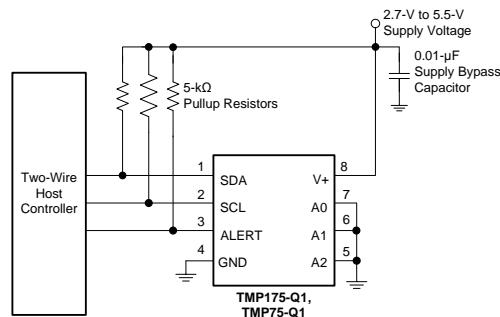


TMPx75-Q1 具有 I²C 和 SMBus 接口的汽车级温度传感器，采用行业标准 LM75 尺寸和引脚


1 特性

- 具有符合 AEC-Q100 标准的以下结果:
 - 温度 1 级: -40°C 至 +125°C 的工作环境温度范围
 - 人体放电模式 (HBM) 静电放电 (ESD) 分类等级 2
 - 组件充电模式 (CDM) ESD 分类等级 C6
- TMP175-Q1 精度:
 - 40°C 至 125°C 范围内为 $\pm 1^\circ\text{C}$ (典型值)
 - 40°C 至 +125°C 范围内为 $\pm 2^\circ\text{C}$ (最大值)
- TMP75-Q1 精度:
 - 40°C 至 125°C 范围内为 $\pm 1^\circ\text{C}$ (典型值)
 - 40°C 至 +125°C 范围内为 $\pm 3^\circ\text{C}$ (最大值)
- TMP175-Q1: 27 个地址
- TMP75-Q1: 8 个地址, 美国国家标准与技术研究所 (NIST) 可追溯
- 数字输出: SMBusTM、两线制和 I²C 接口兼容性
- 分辨率: 9 至 12 位, 用户可选
- 低静态电流: 50 μA , 0.1 μA 待机电流
- 宽电源电压范围: 2.7V 至 5.5V
- 小型 8 引脚超薄小外形尺寸 (VSSOP) 封装和 8 引脚小外形集成电路 (SOIC) 封装

2 应用

- 汽车空调
- 信息娱乐处理器管理
- 空气流量传感器
- 电池控制单元
- 引擎控制单元
- UREA 传感器
- 抽水机
- HID 灯
- 安全气囊控制单元

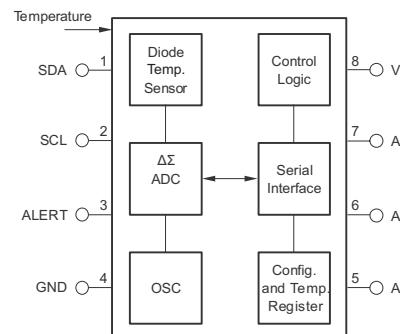
简化电路原理图

3 说明

TMP75-Q1 和 TMP175-Q1 器件属于数字温度传感器，是负温度系数 (NTC) 和正温度系数 (PTC) 热敏电阻的理想替代产品。该器件无需校准或外部组件信号调节即可提供典型值为 $\pm 1^\circ\text{C}$ 的精度。器件温度传感器为高度线性化产品，无需复杂计算或查表即可得知温度。片上 12 位模数转换器 (ADC) 提供低至 0.0625°C 的分辨率。这两款器件采用行业标准 LM75 8 引脚 SOIC 和 VSSOP 封装。

TMP175-Q1 和 TMP75-Q1 与 SMBus、两线制和 I²C 接口兼容。TMP175-Q1 器件允许一条总线上最多连接 27 个器件。TMP75-Q1 允许一条总线上最多连接 8 个器件。TMP175-Q1 和 TMP75-Q1 均具备 SMBus 报警功能。

TMP175-Q1 和 TMP75-Q1 器件是各种通信、计算机、消费类产品、环境、工业和仪器应用中扩展温度测量的理想选择。TMP75-Q1 生产单元已完全通过可追溯 NIST 的传感器测试，并且已借助可追溯 NIST 的设备使用 ISO/IEC 17025 标准认可的校准进行验证。


TMP175-Q1 和 TMP75-Q1 器件的额定工作温度范围为 -40°C 至 +125°C。

器件信息⁽¹⁾

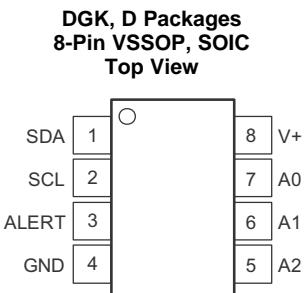
器件型号	封装	封装尺寸 (标称值)
TMPx75-Q1	SOIC (8)	4.90mm x 3.91mm
	VSSOP (8)	3.00mm x 3.00mm

(1) 要了解所有可用封装, 请见数据表末尾的可订购产品附录。

TMP175-Q1 和 TMP75-Q1 内部框图

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

目录


1	特性	1
2	应用	1
3	说明	1
4	修订历史记录	2
5	Pin Configuration and Functions	3
6	Specifications	4
6.1	Absolute Maximum Ratings	4
6.2	ESD Ratings	4
6.3	Recommended Operating Conditions	4
6.4	Thermal Information	4
6.5	Electrical Characteristics	5
6.6	Timing Requirements	6
6.7	Typical Characteristics	7
7	Detailed Description	8
7.1	Overview	8
7.2	Functional Block Diagram	8
7.3	Feature Description	9
8	Application and Implementation	21
8.1	Application Information	21
8.2	Typical Application	21
9	Power Supply Recommendations	23
10	Layout	23
10.1	Layout Guidelines	23
10.2	Layout Example	23
11	器件和文档支持	24
11.1	相关链接	24
11.2	社区资源	24
11.3	商标	24
11.4	静电放电警告	24
11.5	Glossary	24
12	机械、封装和可订购信息	24

4 修订历史记录

日期	修订版本	注释
2015 年 11 月	*	最初发布。

5 Pin Configuration and Functions

NOTE: Pin 1 is determined by orienting the package marking as indicated in the diagram.

Pin Functions

PIN		I/O	DESCRIPTION
NO.	NAME		
1	SDA	I/O	Serial data. Open-drain output; requires a pullup resistor.
2	SCL	I	Serial clock. Open-drain output; requires a pullup resistor.
3	ALERT	O	Overtemperature alert. Open-drain output; requires a pullup resistor.
4	GND	—	Ground
5	A2	I	Address select. Connect to GND, V+, or (for the TMP175-Q1 device only) leave these pins floating.
6	A1		
7	A0		
8	V+	I	Supply voltage, 2.7 V to 5.5 V

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Power supply, V ₊		7	V
Input voltage ⁽²⁾	-0.5	7	V
Input current		10	mA
Operating temperature	-55	127	°C
Junction temperature, T _J		150	°C
Storage temperature, T _{stg}	-60	130	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Input voltage rating applies to all TMP175-Q1 and TMP75-Q1 input voltages.

6.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	V
	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM	MAX	UNIT
Supply voltage	2.7		5.5	V
Operating free-air temperature, T _A	-40		125	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TMP175-Q1, TMP75-Q1	UNIT
		DGK (SOIC), D (VSSOP)	
		8 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	185	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	76.1	°C/W
R _{θJB}	Junction-to-board thermal resistance	106.4	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	14.1	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	104.8	°C/W

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](#).

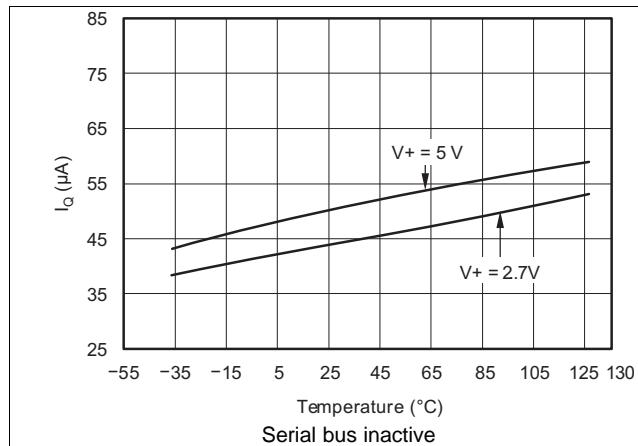
6.5 Electrical Characteristics

at $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$ and $V+ = 2.7\text{ V}$ to 5.5 V (unless otherwise noted)

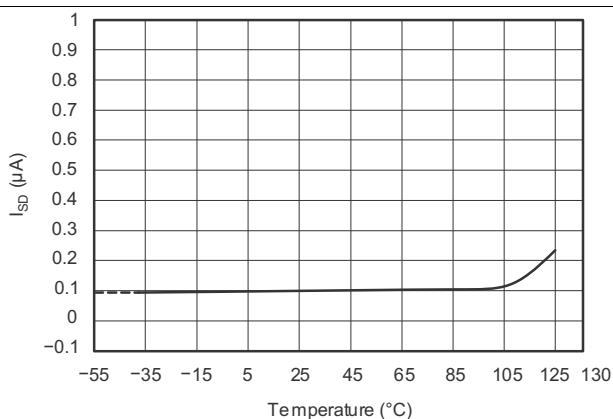
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
TEMPERATURE INPUT						
Range			-40		125	°C
Accuracy (temperature error)	-25°C to +85°C	TMP175-Q1		±0.5	±1.5	°C
		TMP75-Q1		±0.5	±2	
	-40°C to +125°C	TMP175-Q1		±1	±2	
		TMP75-Q1		±1	±3	
Accuracy (temperature error) vs supply			0.2	±0.5		°C/V
Resolution ⁽¹⁾	Selectable		0.0625			°C
DIGITAL INPUT/OUTPUT						
Input capacitance			3			pF
V_{IH}	High-level input logic		0.7 (V+)		6	V
V_{IL}	Low-level input logic		-0.5	0.3 (V+)		V
I_{IN}	Leakage input current	0 V ≤ V_{IN} ≤ 6 V		1		µA
Input voltage hysteresis		SCL and SDA pins	500			mV
V_{OL}	Low-level output logic	$I_{OL} = 3\text{ mA}$	0	0.15	0.4	V
		$I_{OL} = 4\text{ mA}$	0	0.15	0.4	
Resolution	Selectable		9 to 12			Bits
Conversion time	9 bits		27.5	37.5		ms
	10 bits		55	75		
	11 bits		110	150		
	12 bits		220	300		
Timeout time			25	54	74	ms
POWER SUPPLY						
Operating range			2.7	5.5		V
I_Q	Quiescent current	Serial bus inactive	50	85		µA
		Serial bus active, SCL frequency = 400 kHz	100			
		Serial bus active, SCL frequency = 3.4 MHz	410			
I_{SD}	Shutdown current	Serial bus inactive	0.1	3		µA
		Serial bus active, SCL frequency = 400 kHz	60			
		Serial bus active, SCL frequency = 3.4 MHz	380			
TEMPERATURE RANGE						
Specified range			-40	125		°C
Operating range			-55	127		°C

(1) Specified for 12-bit resolution.

