

TCAN1042 具有 CAN FD 和故障保护功能的 CAN 收发器

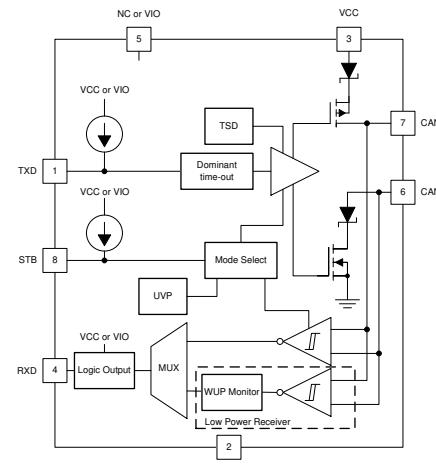
1 特性

- 符合 ISO 11898-2:2016 和 ISO 11898-5:2007 物理层标准
- “Turbo” CAN :
 - 所有器件均支持经典 CAN 和 2Mbps CAN FD (灵活数据速率)，而“G”选项支持 5Mbps
 - 具有较短的对称传播延迟时间和快速循环次数，可增加时序裕量
 - 在有负载 CAN 网络中实现更快的数据速率
- I/O 电压范围支持 3.3V 和 5V MCU
- 未供电时具有理想无源行为
 - 总线和逻辑引脚处于高阻态 (无负载)
 - 在总线和 RXD 输出上实现上电/断电无干扰运行
- 保护特性
 - HBM ESD 保护 : $\pm 16\text{kV}$
 - IEC ESD 保护高达 $\pm 15\text{kV}$
 - 总线故障保护 : $\pm 58\text{V}$ (非 H 型号) 和 $\pm 70\text{V}$ (H 型号)
 - V_{CC} 和 V_{IO} (仅限 V 型号) 电源终端具有欠压保护
 - 驱动器显性超时 (TXD DTO) - 数据速率低至 10kbps
 - 热关断保护 (TSD)
- 接收器共模输入电压 : $\pm 30\text{V}$
- 典型循环延迟 : 110ns
- 结温范围为 -55°C 至 150°C
- 采用 SOIC (8) 封装和无引线 VSON (8) 封装 ($3.0\text{mm} \times 3.0\text{mm}$)，提高了自动光学检测 (AOI) 能力

2 应用

- 所有器件均支持高负载 CAN 网络
- 重型机械 ISOBUS 应用 - ISO 11783
- 工业自动化、控制、传感器和驱动系统
- 楼宇、安全和温度控制自动化

- 电信基站状态和控制
- 诸如 CANopen、DeviceNet、NMEA2000、ARNIC825、ISO11783、CANAerospace 的 CAN 总线标准


3 说明

这款 CAN 收发器系列符合 ISO1189-2 (2016) 高速 CAN (控制器局域网络) 物理层标准。所有器件均设计用于数据速率高达 2Mbps (兆位每秒) 的 CAN FD 网络。器件型号包含“G”后缀的器件旨在实现高达 5Mbps 的数据速率，器件型号包含“V”后缀的器件配有提供 I/O 电平的辅助电源输入，用于设置输入引脚阈值和 RXD 输出电平。该系列具备低功耗待机模式及远程唤醒请求特性。此外，所有器件都提供多种保护特性来提高器件和网络的耐用性。

器件信息

器件型号	封装 ⁽¹⁾	封装尺寸
TCAN1042x	SOIC (8)	4.90mm x 3.91mm
	VSON (8)	3.00mm x 3.00mm

(1) 如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。

- A. 引脚 5 的功能取决于器件；在不含 V 后缀的器件上为无连接 (NC) 引脚，在包含 V 后缀的器件上为用于 I/O 电平转换的 V_{IO} 引脚
- B. RXD 逻辑输出在不含“V”后缀的器件上驱动为 V_{CC} ，而在包含“V”后缀的器件上驱动为 V_{IO} 。

功能方框图

本文档旨在为方便起见，提供有关 TI 产品中文版本的信息，以确认产品的概要。有关适用的官方英文版本的最新信息，请访问 www.ti.com，其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前，请务必参考最新版本的英文版本。

