use $\triangle \vec{\pm}$ 4 to calculate V_{IN1} .


$$V_{IN1} = R1 \times \frac{V_{REF}}{R2} + V_{REF} \tag{4}$$

When V_{IN} is high, the output is also high. For the comparator to switch back to a low state, V_{IN} must drop to V_{IN2} such that V_A is equal to V_{REF} . Use $\Delta \vec{z}$ 5 to calculate V_{IN2} .

$$V_{IN2} = \frac{V_{REF} (R1 + R2) - V_{CC} \times R1}{R2}$$
 (5)

The hysteresis of this circuit is the difference between V_{IN1} and V_{IN2} , as shown in $\Delta \pm 6$.

$$\Delta V_{IN} = V_{CC} \times \frac{R1}{R2} \tag{6}$$

copyright © 2010, Toxas motiuments incorporated

图 39. TLV701x in a Noninverting Configuration With Hysteresis

8.2 Typical Applications

8.2.1 Window Comparator

Window comparators are commonly used to detect undervoltage and overvoltage conditions. 图 40 shows a simple window comparator circuit.

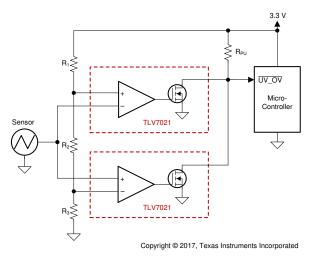


图 40. Window Comparator

8.2.1.1 Design Requirements

For this design, follow these design requirements:

- Alert (logic low output) when an input signal is less than 1.1 V
- · Alert (logic low output) when an input signal is greater than 2.2 V
- · Alert signal is active low
- Operate from a 3.3-V power supply

8.2.1.2 Detailed Design Procedure

Configure the circuit as shown in \boxtimes 40. Connect V_{CC} to a 3.3-V power supply and V_{EE} to ground. Make R1, R2 and R3 each 10-M Ω resistors. These three resistors are used to create the positive and negative thresholds for the window comparator (V_{TH+} and V_{TH-}). With each resistor being equal, V_{TH+} is 2.2 V and V_{TH-} is 1.1 V. Large resistor values such as 10-M Ω are used to minimize power consumption. The sensor output voltage is applied to the inverting and noninverting inputs of the two TLV702x's. The TLV7021 is used for its open-drain output configuration. Using the TLV702x allows the two comparator outputs to be Wire-Ored together. The respective comparator outputs will be low when the sensor is less than 1.1 V or greater than 2.2 V. V_{OUT} will be high when the sensor is in the range of 1.1 V to 2.2 V.

8.2.1.3 Application Curve

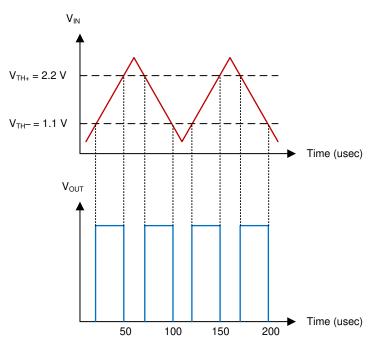
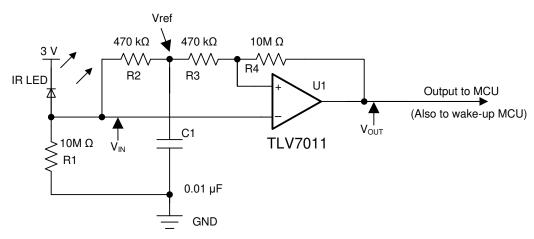



图 41. Window Comparator Results

8.2.2 IR Receiver Analog Front End

A single TLV7011 device can be used to build a complete IR receiver analog front end (AFE). The nanoamp quiescent current and low input bias current make it possible to be powered with a coin cell battery, which could last for years.

Copyright © 2017, Texas Instruments Incorporated

图 42. IR Receiver Analog Front End Using TLV7011

8.2.2.1 Design Requirements

For this design, follow these design requirements:

- Use a proper resistor (R₁) value to generate an adequate signal amplitude applied to the inverting input of the comparator.
- The low input bias current I_B (2 pA typical) ensures that a greater value of R1 to be used.

- The RC constant value (R₂ and C₁) must support the targeted data rate (that is, 9,600 bauds) to maintain a
 valid tripping threshold.
- The hysteresis introduced with R₃ and R₄ helps to avoid spurious output toggles.

8.2.2.2 Detailed Design Procedure

The IR receiver AFE design is highly streamlined and optimized. R_1 converts the IR light energy induced current into voltage and applies to the inverting input of the comparator. Because a reverse biased IR LED is used as the IR receiver, a higher I/V transimpedance gain is required to boost the amplitude of reduced current. A 10M resistor is used as R_1 to support a 1-V, 100-nA transimpedance gain. This is made possible with the picoamps Input bias current I_B (5pA typical). The RC network of R_2 and R_3 and R_4 resistor network of R2 and R3 and R4 resistor network which provides additional hysteresis for improved guard against spurious toggles.

To reduce the current drain from the coin cell battery, data transmission must be short and infrequent.