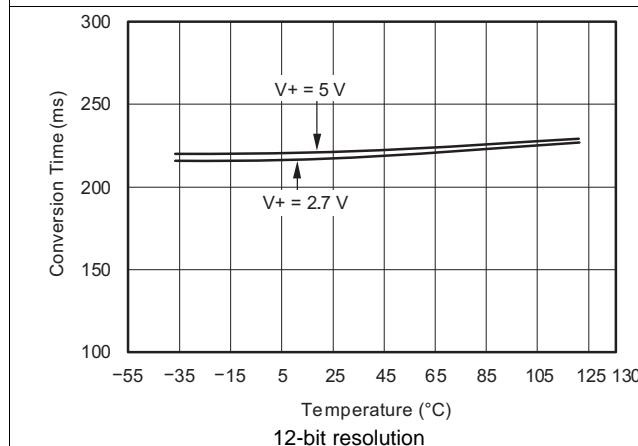
6.6 Timing Requirements

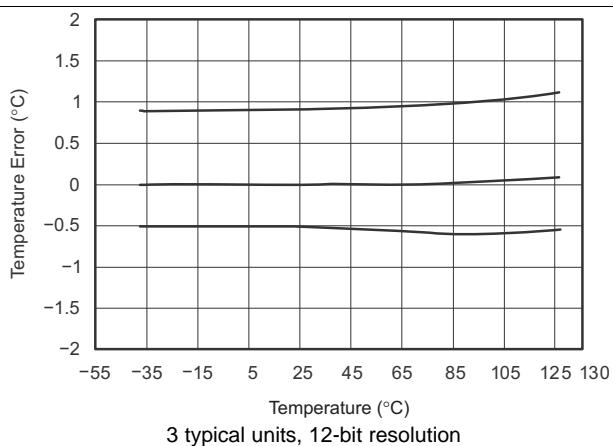

see the [Timing Diagrams](#) and [Two-Wire Timing Diagrams](#) sections for additional information⁽¹⁾

		FAST MODE		HIGH-SPEED MODE		UNIT
		MIN	MAX	MIN	MAX	
$f_{(SCL)}$	SCL operating frequency	V+		0.001	0.4	0.001 2.38 MHz
$t_{(BUF)}$	Bus-free time between STOP and START condition			1300	160	ns
$t_{(HDSTA)}$	Hold time after repeated START condition. After this period, the first clock is generated.			600	160	ns
$t_{(SUSTA)}$	Repeated START condition setup time			600	160	ns
$t_{(SUSTO)}$	STOP condition setup time			600	160	ns
$t_{(HDDAT)}$	Data hold time			4	900 4 120 ns	
$t_{(SUDAT)}$	Data setup time			100	10	ns
$t_{(LOW)}$	SCL clock low period	V+, see the Timing Diagrams section		1300	280	ns
$t_{(HIGH)}$	SCL clock high period	See the Timing Diagrams section		600	60	ns
t_{FD}	Data fall time	See the Timing Diagrams section		300	150	ns
t_{RC}	Clock rise time	See the Two-Wire Timing Diagrams section		300	40	ns
		SCLK \leq 100 kHz, see the Timing Diagrams section		1000		ns
t_{FC}	Clock fall time	See the Two-Wire Timing Diagrams section		300	40	ns


(1) Values are based on a statistical analysis of a one-time sample of devices. Minimum and maximum values are not specified and are not production tested.

6.7 Typical Characteristics


at $T_A = 25^\circ\text{C}$ and $V+ = 5\text{ V}$ (unless otherwise noted)


Figure 1. Quiescent Current vs Temperature

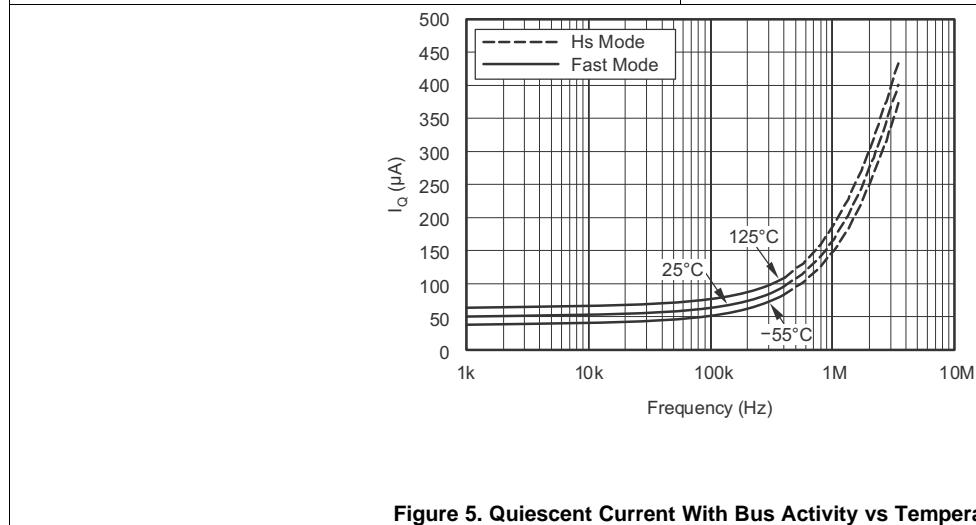
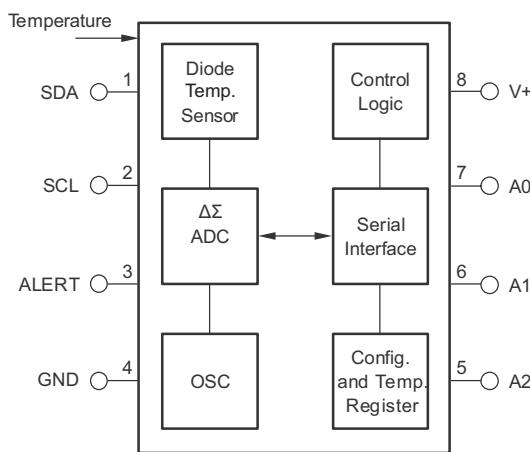

Figure 2. Shutdown Current vs Temperature

Figure 3. Conversion Time vs Temperature

Figure 4. Temperature Error vs Temperature

Figure 5. Quiescent Current With Bus Activity vs Temperature


7 Detailed Description

7.1 Overview

The TMP175-Q1 and TMP75-Q1 devices are digital temperature sensors that are optimal for thermal management and thermal protection applications. The TMP175-Q1 and TMP75-Q1 are two-wire, SMBus, and I²C interface compatible. The devices are specified over a temperature range of -40°C to +125°C. The *Functional Block Diagram* section shows the internal block diagram of the TMP175-Q1 and TMP75-Q1 devices.

The temperature sensor in the TMP175-Q1 and TMP75-Q1 devices is the chip itself. Thermal paths run through the package leads as well as the plastic package. The package leads provide the primary thermal path because of the lower thermal resistance of the metal.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Digital Temperature Output

The digital output from each temperature measurement conversion is stored in the read-only Temperature register. The Temperature register of the TMP175-Q1 or TMP75-Q1 is a 12-bit, read-only register that stores the output of the most recent conversion. Two bytes must be read to obtain data and are listed in [Table 6](#) and [Table 7](#). The first 12 bits are used to indicate temperature with all remaining bits equal to zero. The data format for temperature is listed in [Table 1](#). Negative numbers are represented in binary twos complement format. Following power-up or reset, the Temperature register reads 0°C until the first conversion is complete.

The user can obtain 9, 10, 11, or 12 bits of resolution by addressing the Configuration register and setting the resolution bits accordingly. For 9-, 10-, or 11-bit resolution, the most significant bits (MSBs) in the Temperature register are used with the unused least significant bits (LSBs) set to zero.

Table 1. Temperature Data Format

TEMPERATURE (°C)	DIGITAL OUTPUT	
	BINARY	HEX
128	0111 1111 1111	7FF
127.9375	0111 1111 1111	7FF
100	0110 0100 0000	640
80	0101 0000 0000	500
75	0100 1011 0000	4B0
50	0011 0010 0000	320
25	0001 1001 0000	190
0.25	0000 0000 0100	004
0	0000 0000 0000	000
-0.25	1111 1111 1100	FFC
-25	1110 0111 0000	E70
-55	1100 1001 0000	C90

7.3.2 Serial Interface

The TMP175-Q1 and TMP75-Q1 operate only as slave devices on the SMBus, two-wire, and I²C interface-compatible bus. Connections to the bus are made through the open-drain I/O lines SDA and SCL. The SDA and SCL pins feature integrated spike-suppression filters and Schmitt triggers to minimize the effects of input spikes and bus noise. The TMP175-Q1 and TMP75-Q1 support the transmission protocol for fast (up to 400 kHz) and high-speed (up to 2.38-MHz) modes. All data bytes are transmitted MSB first.

7.3.2.1 Bus Overview

The device that initiates the transfer is called a *master*, and the devices controlled by the master are *slaves*. The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions.

To address a specific device a START condition is initiated, indicated by pulling the data line (SDA) from a high to a low logic level when SCL is high. All slaves on the bus shift in the slave address byte, with the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the slave being addressed responds to the master by generating an Acknowledge bit and pulling SDA low.

Data transfer is then initiated and sent over eight clock pulses followed by an Acknowledge bit. During data transfer, SDA must remain stable when SCL is high because any change in SDA when SCL is high is interpreted as a control signal.