Table of Contents

1 特性.....	1	9 Detailed Description.....	18
2 应用.....	1	9.1 Overview.....	18
3 说明.....	1	9.2 Functional Block Diagram.....	18
4 Revision History.....	2	9.3 Feature Description.....	19
5 Device Comparison Table.....	4	9.4 Device Functional Modes.....	22
6 Pin Configurations and Functions.....	5	10 Application and Implementation.....	26
7 Specifications.....	6	10.1 Application Information.....	26
7.1 Absolute Maximum Ratings	6	10.2 Typical Applications.....	26
7.2 ESD Ratings.....	6	11 Power Supply Recommendations.....	29
7.3 ESD Ratings, Specifications.....	7	12 Device and Documentation Support.....	32
7.4 Recommended Operating Conditions.....	8	12.1 接收文档更新通知.....	32
7.5 Thermal Information.....	8	12.2 支持资源.....	32
7.6 Power Rating.....	8	12.3 商标.....	32
7.7 Electrical Characteristics.....	9	12.4 静电放电警告.....	32
7.8 Switching Characteristics.....	12	12.5 术语表.....	32
7.9 Typical Characteristics.....	13	13 Mechanical, Packaging, and Orderable Information.....	32
8 Parameter Measurement Information.....	14		

4 Revision History

注：以前版本的页码可能与当前版本的页码不同

Changes from Revision C (April 2017) to Revision D (October 2021)	Page
• 删减的器件：TCAN1042、TCAN1042G、TCAN1042GV 和 TCAN1042V.....	1
• Added footnote to the GND pin in the <i>Pin Functions</i> table	5
• Changed the DRB (VSON) values in the <i>Thermal Information</i> table	8
• Changed the title in 节 9.3.7.1	21
• Changed the title in 节 9.3.7.2	21

Changes from Revision B (August 2016) to Revision C (April 2017)	Page
• 删减了特性“符合 2015 年 12 月 17 日发布的 ISO 11898-2 物理层更新草案”	1
• 将特性从“符合发布的 ISO 11898-2:2007 和 ISO 11898-2:2003 物理层标准”更改为“符合 ISO 11898-2:2016 和 ISO 11898-5:2007 物理层标准”	1
• 将“特性”从“所有器件均支持 2Mbps CAN FD..”更改为“所有器件均支持经典 CAN 和 2Mbps CAN FD..”	1
• Changed Charged Device Model (CDM) From: ± 750 To: ± 1500 in the <i>ESD Ratings</i> table.....	6
• Changed TBD to values for the DRB (VSON) Package in the <i>ESD Ratings</i> table.....	6
• Added the <i>Power Rating</i> table	8
• Changed V_{SYN} in the <i>Driver Electrical Characteristics</i> table.....	9
• Changed V_{SYN_DC} in the <i>Driver Electrical Characteristics</i> table.....	9
• Deleted " $V_I = 0.4 \sin (4E6 \pi t) + 2.5$ V" from the Test Condition of C_I in the <i>Receiver Electrical Characteristics</i> table.....	9
• Deleted " $V_I = 0.4 \sin (4E6 \pi t)$ " in the Test Condition of C_{ID} in the <i>Receiver Electrical Characteristics</i> table.....	9
• Added " $-30 \text{ V} \leq V_{CM} \leq +30$ " to the Test Condition of R_{ID} and R_{IN} in the <i>Receiver Electrical Characteristics</i> table.....	9
• Added Note 2 and Changed 表 9-2 , BUS OUTPUT column.....	20

Changes from Revision A (May 2016) to Revision B (August 2016)	Page
• 添加了器件 : TCAN1042、TCAN1042G、TCAN1042GV 和 TCAN1042V.....	1
• 将特性从添加了总线故障保护 : $\pm 70V$ 更改为总线故障保护 : $\pm 58V$ (非 H 型号) 和 $\pm 70V$ (H 型号)	1
• 添加了特性“可采用 SOIC(8) 封装和无引线 VSON(8) 封装...”	1
• Added new devices to the <i>Device Comparison Table</i>	4
• Added the DRB package to the <i>Thermal Information</i> table	8
• Changed the t_{MODE} TYP value From: 1 μs To: 9 μs in the <i>Switching Characteristics</i> table.....	12
• Changed <i>Standby Mode</i> section	23

Changes from Revision * (March 2016) to Revision A (May 2016)	Page
• 向器件信息表中添加了 VSON (8) 引脚封装.....	1
• Added the VSON (8) pin package to the <i>Pin Configuration and Functions</i>	5
• Changed OTP to TSD in the <i>Functional Block Diagram</i>	18
• Added Note 2 to 表 9-1	20
• Added Note 1 to 表 9-2	20
• Added pin number to the <i>Layout Example</i> image	31

5 Device Comparison Table

DEVICE NUMBER	BUS FAULT PROTECTION	5-Mbps FLEXIBLE DATA RATE	3-V LEVEL SHIFTER INTEGRATED	PIN 8 MODE SELECTION
TCAN1042 (Base)	± 58 V			Low Power Standby Mode with Remote Wake
TCAN1042G	± 58 V	X		
TCAN1042GV	± 58 V	X	X	
TCAN1042V	± 58 V		X	
TCAN1042H	± 70 V			
TCAN1042HG	± 70 V	X		
TCAN1042HGV	± 70 V	X	X	
TCAN1042HV	± 70 V		X	