8.2.2.3 Application Curve

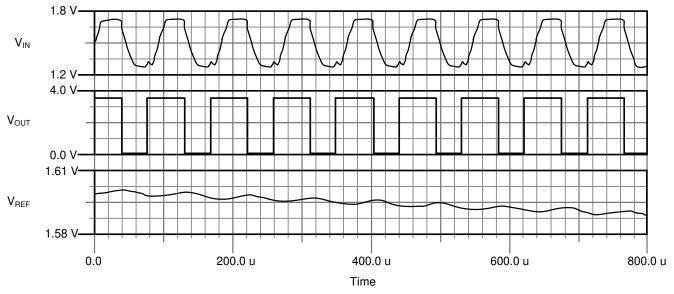


图 43. IR Receiver AFE Waveforms

8.2.3 Square-Wave Oscillator

Square-wave oscillator can be used as low cost timing reference or system supervisory clock source.

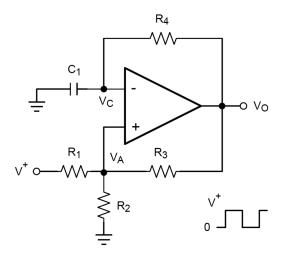


图 44. Square-Wave Oscillator

8.2.3.1 Design Requirements

The square-wave period is determined by the RC time constant of the capacitor and resistor. The maximum frequency is limited by propagation delay of the device and the capacitance load at the output. The low input bias current allows a lower capacitor value and larger resistor value combination for a given oscillator frequency, which may help to reduce BOM cost and board space.

8.2.3.2 Detailed Design Procedure

The oscillation frequency is determined by the resistor and capacitor values. The following calculation provides details of the steps.

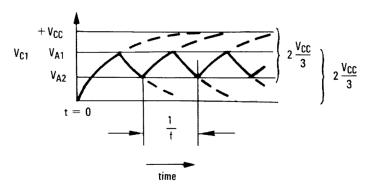


图 45. Square-Wave Oscillator Timing Thresholds

$$V_{A1} = \frac{V_{CC} \times R_2}{R_2 + R_1 I I R_3} \tag{7}$$

if $R_1 = R_2 = R_3$, then $V_{A1} = 2 V_{CC}/3$

At this time the comparator output trips pulling down the output to the negative rail. The value of V_A at this point is calculated by $\Delta \vec{x}$ 8.

$$V_{A2} = \frac{V_{CC}(R_2IIR_3)}{R_1 + R_2IIR_3} \tag{8}$$

if
$$R_1 = R_2 = R_3$$
, then $V_{A2} = V_{CC}/3$

The C_1 now discharges though the R_4 , and the voltage V_{CC} decreases until it reaches V_{A2} . At this point, the output switches back to the starting state. The oscillation period equals to the time duration from for C_1 from $2V_{CC}/3$ to $V_{CC}/3$ then back to $2V_{CC}/3$, which is given by $R_4C_1 \times In 2$ fro each trip. Therefore, the total time duration is calculated as $2R_4C_1 \times In 2$. The oscillation frequency can be obtained by $\Delta \vec{x}$ 9:

$$f = 1/(2 R4 \times C1 \times In2)$$
(9)

8.2.3.3 Application Curve

图 46 shows the simulated results of tan oscillator using the following component values:

- $R_1 = R_2 = R_3 = R_4 = 100 \text{ k}\Omega$
- C₁ = 100 pF, C_L = 20 pF
- V+ = 5 V, V- = GND
- C_{strav} (not shown) from V_A TO GND = 10 pF

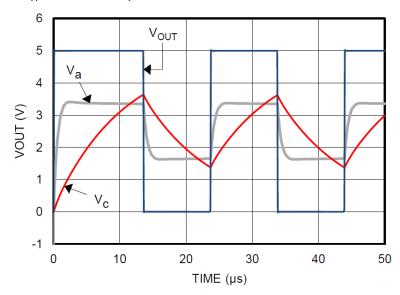


图 46. Square-Wave Oscillator Output Waveform

9 Power Supply Recommendations

The TLV701x and TLV702x have a recommended operating voltage range (V_S) of 1.6 V to 5.5 / 6.5 V. V_S is defined as $V_{CC} - V_{EE}$. Therefore, the supply voltages used to create V_S can be single-ended or bipolar. For example, single-ended supply voltages of 5 V and 0 V and bipolar supply voltages of +2.5 V and -2.5 V create comparable operating voltages for V_S . However, when bipolar supply voltages are used, it is important to realize that the logic low level of the comparator output is referenced to V_{FE} .

Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent current.

10 Layout

10.1 Layout Guidelines

To reduce PCB fabrication cost and improve reliability, TI recommends using a 4-mil via at the center pad connected to the ground trace or plane on the bottom layer.

A power-supply bypass capacitor of 100 nF is recommended when supply output impedance is high, supply traces are long, or when excessive noise is expected on the supply lines. Bypass capacitors are also recommended when the comparator output drives a long trace or is required to drive a capacitive load. Due to the fast rising and falling edge rates and high-output sink and source capability of the TLV7011 and TLV7021 output stages, higher than normal quiescent current can be drawn from the power supply. Under this circumstance, the system would benefit from a bypass capacitor across the supply pins.