When all data are transferred, the master generates a STOP condition indicated by pulling SDA from low to high when SCL is high.

7.3.2.2 Serial Bus Address

To communicate with the TMP175-Q1 and TMP75-Q1, the master must first address slave devices through a slave address byte. The slave address byte consists of seven address bits and a direction bit indicating the intent of executing a read or write operation.

The TMP175-Q1 features three address pins to allow up to 27 devices to be addressed on a single bus interface. [Table 2](#) describes the pin logic levels used to properly connect up to 27 devices. A 1 indicates that the pin is connected to the supply (VCC) and a 0 indicates that the pin is connected to GND; *float* indicates that the pin is left unconnected. The state of the A0, A1, and A2 pins is sampled on every bus communication and must be set prior to any activity on the interface.

Table 2. Address Pins and Slave Addresses for the TMP175-Q1

A2	A1	A0	SLAVE ADDRESS
0	0	0	1001000
0	0	1	1001001
0	1	0	1001010
0	1	1	1001011
1	0	0	1001100
1	0	1	1001101
1	1	0	1001110
1	1	1	1001111
Float	0	0	1110000
Float	0	Float	1110001
Float	0	1	1110010
Float	1	0	1110011
Float	1	Float	1110100
Float	1	1	1110101
Float	Float	0	1110110
Float	Float	1	1110111
0	Float	0	0101000
0	Float	1	0101001
1	Float	0	0101010
1	Float	1	0101011
0	0	Float	0101100
0	1	Float	0101101
1	0	Float	0101110
1	1	Float	0101111
0	Float	Float	0110101
1	Float	Float	0110110
Float	Float	Float	0110111

The TMP75-Q1 features three address pins, allowing up to eight devices to be connected per bus. Pin logic levels are described in [Table 3](#). The address pins of the TMP175-Q1 and TMP75-Q1 are read after reset, at start of communication, or in response to a two-wire address acquire request. After the state of the pins are read, the address is latched to minimize power dissipation associated with detection.

Table 3. Address Pins and Slave Addresses for the TMP75-Q1

A2	A1	A0	SLAVE ADDRESS
0	0	0	1001000
0	0	1	1001001
0	1	0	1001010
0	1	1	1001011
1	0	0	1001100
1	0	1	1001101
1	1	0	1001110
1	1	1	1001111

7.3.2.3 Writing and Reading to the TMP175-Q1 and TMP75-Q1

Accessing a particular register on the TMP175-Q1 and TMP75-Q1 devices is accomplished by writing the appropriate value to the Pointer register. The value for the Pointer register is the first byte transferred after the slave address byte with the R/W bit low. Every write operation to the TMP175-Q1 and TMP75-Q1 requires a value for the Pointer register (see [Figure 7](#)).

When reading from the TMP175-Q1 and TMP75-Q1 devices, the last value stored in the Pointer register by a write operation is used to determine which register is read by a read operation. To change the register pointer for a read operation, a new value must be written to the Pointer register. This action is accomplished by issuing a slave address byte with the R/W bit low, followed by the Pointer register byte. No additional data are required. The master can then generate a START condition and send the slave address byte with the R/W bit high to initiate the read command; see [Figure 9](#) for details of this sequence. If repeated reads from the same register are desired, the Pointer register bytes do not have to be continually sent because the TMP175-Q1 and TMP75-Q1 remember the Pointer register value until it is changed by the next write operation.

Register bytes are sent MSB first, followed by the LSB.

7.3.2.4 Slave Mode Operations

The TMP175-Q1 and TMP75-Q1 can operate as a slave receiver or slave transmitter.

7.3.2.4.1 Slave Receiver Mode

The first byte transmitted by the master is the slave address, with the R/W bit low. The TMP175-Q1 or TMP75-Q1 then acknowledges reception of a valid address. The next byte transmitted by the master is the Pointer register. The TMP175-Q1 or TMP75-Q1 then acknowledges reception of the Pointer register byte. The next byte or bytes are written to the register addressed by the Pointer register. The TMP175-Q1 and TMP75-Q1 acknowledge reception of each data byte. The master can terminate data transfer by generating a START or STOP condition.

7.3.2.4.2 Slave Transmitter Mode

The first byte is transmitted by the master and is the slave address, with the R/W bit high. The slave acknowledges reception of a valid slave address. The next byte is transmitted by the slave and is the most significant byte of the register indicated by the Pointer register. The master acknowledges reception of the data byte. The next byte transmitted by the slave is the least significant byte. The master acknowledges reception of the data byte. The master can terminate data transfer by generating a Not-Acknowledge bit on reception of any data byte, or by generating a START or STOP condition.

7.3.2.5 SMBus Alert Function

The TMP175-Q1 and TMP75-Q1 support the SMBus alert function. When the TMP75-Q1 and TMP175-Q1 are operating in interrupt mode ($TM = 1$), the ALERT pin of the TMP75-Q1 or TMP175-Q1 can be connected as an SMBus alert signal. When a master senses that an ALERT condition is present on the ALERT line, the master sends an SMBus Alert command (00011001) on the bus. If the ALERT pin of the TMP75-Q1 or TMP175-Q1 is active, the devices acknowledge the SMBus Alert command and respond by returning its slave address on the SDA line. The eighth bit (LSB) of the slave address byte indicates if the temperature exceeding T_{HIGH} or falling below T_{LOW} caused the ALERT condition. This bit is high if the temperature is greater than or equal to T_{HIGH} . This bit is low if the temperature is less than T_{LOW} ; see [Figure 10](#) for details of this sequence.

If multiple devices on the bus respond to the SMBus Alert command, arbitration during the slave address portion of the SMBus Alert command determines which device clears its ALERT status. If the TMP75-Q1 or TMP175-Q1 wins the arbitration, its ALERT pin becomes inactive at the completion of the SMBus Alert command. If the TMP75-Q1 or TMP175-Q1 loses the arbitration, its ALERT pin remains active.

7.3.2.6 General Call

The TMP175-Q1 and TMP75-Q1 respond to a two-wire, general-call address (0000000) if the eighth bit is 0. The device acknowledges the general call address and responds to commands in the second byte. If the second byte is 00000100, the TMP175-Q1 and TMP75-Q1 latches the status of their address pins, but do not reset. If the second byte is 00000110, the TMP175-Q1 and TMP75-Q1 latches the status of their address pins and resets their internal registers to their power-up values.

7.3.2.7 High-Speed Mode

In order for the two-wire bus to operate at frequencies above 400 kHz, the master device must issue an Hs-mode master code (00001XXX) as the first byte after a START condition to switch the bus to high-speed operation. The TMP175-Q1 and TMP75-Q1 devices do not acknowledge this byte, but do switch their input filters on SDA and SCL and their output filters on SDA to operate in Hs-mode, allowing transfers at up to 2.38 MHz. After the Hs-mode master code is issued, the master transmits a two-wire slave address to initiate a data transfer operation. The bus continues to operate in Hs-mode until a STOP condition occurs on the bus. Upon receiving the STOP condition, the TMP175-Q1 and TMP75-Q1 switch the input and output filter back to fast-mode operation.

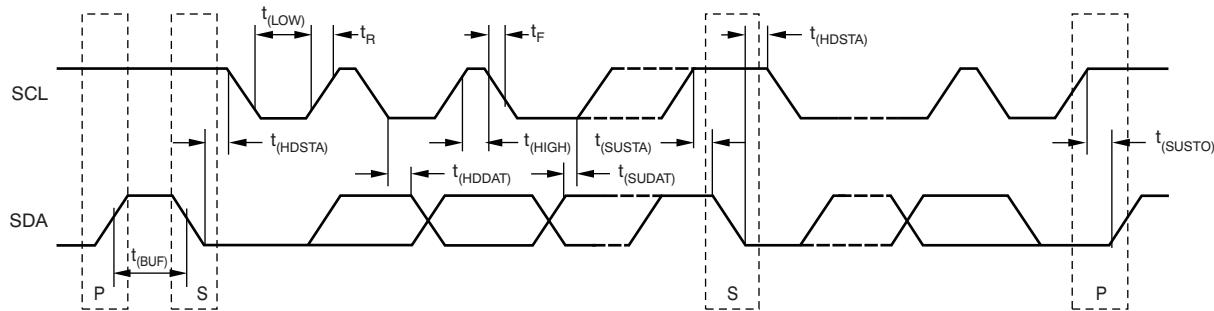
7.3.2.8 Time-out Function

The TMP175-Q1 resets the serial interface if either SCL or SDA is held low for 54 ms (typical) between a START and STOP condition. The TMP175-Q1 releases the bus if it is pulled low and waits for a START condition. To avoid activating the time-out function, a communication speed of at least 1 kHz must be maintained for the SCL operating frequency.