6 Pin Configurations and Functions

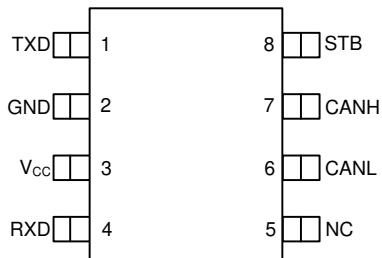


图 6-1. D Package for Base, (H), (G) and (HG)
Devices 8 PIN (SOIC) Top View

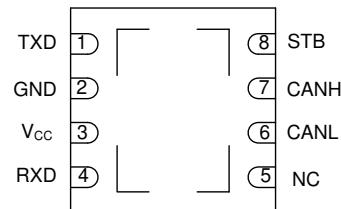


图 6-2. DRB Package for Base, (H), (G) and (HG)
Devices 8 PIN (VSON) Top View

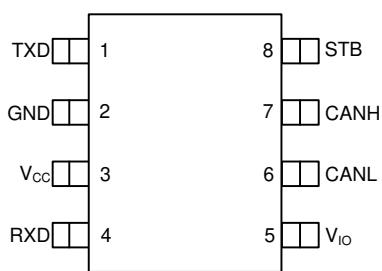


图 6-3. D Package for (V), (HV), (GV), and (HGV)
Devices 8 PIN (SOIC) Top View

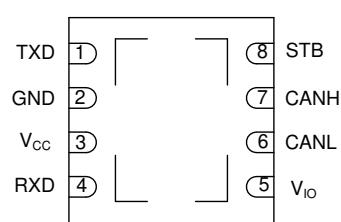


图 6-4. DRB Package for (V), (HV), (GV), and (HGV)
Devices 8 PIN (VSON) Top View

表 6-1. Pin Functions

PINS		TYPE	DESCRIPTION	
NAME	(H), (G), (HG)		(V), (GV), (HV), (HGV)	
TXD	1	DIGITAL INPUT		CAN transmit data input (LOW for dominant and HIGH for recessive bus states)
GND ⁽¹⁾	2	GND		Ground connection
VCC	3	POWER		Transceiver 5-V supply voltage
RXD	4	DIGITAL OUTPUT		CAN receive data output (LOW for dominant and HIGH for recessive bus states)
NC	5	—	—	No Connect
V _{IO}	—	POWER		Transceiver I/O level shifting supply voltage (Devices with "V" suffix only)
CANL	6	BUS I/O		Low level CAN bus input/output line
CANH	7	BUS I/O		High level CAN bus input/output line
STB	8	DIGITAL INPUT		Standby Mode control input (active high)

(1) For DRB (VSON) package options, the thermal pad may be connected to GND in order to optimize the thermal characteristics of the package.

7 Specifications

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾ ⁽²⁾

7.1 Absolute Maximum Ratings

			MIN	MAX	UNIT
V _{CC}	5-V Bus Supply Voltage Range	All Devices	- 0.3	7	V
V _{IO}	I/O Level-Shifting Voltage Range	Devices with the "V" Suffix	- 0.3	7	V
V _{BUS}	CAN Bus I/O voltage range (CANH, CANL)	Devices with the "H" Suffix	-70	70	V
V _(Logic_Input)	Logic input terminal voltage range (TXD, S)	All Devices	- 0.3	+7 and V _I ≤ V _{IO} + 0.3	V
V _(Logic_Output)	Logic output terminal voltage range (RXD)		- 0.3	+7 and V _I ≤ V _{IO} + 0.3	V
I _{O(RXD)}	RXD (Receiver) output current		- 8	8	mA
T _J	Virtual junction temperature range (see <i>Thermal Information table</i>)		- 55	150	°C
T _{STG}	Storage temperature range (see <i>Thermal Information table</i>)		- 65	150	°C

(1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. *Absolute Maximum Ratings* do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.