10.2 Layout Example

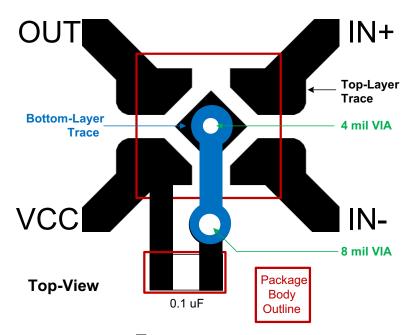


图 47. Layout Example

11 器件和文档支持

11.1 器件支持

11.1.1 开发支持

11.1.1.1 评估模块

我们为您提供了评估模块 (EVM),可以借此来对使用 TLV70x1 器件系列的电路性能进行初始评估。TLV7011 微功 耗比较器 DIP 适配器评估模块 可在德州仪器 (TI) 网站上的产品文件夹下申请,也可以直接从 TI 网上商店购买。

11.2 相关链接

下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链 接。

表 1. 相关链接

器件	产品文件夹	样片与购买	技术文档	工具与软件	支持和社区
TLV7011	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
TLV7021	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处

11.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的*通知我*进行注册,即可每周接收产品 信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 社区资源

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the guick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可 能会损坏集成电路。

🗱 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com

28-Sep-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV7011DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	1IC2	Samples
TLV7011DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	19N	Samples
TLV7011DCKT	ACTIVE	SC70	DCK	5	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	19N	Samples
TLV7011DPWR	ACTIVE	X2SON	DPW	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7N	Samples
TLV7012DDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7012	Samples
TLV7012DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	7012	Samples
TLV7012DSGR	ACTIVE	WSON	DSG	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7012	Samples
TLV7021DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	1ID2	Samples
TLV7021DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	190	Samples
TLV7021DCKT	ACTIVE	SC70	DCK	5	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	190	Samples
TLV7021DPWR	ACTIVE	X2SON	DPW	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7P	Samples
TLV7022DDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7022	Samples
TLV7022DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	7022	Samples
TLV7022DSGR	ACTIVE	WSON	DSG	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7022	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

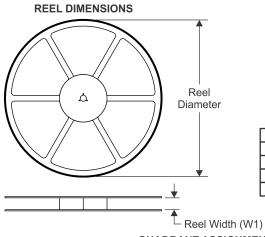
PACKAGE OPTION ADDENDUM

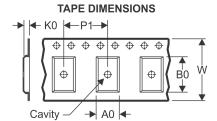
www.ti.com 28-Sep-2021

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

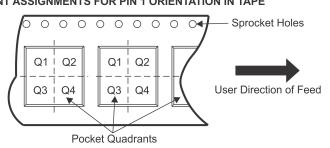
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

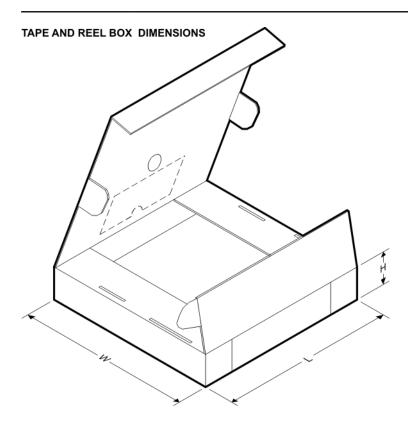
PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jan-2021


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
D1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

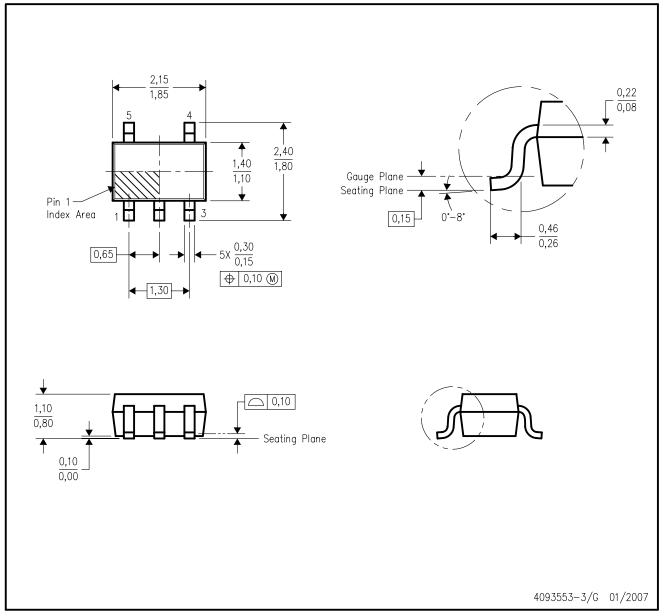


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV7011DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TLV7011DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV7011DCKT	SC70	DCK	5	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV7011DPWR	X2SON	DPW	5	3000	178.0	8.4	0.91	0.91	0.5	2.0	8.0	Q2
TLV7012DDFR	SOT- 23-THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV7012DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV7012DSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TLV7021DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TLV7021DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV7021DCKT	SC70	DCK	5	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV7021DPWR	X2SON	DPW	5	3000	178.0	8.4	0.91	0.91	0.5	2.0	8.0	Q2
TLV7022DDFR	SOT- 23-THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV7022DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV7022DSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jan-2021