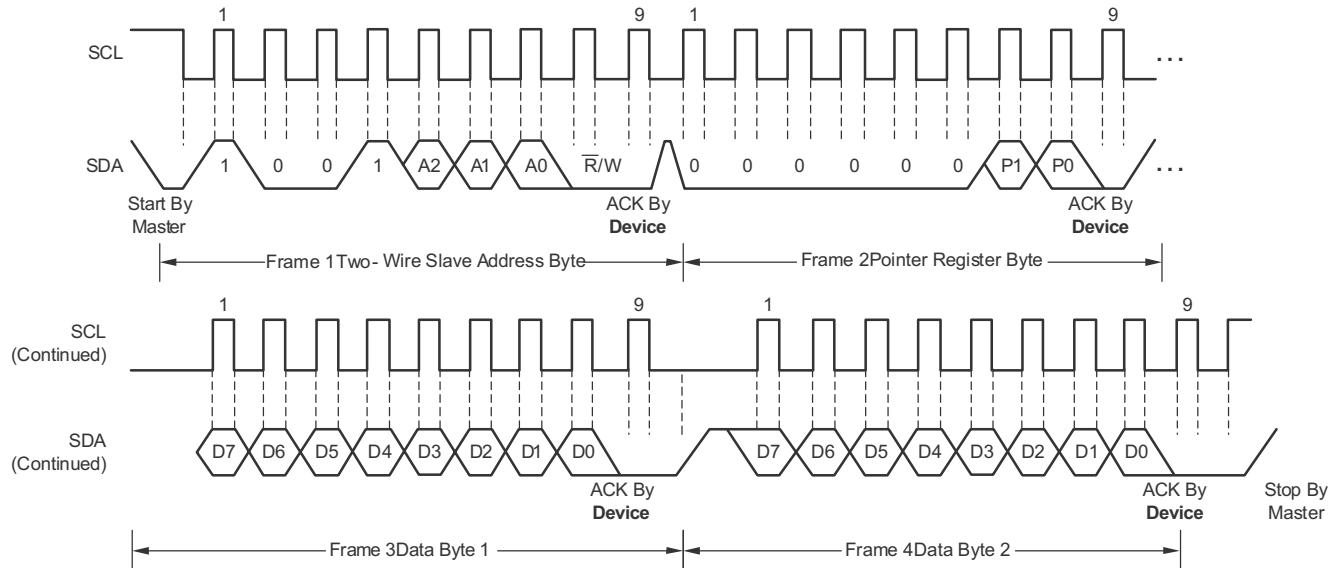
7.3.3 Timing Diagrams

The TMP175-Q1 and TMP75-Q1 devices are two-wire, SMBus, and I²C interface compatible. [Figure 6](#) to [Figure 10](#) describe the various operations on the TMP175-Q1. The following list provides bus definitions. Parameters for [Figure 6](#) are defined in the [Timing Requirements](#) table.

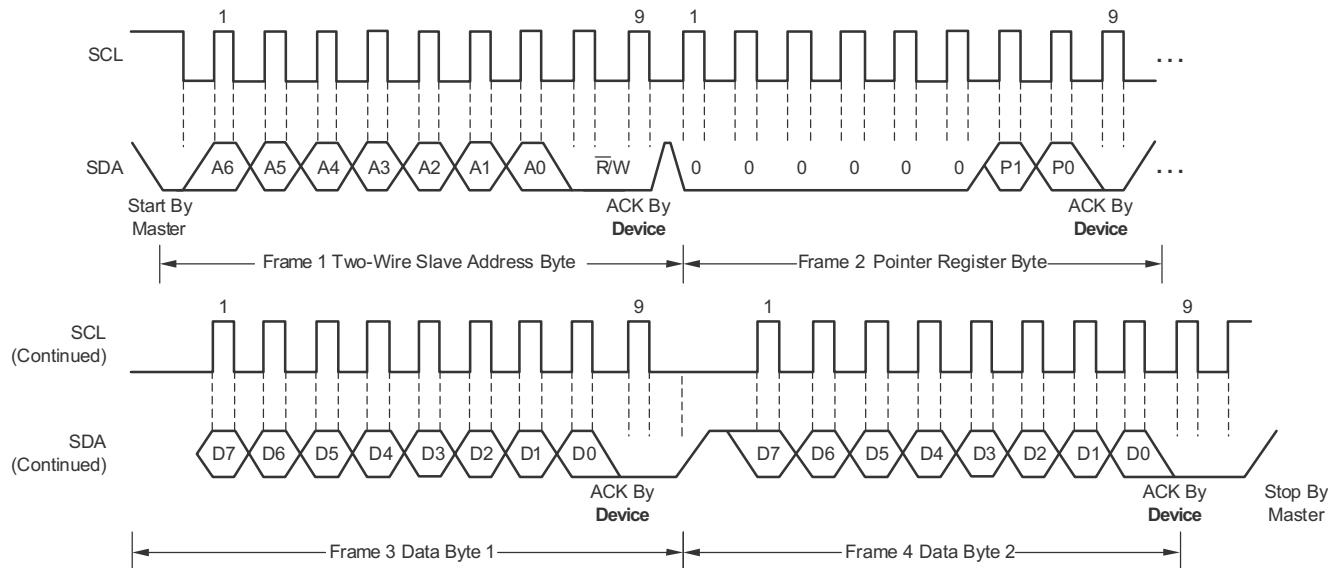
Bus Idle: Both the SDA and SCL lines remain high.


Start Data Transfer: A change in the state of the SDA line from high to low when the SCL line is high defines a START condition. Each data transfer is initiated with a START condition.

Stop Data Transfer: A change in the state of the SDA line from low to high when the SCL line is high defines a STOP condition. Each data transfer is terminated with a repeated START or STOP condition.


Data Transfer: The number of data bytes transferred between a START and a STOP condition is not limited and is determined by the master device. The receiver acknowledges the transfer of data.

Acknowledge: Each receiving device, when addressed, is obliged to generate an Acknowledge bit. A device that acknowledges must pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the Acknowledge clock pulse. Setup and hold times must be taken into account. On a master receive, the termination of the data transfer can be signaled by the master generating a Not-Acknowledge bit on the last byte that is transmitted by the slave.


7.3.3.1 Two-Wire Timing Diagrams

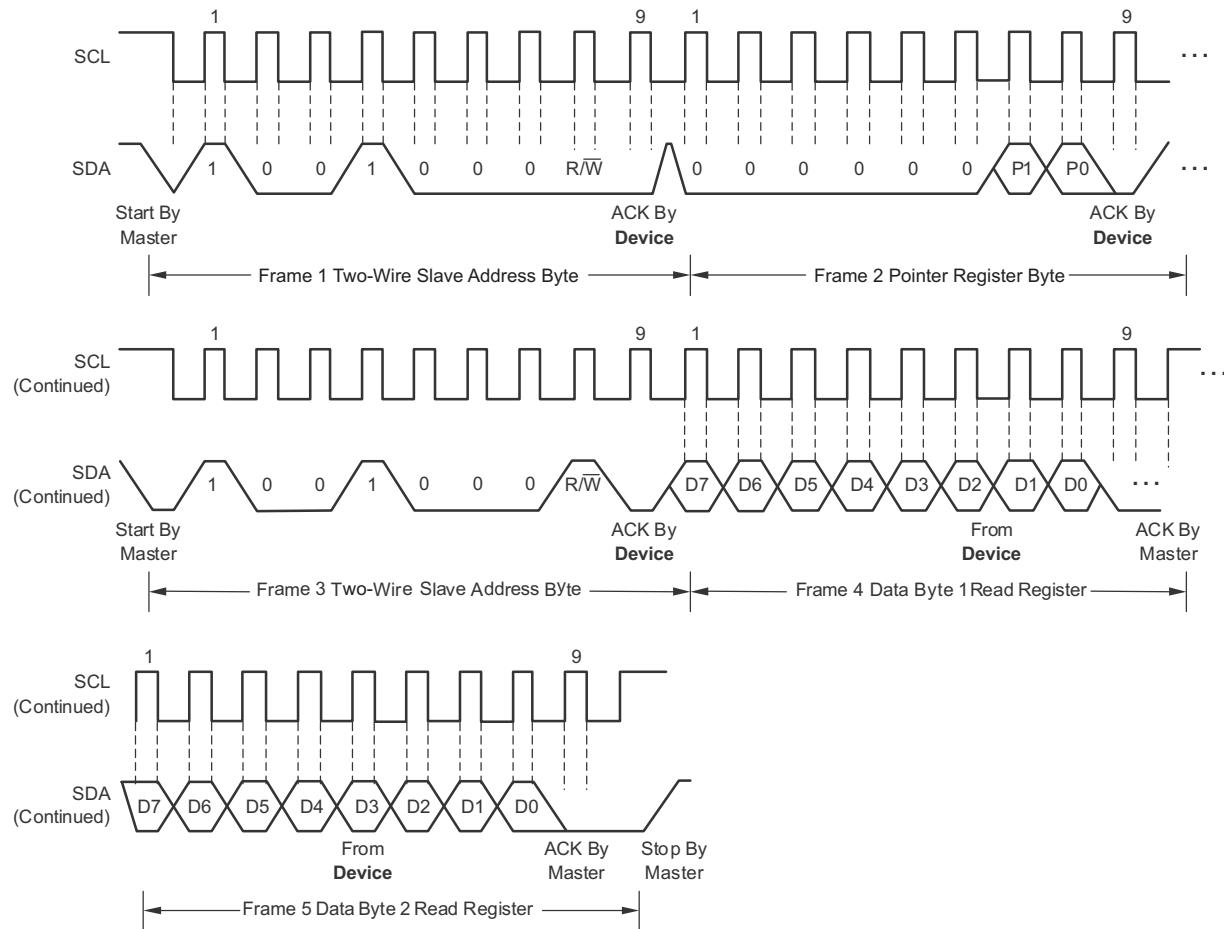

Figure 6. Two-Wire Timing Diagram

Figure 7. Two-Wire Timing Diagram for the TMP75-Q1 Write Word Format

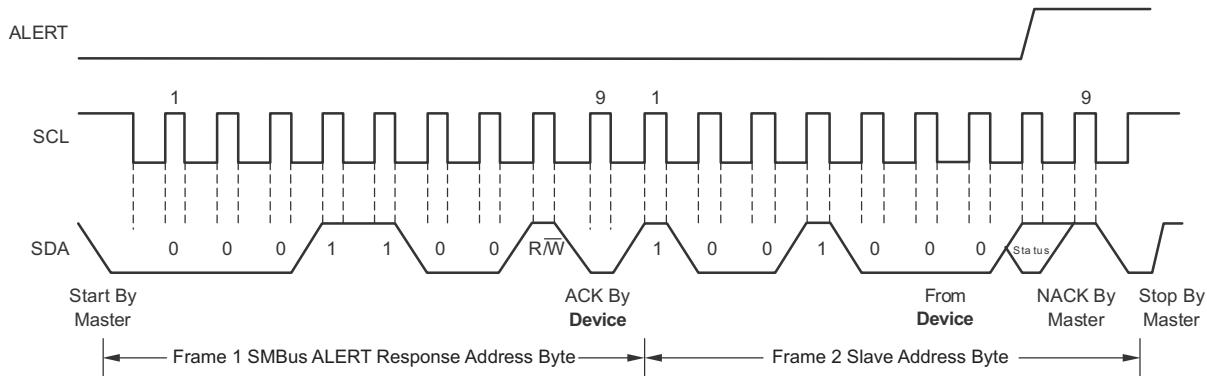


Figure 8. Two-Wire Timing Diagram for the TMP175-Q1 Write Word Format

NOTE: Address pins A0, A1, and A2 = 0.