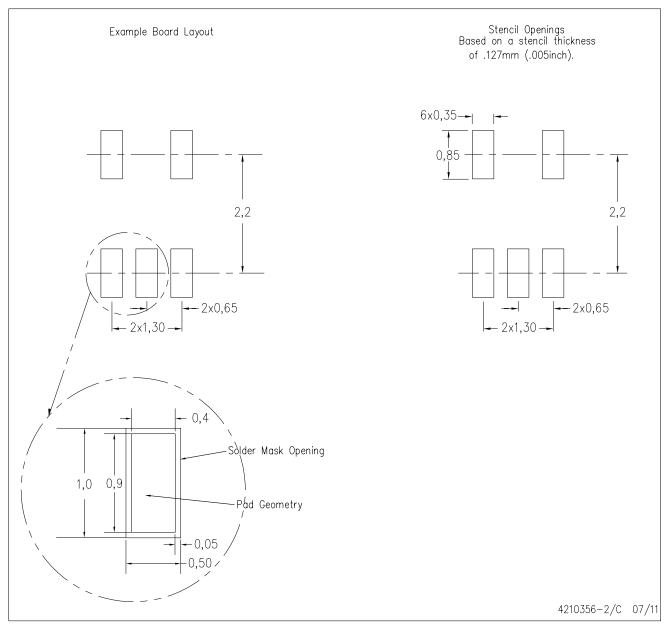


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV7011DBVR	SOT-23	DBV	5	3000	183.0	183.0	20.0
TLV7011DCKR	SC70	DCK	5	3000	190.0	190.0	30.0
TLV7011DCKT	SC70	DCK	5	250	190.0	190.0	30.0
TLV7011DPWR	X2SON	DPW	5	3000	205.0	200.0	33.0
TLV7012DDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
TLV7012DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
TLV7012DSGR	WSON	DSG	8	3000	210.0	185.0	35.0
TLV7021DBVR	SOT-23	DBV	5	3000	183.0	183.0	20.0
TLV7021DCKR	SC70	DCK	5	3000	190.0	190.0	30.0
TLV7021DCKT	SC70	DCK	5	250	190.0	190.0	30.0
TLV7021DPWR	X2SON	DPW	5	3000	205.0	200.0	33.0
TLV7022DDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
TLV7022DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
TLV7022DSGR	WSON	DSG	8	3000	210.0	185.0	35.0

DCK (R-PDSO-G5)

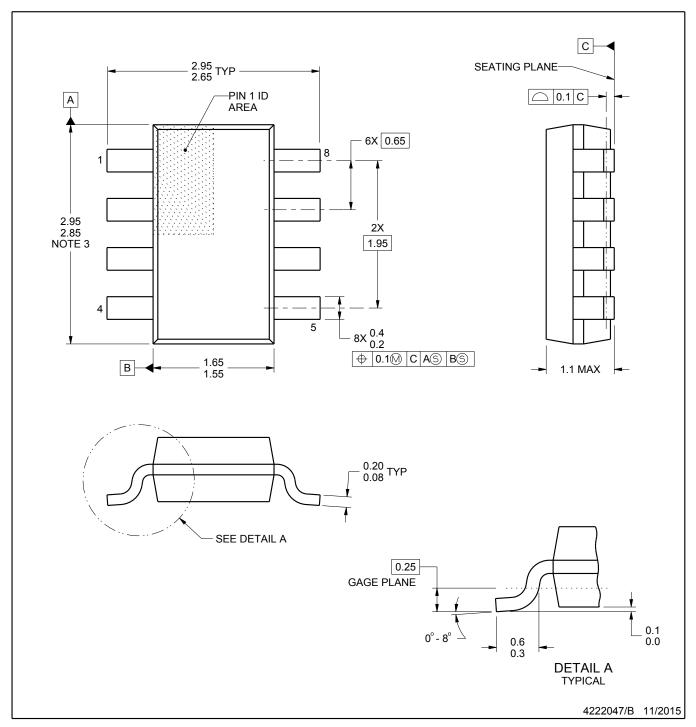
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

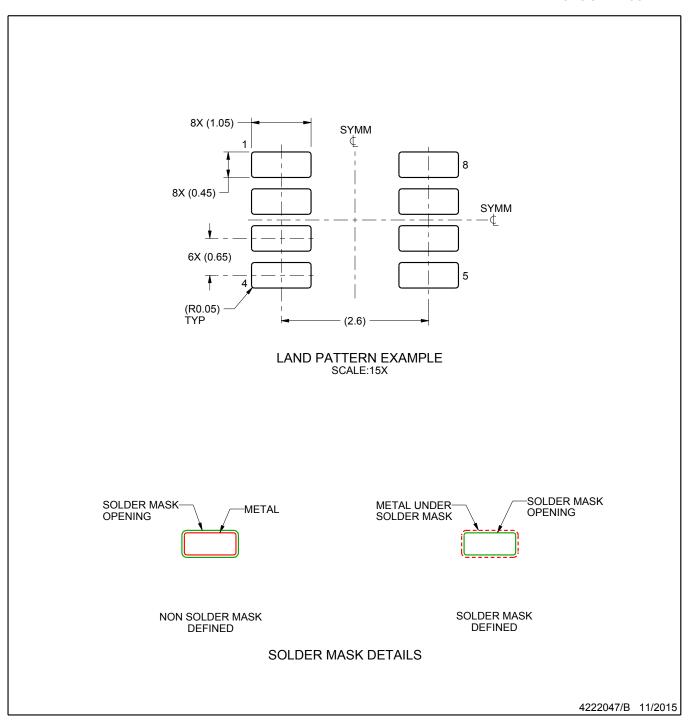
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