Figure 9. Two-Wire Timing Diagram for Read Word Format

NOTE: Address pins A0, A1, and A2 = 0.

Figure 10. Timing Diagram for SMBus ALERT

7.4 Device Functional Modes

7.4.1 Shutdown Mode (SD)

The shutdown mode of the TMP175-Q1 and TMP75-Q1 devices lets the user save maximum power by shutting down all device circuitry other than the serial interface, thus reducing current consumption to typically less than 0.1 μ A. Shutdown mode is enabled when the SD bit is 1; the device shuts down when the current conversion is completed. When SD is equal to 0, the device maintains a continuous conversion state.

7.4.2 One-Shot (OS)

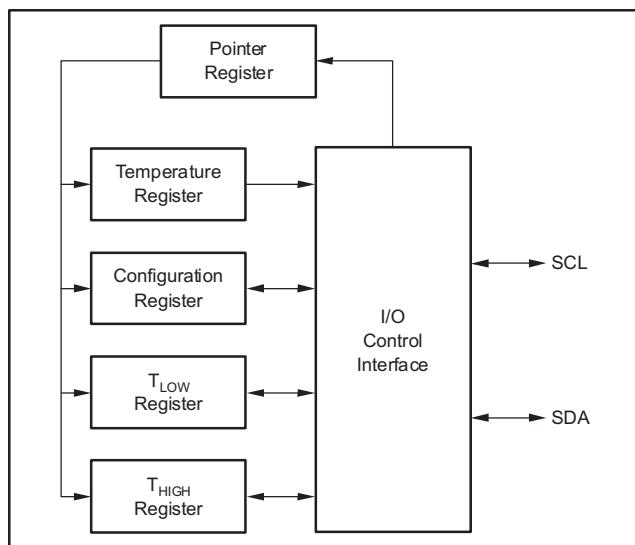
The TMP175-Q1 and TMP75-Q1 feature a one-shot temperature measurement mode. When the device is in shutdown mode, writing 1 to the OS bit starts a single temperature conversion. The device returns to the shutdown state at the completion of the single conversion. This feature is useful to reduce power consumption in the TMP175-Q1 and TMP75-Q1 when continuous temperature monitoring is not required. When the configuration register is read, OS always reads zero.

7.4.3 Thermostat Mode (TM)

The thermostat mode bit of the TMP175-Q1 and TMP75-Q1 indicates to the device whether to operate in comparator mode (TM = 0) or interrupt mode (TM = 1). For more information on comparator and interrupt modes, see the [High- and Low-Limit Registers](#) section.

7.4.3.1 Comparator Mode (TM = 0)

In comparator mode (TM = 0), the ALERT pin is activated when the temperature equals or exceeds the value in the $T_{(HIGH)}$ register and remains active until the temperature falls below the value in the $T_{(LOW)}$ register. For more information on the comparator mode, see the [High- and Low-Limit Registers](#) section.


7.4.3.2 Interrupt Mode (TM = 1)

In interrupt mode (TM = 1), the ALERT pin is activated when the temperature exceeds $T_{(HIGH)}$ or goes below the $T_{(LOW)}$ registers. The ALERT pin is cleared when the host controller reads the Temperature register. For more information on the interrupt mode, see the [High- and Low-Limit Registers](#) section.

7.5 Programming

7.5.1 Pointer Register

Figure 11 shows the internal register structure of the TMP175-Q1 and TMP75-Q1. The 8-bit Pointer register of the devices is used to address a given data register. The Pointer register uses the two LSBs to identify which of the data registers must respond to a read or write command. Table 4 identifies the bits of the Pointer register byte. Table 5 describes the pointer address of the registers available in the TMP175-Q1 and TMP75-Q1. The power-up reset value of P1/P0 is 00.

Figure 11. Internal Register Structure of the TMP175-Q1 and TMP75-Q1

Table 4. Pointer Register Byte (pointer = N/A) [reset = 00h]

P7	P6	P5	P4	P3	P2	P1	P0
0	0	0	0	0	0	Register Bits	

Table 5. Pointer Addresses of the TMP175-Q1 and TMP75-Q1

P1	P0	TYPE	REGISTER
0	0	R only, default	Temperature register
0	1	R/W	Configuration register
1	0	R/W	T _{LOW} register
1	1	R/W	T _{HIGH} register

7.5.2 Temperature Register

The Temperature register of the TMP175-Q1 or TMP75-Q1 is a 12-bit, read-only register that stores the output of the most recent conversion. Two bytes must be read to obtain data and are described in [Table 6](#) and [Table 7](#). Byte 1 is the most significant byte and is followed by byte 2, the least significant byte. The first 12 bits are used to indicate temperature, with all remaining bits equal to zero. The least significant byte does not have to be read if that information is not needed. Following the power-up or reset value, the Temperature register reads 0°C until the first conversion is complete.

Table 6. Byte 1 of the Temperature Register

D7	D6	D5	D4	D3	D2	D1	D0
T11	T10	T9	T8	T7	T6	T5	T4

Table 7. Byte 2 of the Temperature Register

D7	D6	D5	D4	D3	D2	D1	D0
T3	T2	T1	T0	0	0	0	0

7.5.3 Configuration Register

The Configuration register is an 8-bit read/write register used to store bits that control the operational modes of the temperature sensor. Read and write operations are performed MSB first. The format of the Configuration register for the TMP175-Q1 and TMP75-Q1 is shown in [Table 8](#), followed by a breakdown of the register bits. The power-up or reset value of the Configuration register are all bits equal to 0.

Table 8. Configuration Register Format

BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	OS	R1	R0	F1	F0	POL	TM	SD

7.5.3.1 Polarity (POL)

The Polarity bit of the TMP175-Q1 lets the user adjust the polarity of the ALERT pin output. If the POL bit is set to 0 (default), the ALERT pin becomes active low. When the POL bit is set to 1, the ALERT pin becomes active high and the state of the ALERT pin is inverted. The operation of the ALERT pin in various modes is shown in Figure 12.

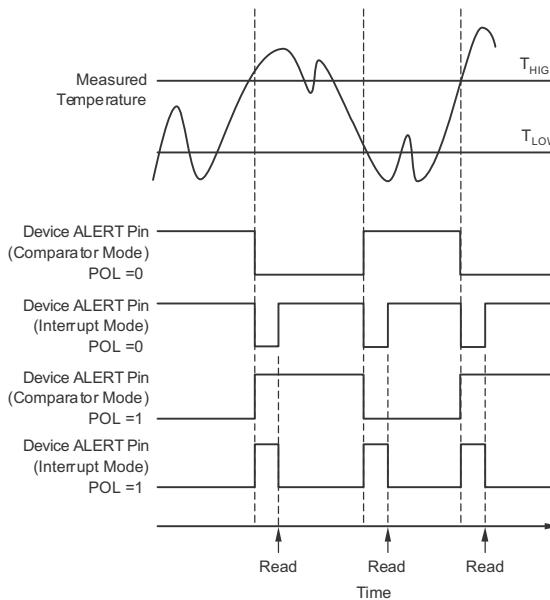


Figure 12. Output Transfer Function Diagrams

7.5.3.2 Fault Queue (F1/F0)

A fault condition is defined as when the measured temperature exceeds the user-defined limits set in the T_{HIGH} and T_{LOW} registers. Additionally, the number of fault conditions required to generate an alert can be programmed using the fault queue. The fault queue is provided to prevent a false alert resulting from environmental noise. The fault queue requires consecutive fault measurements in order to trigger the Alert function. Table 9 defines the number of measured faults that can be programmed to trigger an Alert condition in the device. For the T_{HIGH} and T_{LOW} register format and byte order, see the [High- and Low-Limit Registers](#) section.

Table 9. Fault Settings of the TMP175-Q1 and TMP75-Q1

F1	F0	CONSECUTIVE FAULTS
0	0	1
0	1	2
1	0	4
1	1	6

7.5.3.3 Converter Resolution (R1/R0)

The Converter Resolution bits control the resolution of the internal analog-to-digital (ADC) converter. This control allows the user to maximize efficiency by programming for higher resolution or faster conversion time. [Table 10](#) identifies the resolution bits and the relationship between resolution and conversion time.

Table 10. Resolution of the TMP175-Q1 and TMP75-Q1

R1	R0	RESOLUTION	CONVERSION TIME (Typical)
0	0	9 bits (0.5°C)	27.5 ms
0	1	10 bits (0.25°C)	55 ms
1	0	11 bits (0.125°C)	110 ms
1	1	12 bits (0.0625°C)	220 ms

7.5.4 High- and Low-Limit Registers

In comparator mode (TM = 0), the ALERT pin of the TMP175-Q1 and TMP75-Q1 becomes active when the temperature equals or exceeds the value in T_{HIGH} and generates a consecutive number of faults according to fault bits F1 and F0. The ALERT pin remains active until the temperature falls below the indicated T_{LOW} value for the same number of faults.

In interrupt mode (TM = 1), the ALERT pin becomes active when the temperature equals or exceeds T_{HIGH} for a consecutive number of fault conditions. The ALERT pin remains active until a read operation of any register occurs, or the device successfully responds to the SMBus alert response address. The ALERT pin is also cleared if the device is placed in shutdown mode. When cleared, the ALERT pin only becomes active again by the temperature falling below T_{LOW} . When the temperature falls below T_{LOW} , the ALERT pin becomes active and remains active until cleared by a read operation of any register or a successful response to the SMBus alert response address. When the ALERT pin is cleared, the above cycle repeats, with the ALERT pin becoming active when the temperature equals or exceeds T_{HIGH} . The ALERT pin can also be cleared by resetting the device with the General-Call Reset command. This action also clears the state of the internal registers in the device, returning the device to comparator mode (TM = 0).

Both operational modes are represented in Figure 12. Table 11, Table 12, Table 13, and Table 14 describe the format for the T_{HIGH} and T_{LOW} registers. The most significant byte is sent first, followed by the least significant byte. Power-up reset values for T_{HIGH} and T_{LOW} are:

$$T_{HIGH} = 80^\circ\text{C} \text{ and } T_{LOW} = 75^\circ\text{C}$$

The format of the data for T_{HIGH} and T_{LOW} is the same as for the Temperature register.

Table 11. Byte 1 of the T_{HIGH} Register

D7	D6	D5	D4	D3	D2	D1	D0
H11	H10	H9	H8	H7	H6	H5	H4

Table 12. Byte 2 of the T_{HIGH} Register

D7	D6	D5	D4	D3	D2	D1	D0
H3	H2	H1	H0	0	0	0	0

Table 13. Byte 1 of the T_{LOW} Register

BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	L11	L10	L9	L8	L7	L6	L5	L4

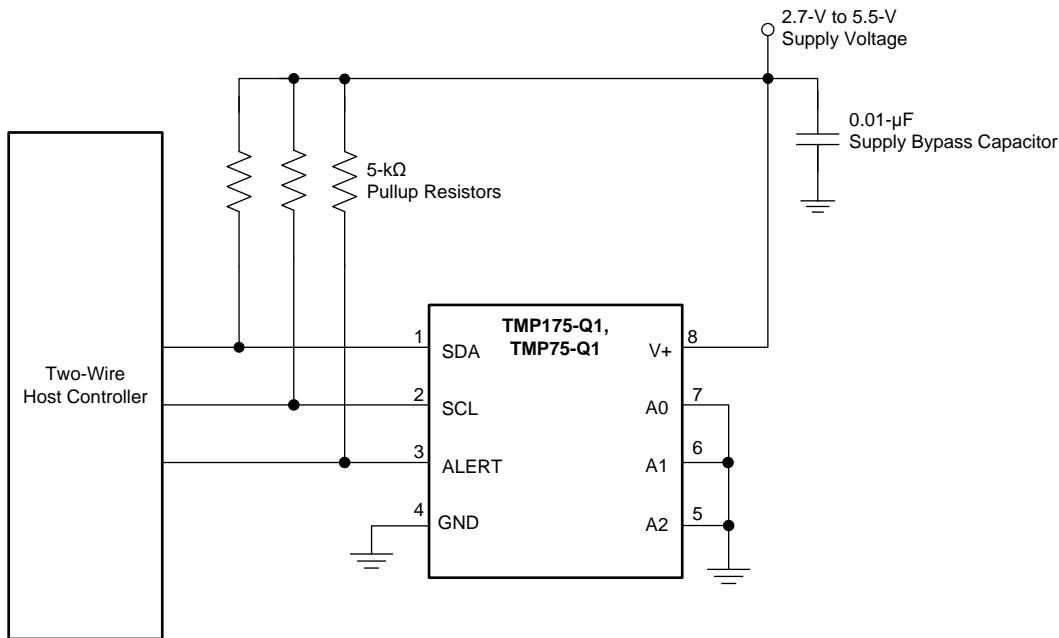
Table 14. Byte 2 of the T_{LOW} Register

D7	D6	D5	D4	D3	D2	D1	D0
L3	L2	L1	L0	0	0	0	0

All 12 bits for the Temperature, T_{HIGH} , and T_{LOW} registers are used in the comparisons for the Alert function for all converter resolutions. The three LSBs in T_{HIGH} and T_{LOW} can affect the Alert output even if the converter is configured for 9-bit resolution.

8 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TMP175-Q1 and TMP75-Q1 devices are used to measure the printed circuit board (PCB) temperature of where the device is mounted. The TMP175-Q1 and TMP75-Q1 feature SMBus, two-wire, and I²C interface compatibility, with the TMP175-Q1 allowing up to 27 devices on one bus and the TMP75-Q1 allowing up to eight devices on one bus. The TMP175-Q1 and TMP75-Q1 both feature a SMBus Alert function. The TMP175-Q1 and TMP75-Q1 require no external components for operation except for pullup resistors on SCL, SDA, and ALERT, although a 0.1- μ F bypass capacitor is recommended.

The sensing device of the TMP175-Q1 and TMP75-Q1 devices is the device itself. Thermal paths run through the package leads as well as the plastic package. The lower thermal resistance of metal causes the leads to provide the primary thermal path.

8.2 Typical Application

Figure 13. Typical Connections of the TMP175-Q1 and TMP75-Q1

8.2.1 Design Requirements

The TMP175-Q1 and TMP75-Q1 devices require pullup resistors on the SCL, SDA, and ALERT pins. The recommended value for the pullup resistor is 5 k Ω . In some applications the pullup resistor can be lower or higher than 5 k Ω , but must not exceed 3 mA of current on the SCL and SDA pins and must not exceed 4 mA on the ALERT pin. A 0.1- μ F bypass capacitor is recommended, as shown in Figure 13. The SCL, SDA, and ALERT lines can be pulled up to a supply that is equal to or higher than V_S through the pullup resistors. For the TMP175-Q1, to configure one of 27 different addresses on the bus, connect A0, A1, and A2 to either the GND or the V+ pin or float these pins. Float indicates that the pin is left unconnected. For the TMP75-Q1, to configure one of eight different addresses on the bus, connect A0, A1, and A2 to either the GND or V+ pin.

Typical Application (continued)

8.2.2 Detailed Design Procedure

Place the TMP175-Q1 and TMP75-Q1 devices in close proximity to the heat source that must be monitored, with a proper layout for good thermal coupling. This placement ensures that temperature changes are captured within the shortest possible time interval. To maintain accuracy in applications that require air or surface temperature measurement, take care to isolate the package and leads from ambient air temperature. A thermally-conductive adhesive is helpful in achieving accurate surface temperature measurement.

8.2.3 Application Curve

Figure 14 shows the step response of the TMP175-Q1 and TMP75-Q1 devices to a submersion in an oil bath of 100°C from room temperature (27°C). The time-constant, or the time for the output to reach 63% of the input step, is 1.5 s. The time-constant result depends on the PCB where the TMPx175 devices are mounted. For this test, the TMP175-Q1 and TMP75-Q1 devices were soldered to a two-layer PCB that measured 0.375 inches × 0.437 inches.

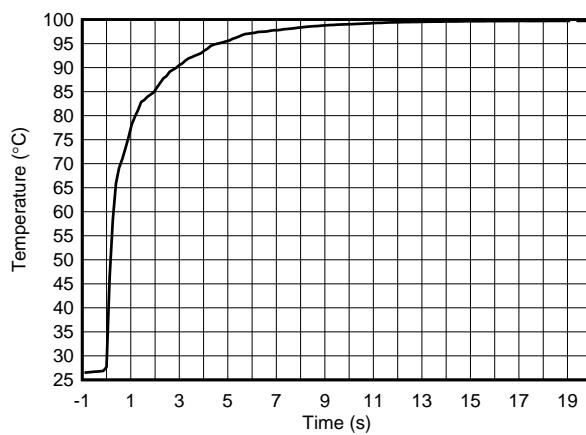
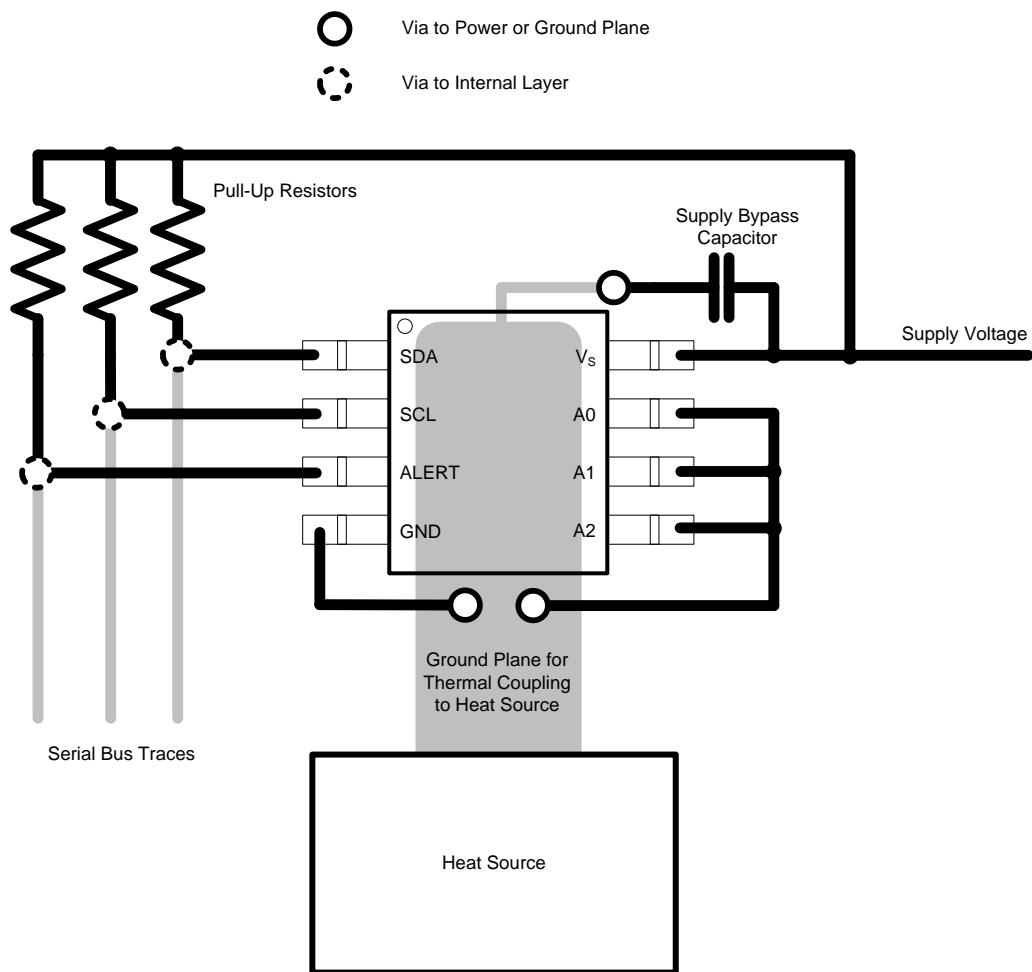


Figure 14. Temperature Step Response

9 Power Supply Recommendations


The TMP175-Q1 and TMP75-Q1 devices operate with power supplies in the range of 2.7 V to 5.5 V. A power-supply bypass capacitor is required for stability; place this capacitor as close as possible to the supply and ground pins of the device. A typical value for this supply bypass capacitor is 0.01 μ F. Applications with noisy or high-impedance power supplies can require additional decoupling capacitors to reject power-supply noise.