PLASTIC SMALL OUTLINE

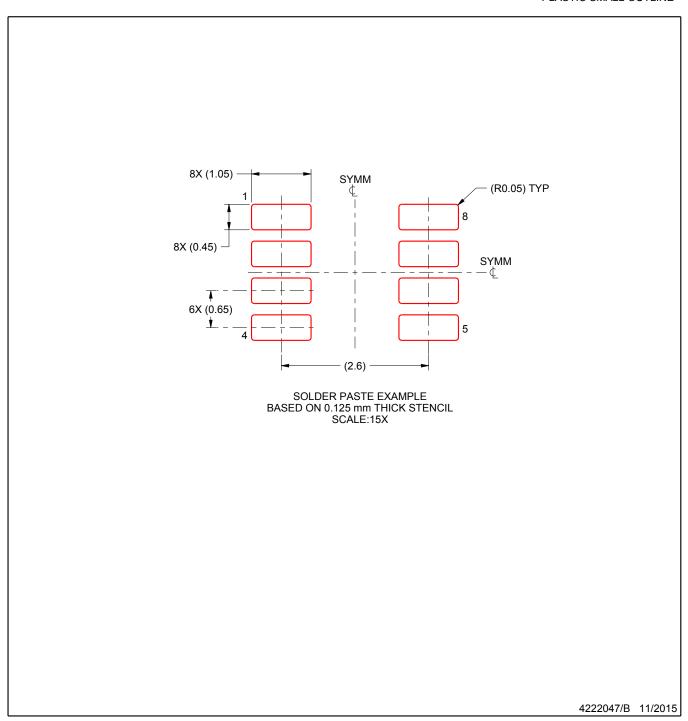
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.

PLASTIC SMALL OUTLINE



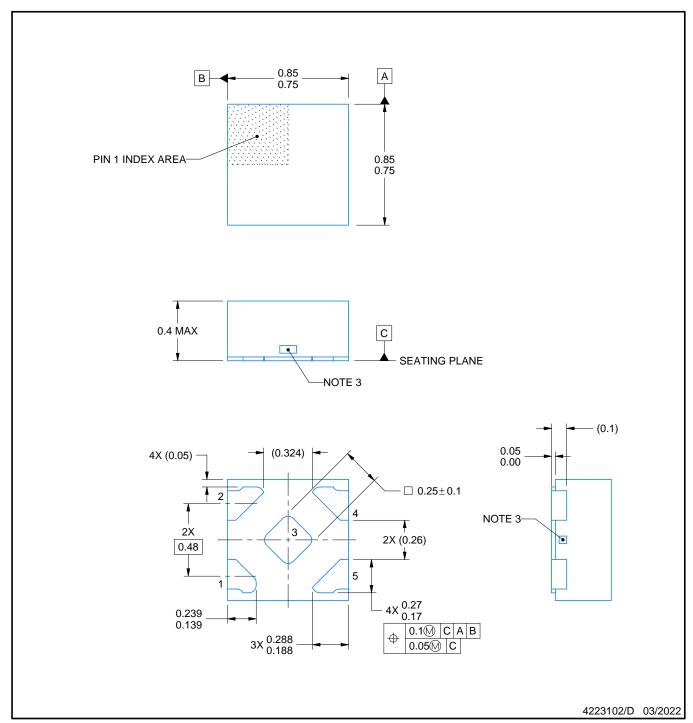
NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE

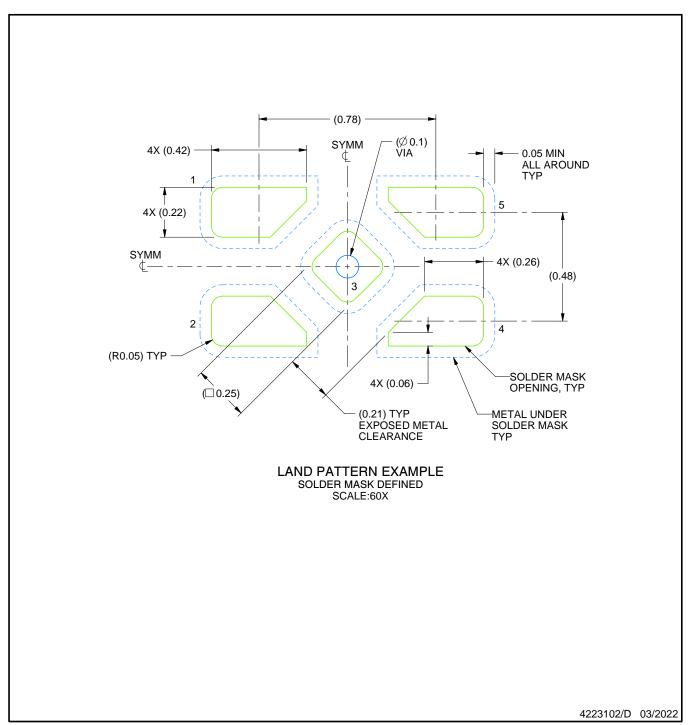
NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.