10 Layout

10.1 Layout Guidelines

Place the power-supply bypass capacitor as close as possible to the supply and ground pins. The recommended value of this bypass capacitor is 0.01 μ F. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies. Pull up the open-drain output pins SDA, SCL, and ALERT through 5-k Ω pullup resistors.

10.2 Layout Example

Figure 15. Layout Example

11 器件和文档支持

11.1 相关链接

下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件，以及样片或购买的快速访问。

表 15. 相关链接

部件	产品文件夹	样片与购买	技术文档	工具与软件	支持与社区
TMP175-Q1	请单击此处				
TMP75-Q1	请单击此处				

11.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 商标

E2E is a trademark of Texas Instruments.

SMBus is a trademark of Intel Corporation.

All other trademarks are the property of their respective owners.

11.4 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损伤。

11.5 Glossary

[SLYZ022 — TI Glossary.](#)

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本，请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 **JESD46** 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 **JESD48** 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的**TI** 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 **TI** 半导体产品销售条件与条款的适用规范。仅在 **TI** 保证的范围内, 且 **TI** 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定, 否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 **TI** 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险, 客户应提供充分的设计与操作安全措施。

TI 不对任何 **TI** 专利权、版权、屏蔽作品权或其它与使用了 **TI** 组件或服务的组合设备、机器或流程相关的 **TI** 知识产权中授予的直接或隐含权限作出任何保证或解释。**TI** 所发布的与第三方产品或服务有关的信息, 不能构成从 **TI** 获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可, 或是 **TI** 的专利权或其它知识产权方面的许可。

对于 **TI** 的产品手册或数据表中 **TI** 信息的重要部分, 仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。**TI** 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 **TI** 组件或服务时, 如果对该组件或服务参数的陈述与 **TI** 标明的参数相比存在差异或虚假成分, 则会失去相关 **TI** 组件或服务的所有明示或暗示授权, 且这是不正当的、欺诈性商业行为。**TI** 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意, 尽管任何应用相关信息或支持仍可能由 **TI** 提供, 但他们将独自负责满足与其产品及在其应用中使用 **TI** 产品相关的所有法律、法规和安全相关要求。客户声明并同意, 他们具备制定与实施安全措施所需的全部专业技术知识, 可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类安全关键应用中使用任何 **TI** 组件而对 **TI** 及其代理造成任何损失。

在某些场合中, 为了推进安全相关应用有可能对 **TI** 组件进行特别的促销。**TI** 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此, 此类组件仍然服从这些条款。

TI 组件未获得用于 **FDA Class III** (或类似的生命攸关医疗设备) 的授权许可, 除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 **TI** 特别注明属于军用等级或“增强型塑料”的 **TI** 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同意, 对并非指定面向军事或航空航天用途的 **TI** 组件进行军事或航空航天方面的应用, 其风险由客户单独承担, 并且由客户独自负责满足与此类使用相关的所有法律和法规要求。

TI 已明确指定符合 **ISO/TS16949** 要求的产品, 这些产品主要用于汽车。在任何情况下, 因使用非指定产品而无法达到 **ISO/TS16949** 要求, **TI** 不承担任何责任。

产品	应用
数字音频	www.ti.com.cn/audio
放大器和线性器件	www.ti.com.cn/amplifiers
数据转换器	www.ti.com.cn/dataconverters
DLP® 产品	www.dlp.com
DSP - 数字信号处理器	www.ti.com.cn/dsp
时钟和计时器	www.ti.com.cn/clockandtimers
接口	www.ti.com.cn/interface
逻辑	www.ti.com.cn/logic
电源管理	www.ti.com.cn/power
微控制器 (MCU)	www.ti.com.cn/microcontrollers
RFID 系统	www.ti.com.cn/rfidsys
OMAP应用处理器	www.ti.com/omap
无线连通性	www.ti.com.cn/wirelessconnectivity
	德州仪器在线技术支持社区 www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568号, 中建大厦32楼邮政编码: 200122
Copyright © 2016, 德州仪器半导体技术(上海)有限公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TMP175AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	175Q	Samples
TMP175AQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	T175Q1	Samples
TMP75AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	75Q1	Samples
TMP75AQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	T75Q1	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

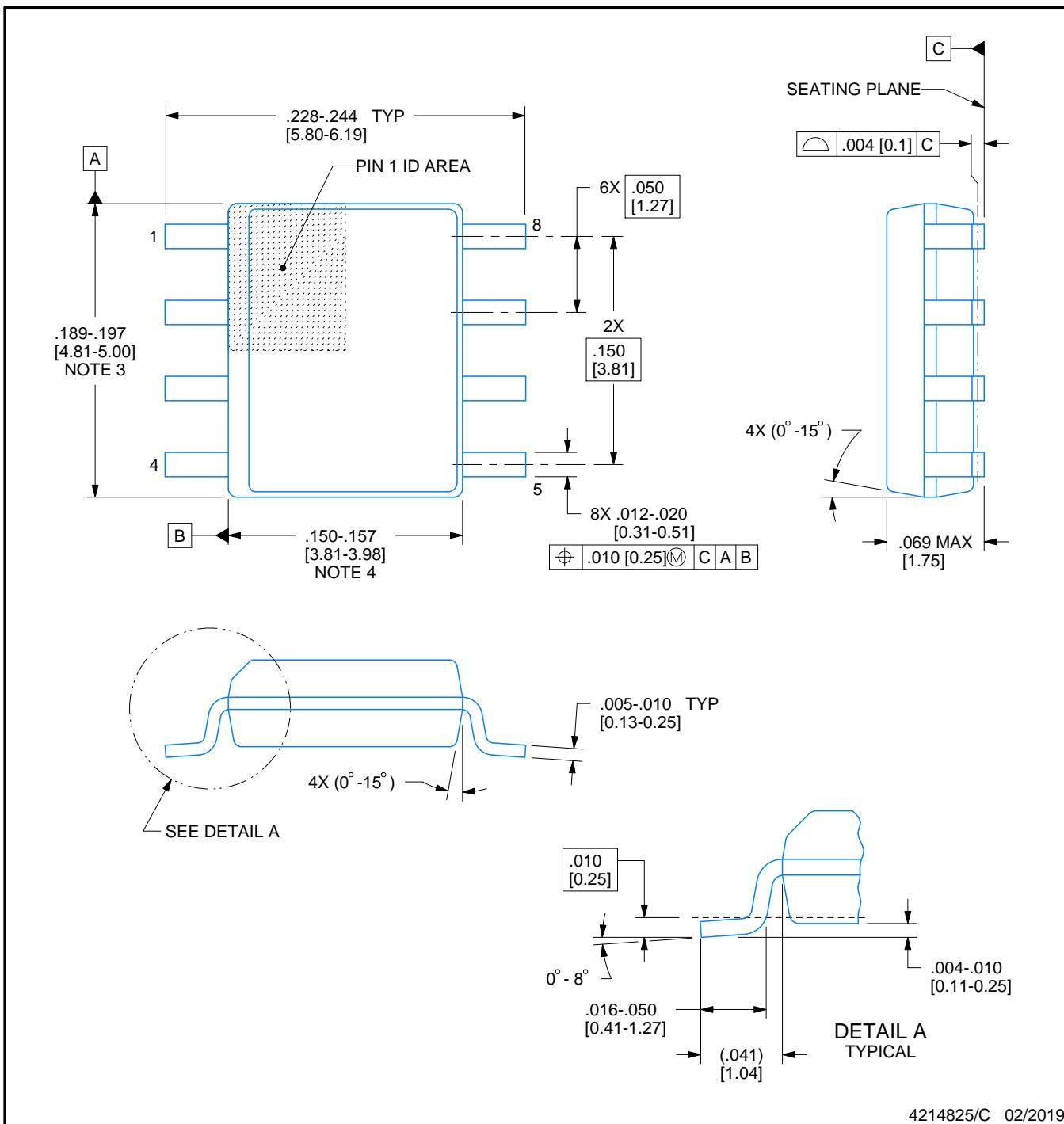
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

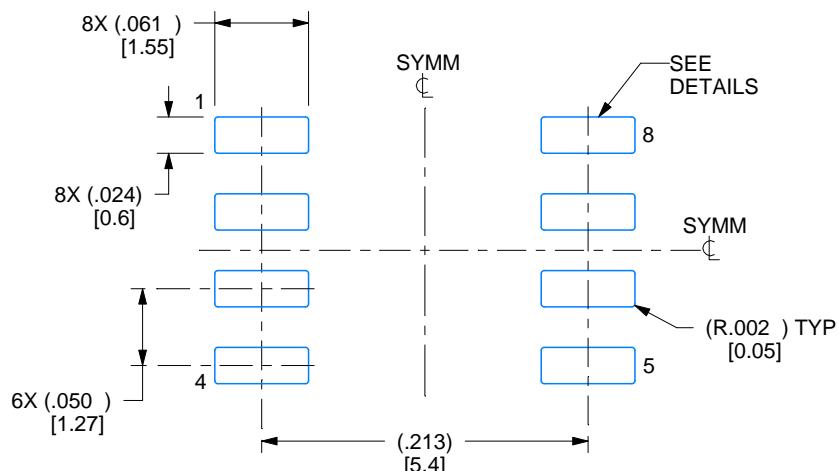

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OUTLINE

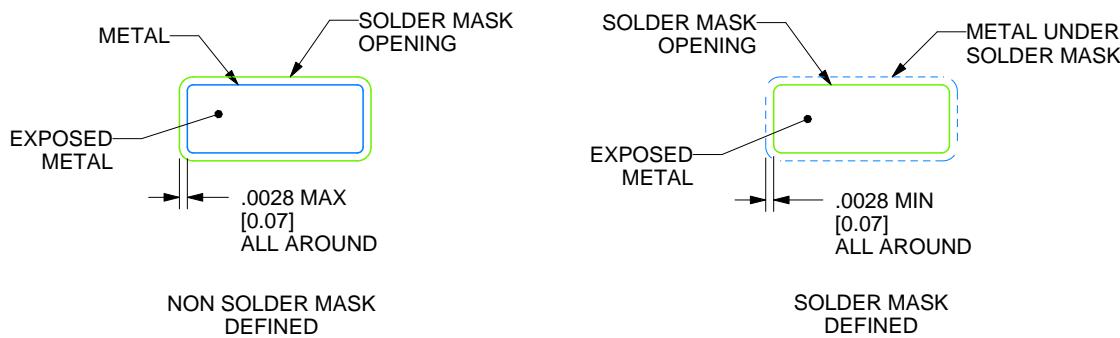
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:


1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

EXAMPLE BOARD LAYOUT


D0008A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

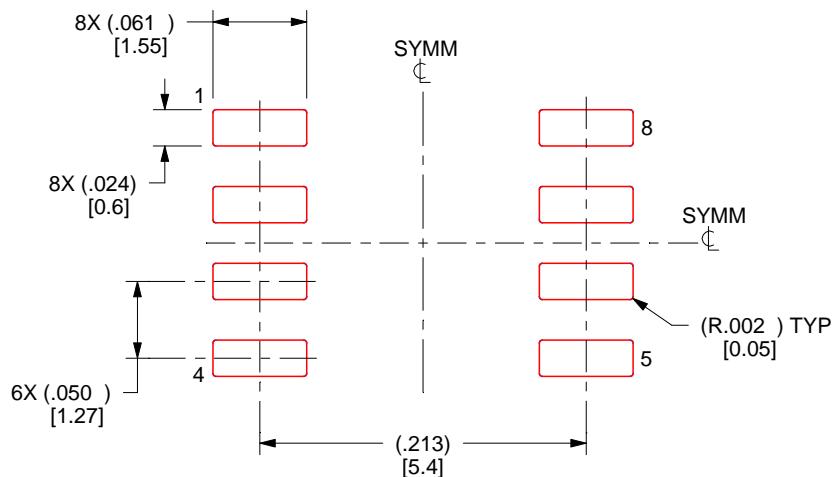
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:8X

SOLDER MASK DETAILS

4214825/C 02/2019

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

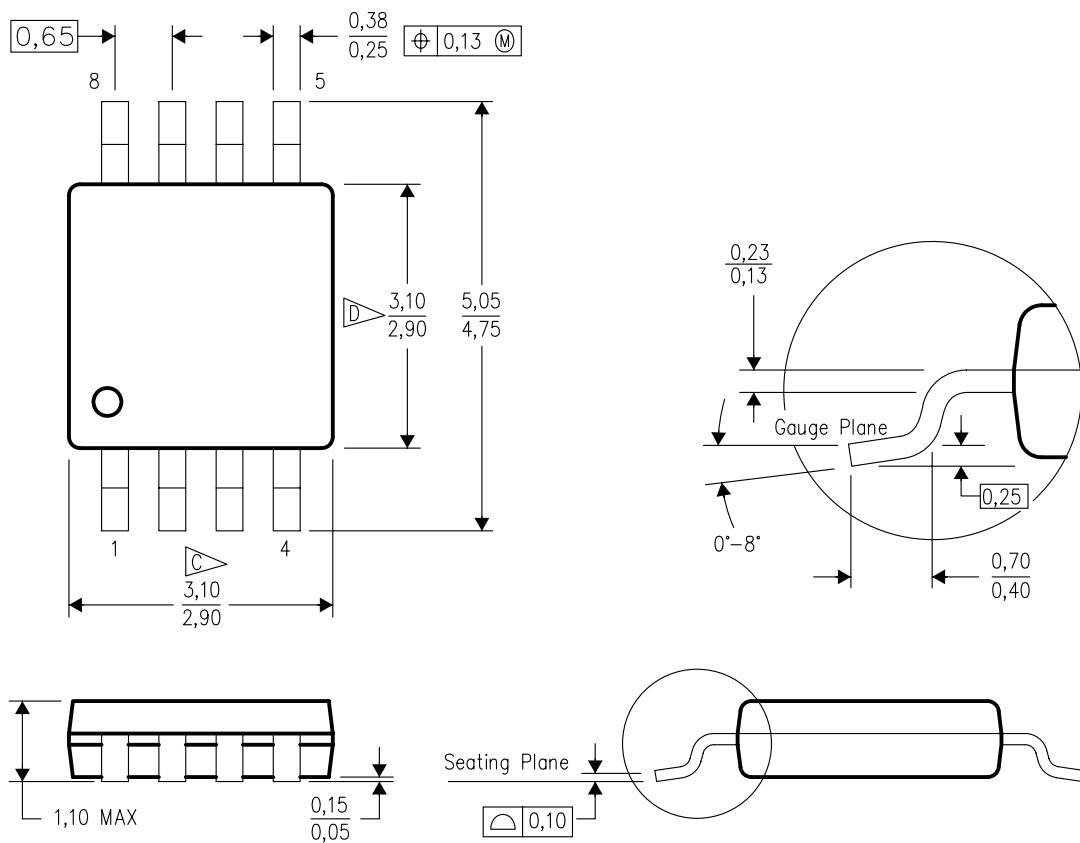
EXAMPLE STENCIL DESIGN

D0008A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.125 MM] THICK STENCIL
SCALE:8X


4214825/C 02/2019

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

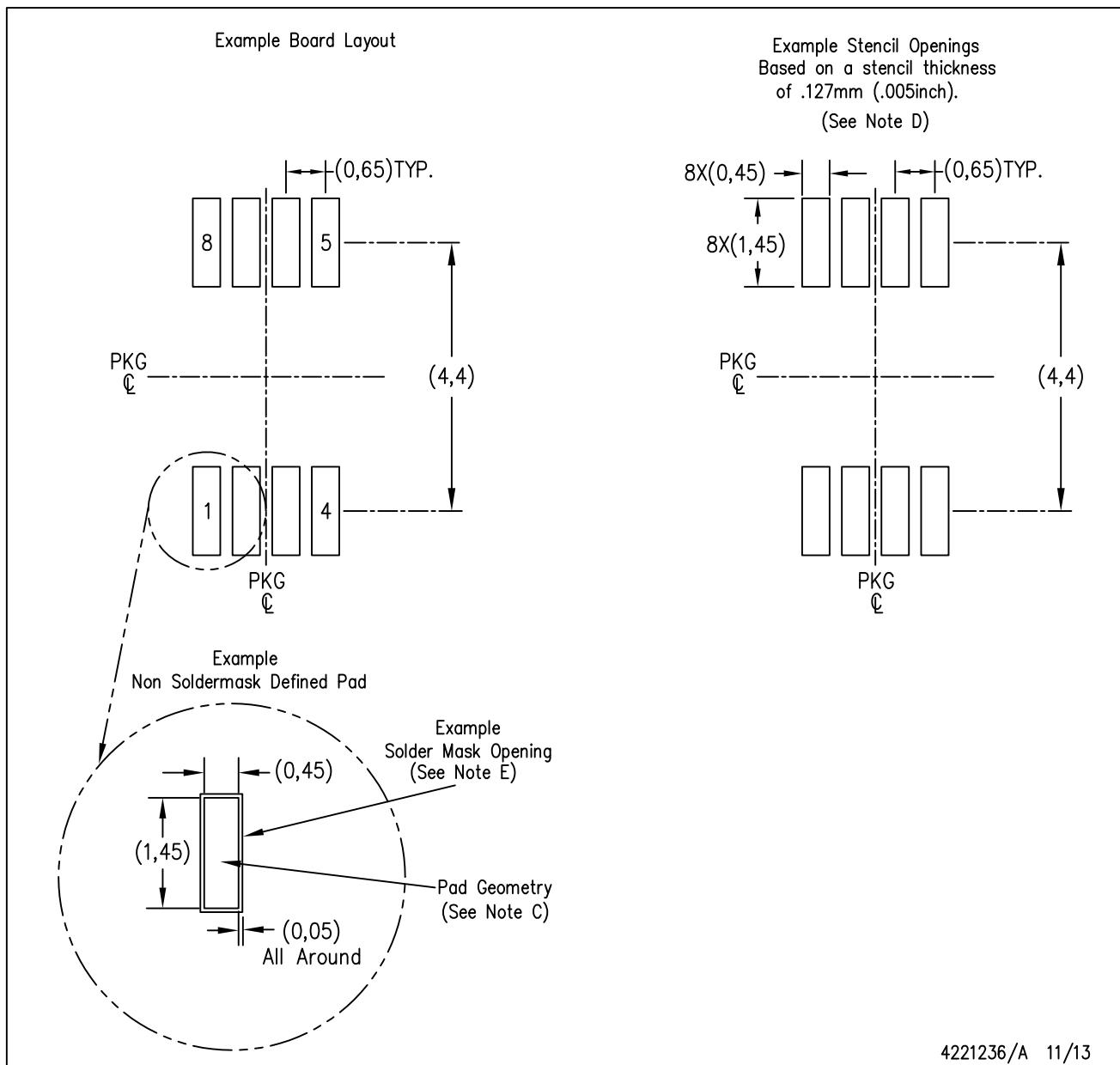
DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

4073329/E 05/06

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


 Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

 Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.

E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明和免责声明

TI 均以“原样”提供技术性及可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证其中不含任何瑕疵，且不做任何明示或暗示的担保，包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任：(1) 针对您的应用选择合适的TI 产品；(2) 设计、验证并测试您的应用；(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更，恕不另行通知。TI 对您使用所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源，也不提供其它TI 或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等，TI 对此概不负责，并且您须赔偿由此对TI 及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (<http://www.ti.com.cn/zh-cn/legal/termsofsale.html>) 以及ti.com.cn 上或随附TI 产品提供的其他可适用条款的约束。TI 提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122
Copyright © 2020 德州仪器半导体技术（上海）有限公司