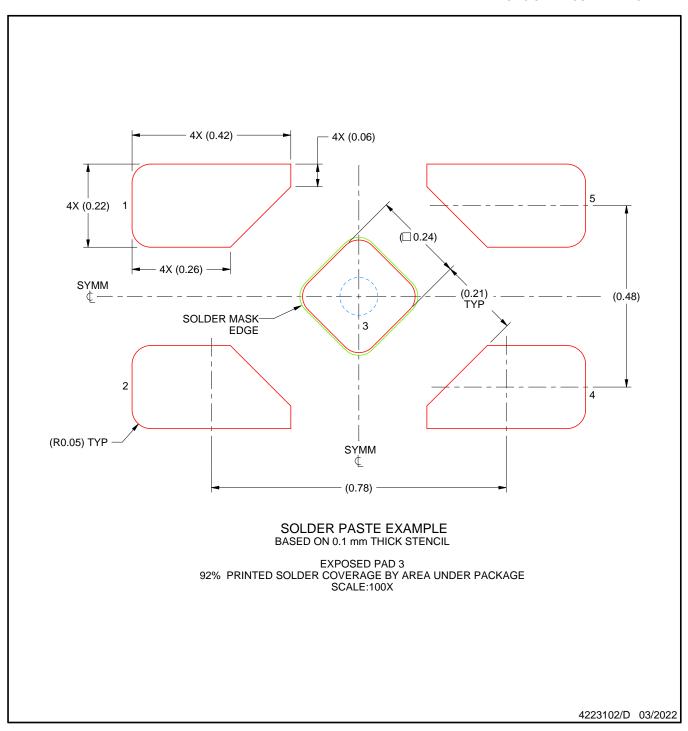
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4211218-3/D



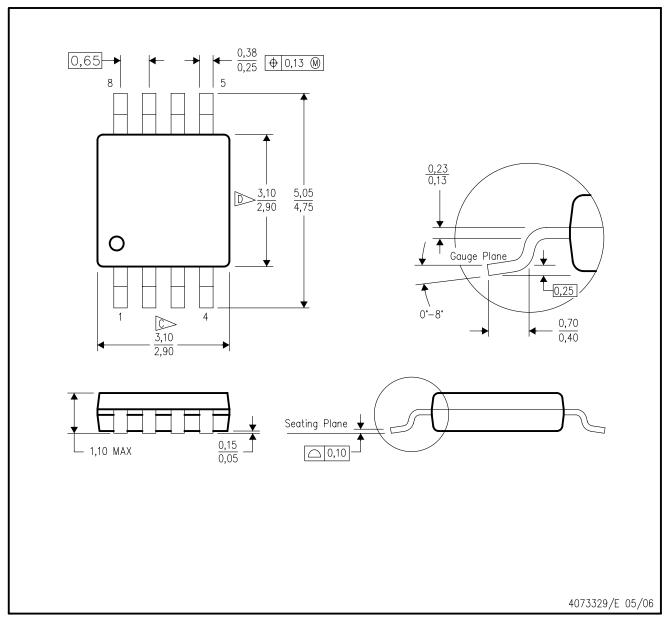
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The size and shape of this feature may vary.



NOTES: (continued)

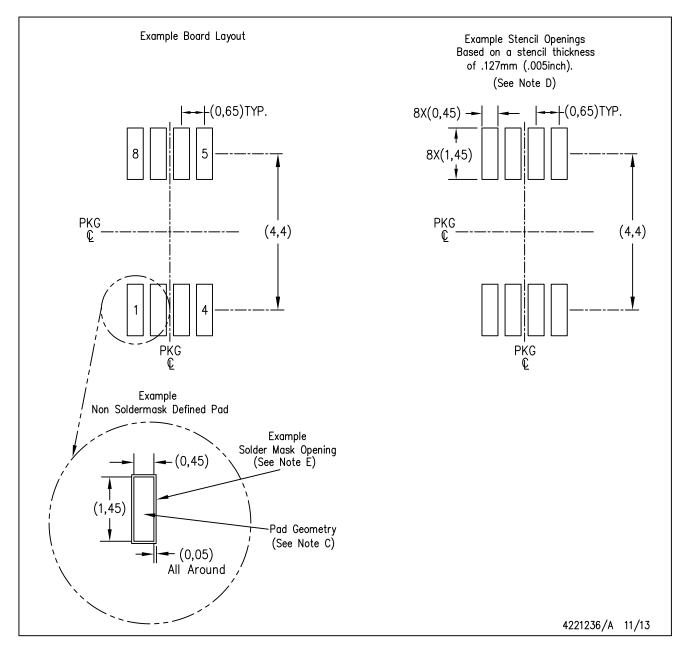
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).


NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DGK (S-PDSO-G8)

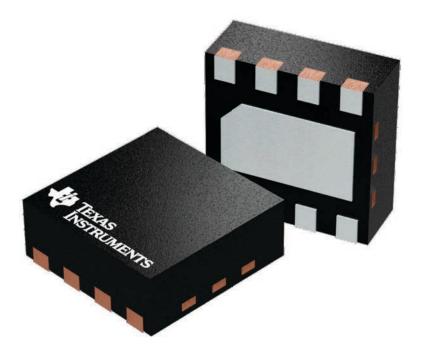
PLASTIC SMALL-OUTLINE PACKAGE

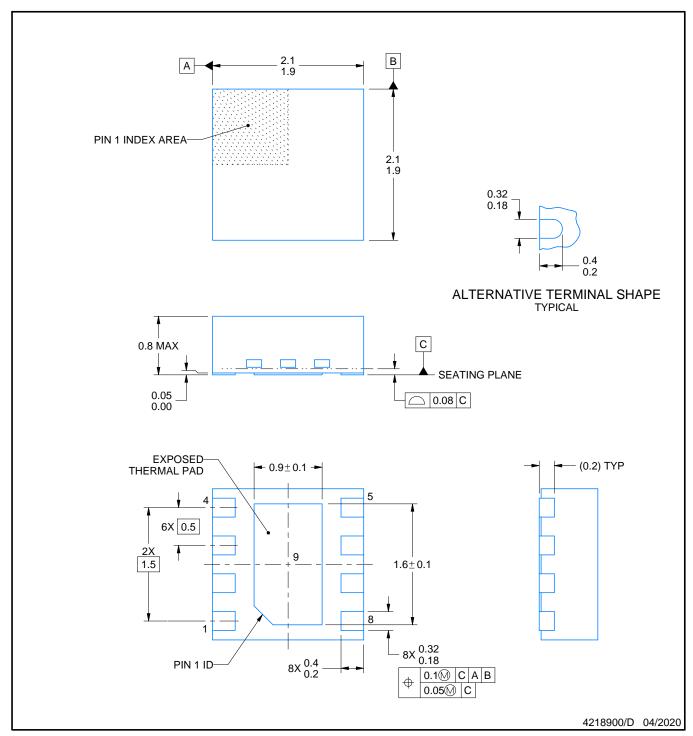


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

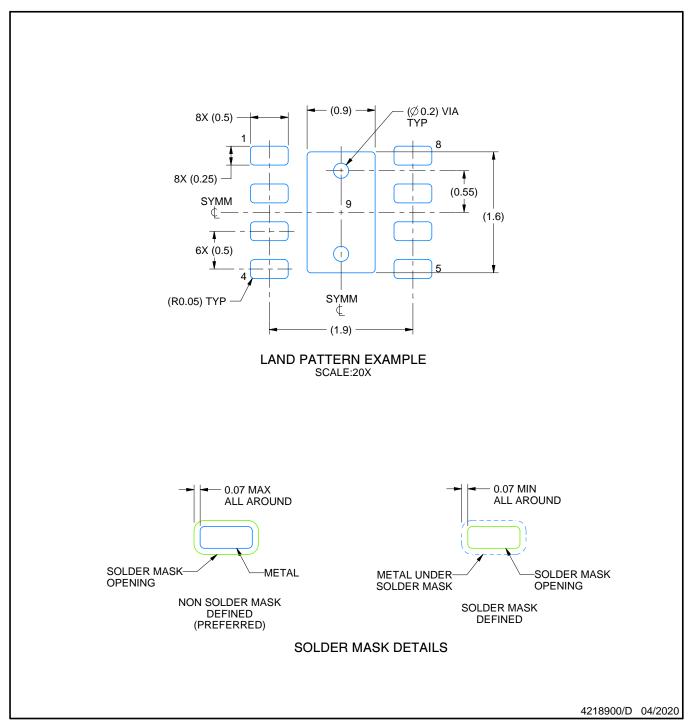
PLASTIC SMALL OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

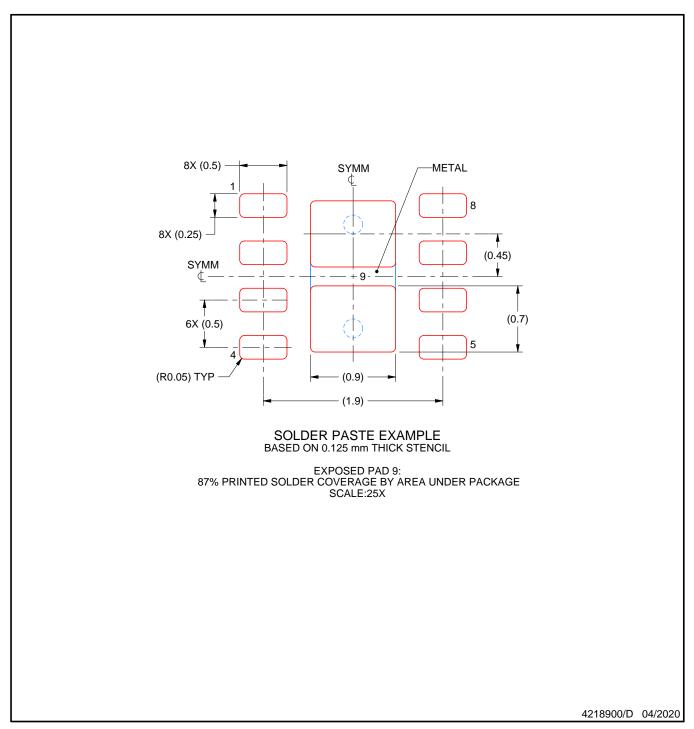

2 x 2, 0.5 mm pitch

PLASTIC SMALL OUTLINE - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

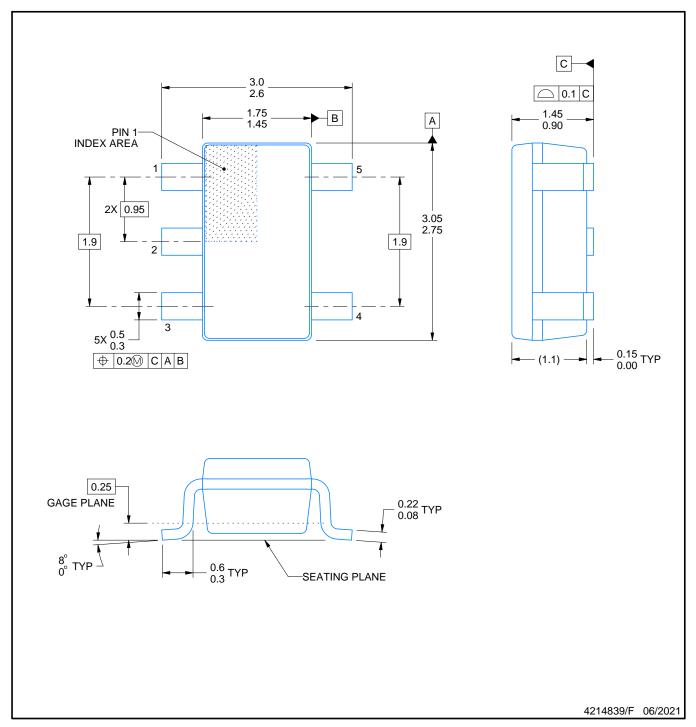


- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



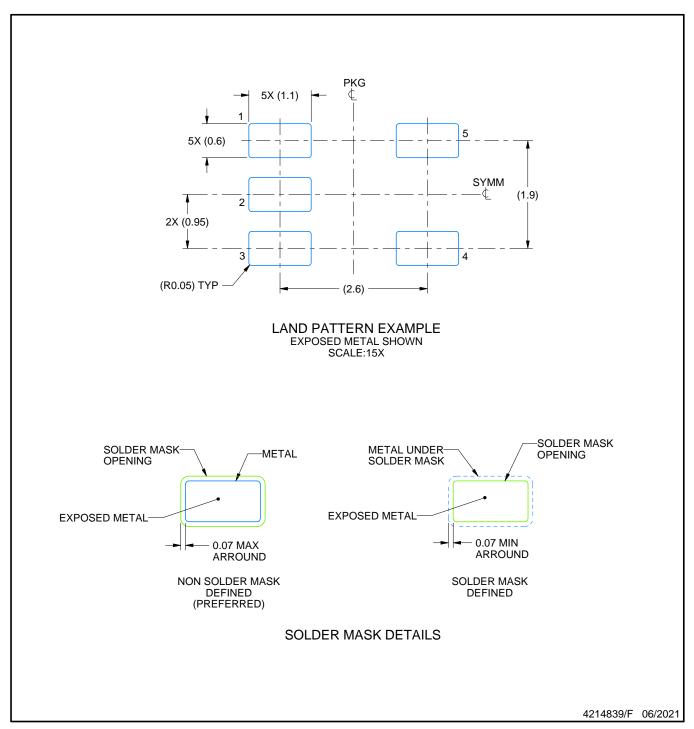
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.


NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

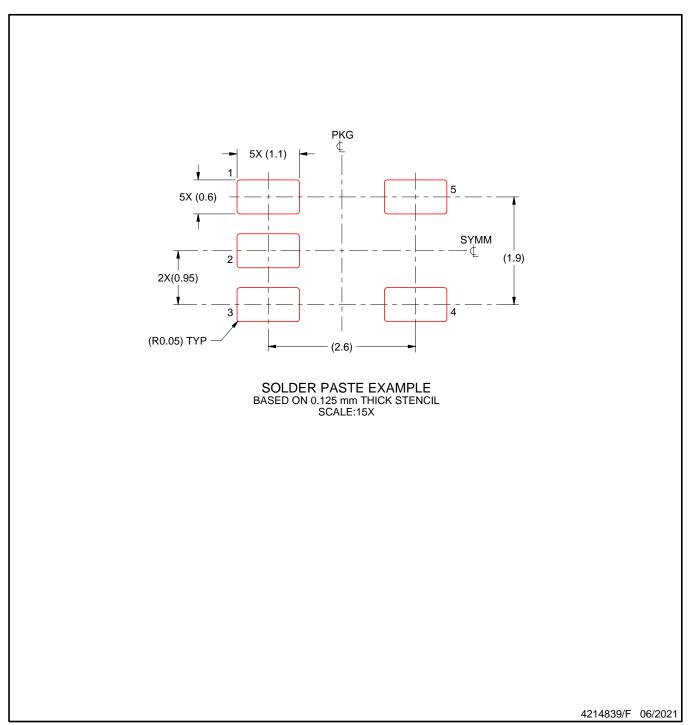
SMALL OUTLINE TRANSISTOR



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{8.} Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司