7.2 ESD Ratings

	TEST CONDITIONS	VALUE	UNIT
D (SOIC) Package			
Human Body Model (HBM) ESD stress voltage	All terminals ⁽¹⁾	±6000	V
	CAN bus terminals (CANH, CANL) to GND ⁽²⁾	±16000	
Charged Device Model (CDM) ESD stress voltage	All terminals ⁽³⁾	±1500	V
	All terminals ⁽⁴⁾	±200	
DRB (VSON) Package			
Human Body Model (HBM) ESD stress voltage	All terminals ⁽¹⁾	±6000	V
	CAN bus terminals (CANH, CANL) to GND ⁽²⁾	±16000	
Charged Device Model (CDM) ESD stress voltage	All terminals ⁽³⁾	±1500	V
	All terminals ⁽⁴⁾	±200	

(1) Tested in accordance to JEDEC Standard 22, Test Method A114.
 (2) Test method based upon JEDEC Standard 22 Test Method A114, CAN bus is stressed with respect to GND.
 (3) Tested in accordance to JEDEC Standard 22, Test Method C101.
 (4) Tested in accordance to JEDEC Standard 22, Test Method A115.

7.3 ESD Ratings, Specifications

		TEST CONDITIONS	VALUE	UNIT
D (SOIC) Package				
System Level Electro-Static Discharge (ESD)	CAN bus terminals (CANH, CANL) to GND	IEC 61000-4-2: Unpowered Contact Discharge	±15000	V
		IEC 61000-4-2: Powered on Contact Discharge	±8000	
System Level Electrical fast transient (EFT)	CAN bus terminals (CANH, CANL) to GND	IEC 61000-4-4: Criteria A	±4000	V
DRB (VSON) Package				
System Level Electro-Static Discharge (ESD)	CAN bus terminals (CANH, CANL) to GND	IEC 61000-4-2: Unpowered Contact Discharge	±14000	V
		IEC 61000-4-2: Powered on Contact Discharge	±8000	
System Level Electrical fast transient (EFT)	CAN bus terminals (CANH, CANL) to GND	IEC 61000-4-4: Criteria A	±4000	V

7.4 Recommended Operating Conditions

		MIN	MAX	UNIT
V_{CC}	5-V Bus Supply Voltage Range	4.5	5.5	V
V_{IO}	I/O Level-Shifting Voltage Range	3	5.5	
$I_{OH(RXD)}$	RXD terminal HIGH level output current	-2		mA
$I_{OL(RXD)}$	RXD terminal LOW level output current		2	

7.5 Thermal Information

Thermal Metric ⁽¹⁾	TEST CONDITIONS	TCAN1042		UNIT
		D (SOIC)	DRB (VSON)	
		8 Pins	8 Pins	
$R_{\theta JA}$	Junction-to-air thermal resistance	High-K thermal resistance ⁽²⁾	105.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance ⁽³⁾		46.8	°C/W
$R_{\theta JC(TOP)}$	Junction-to-case (top) thermal resistance ⁽⁴⁾		48.3	°C/W
Ψ_{JT}	Junction-to-top characterization parameter ⁽⁵⁾		8.7	°C/W
Ψ_{JB}	Junction-to-board characterization parameter ⁽⁶⁾		46.2	°C/W
T_{TSD}	Thermal shutdown temperature		170	°C
T_{TSD_HYS}	Thermal shutdown hysteresis		5	°C

- (1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.
- (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- (3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (4) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (5) The junction-to-top characterization parameter, Ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).
- (6) The junction-to-board characterization parameter, Ψ_{JB} estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

7.6 Power Rating

PARAMETER	TEST CONDITIONS	POWER DISSIPATION	UNIT
P_D	$V_{CC} = 5 \text{ V}$, $V_{IO} = 5 \text{ V}$ (if applicable), $T_J = 27^\circ\text{C}$, $R_L = 60 \Omega$, S at 0 V, Input to TXD at 250 kHz, $C_{L_RXD} = 15 \text{ pF}$. Typical CAN operating conditions at 500 kbps with 25% transmission (dominant) rate.	52	mW
	$V_{CC} = 5.5 \text{ V}$, $V_{IO} = 5.5 \text{ V}$ (if applicable), $T_J = 150^\circ\text{C}$, $R_L = 50 \Omega$, S at 0 V, Input to TXD at 500 kHz, $C_{L_RXD} = 15 \text{ pF}$. Typical high load CAN operating conditions at 1 Mbps with 50% transmission (dominant) rate and loaded network.	124	mW

7.7 Electrical Characteristics

Over recommended operating conditions with $T_A = -55^\circ\text{C}$ to 125°C (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
Supply Characteristics							
I_{CC}	5-V supply current	Normal mode (dominant)	See 图 8-1 , $\text{TXD} = 0 \text{ V}$, $R_L = 60 \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$, $\text{STB} = 0 \text{ V}$, Typical Bus Load	40	70	mA	
			See 图 8-1 , $\text{TXD} = 0 \text{ V}$, $R_L = 50 \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$, $\text{STB} = 0 \text{ V}$, High Bus Load	45	80		
		Normal mode (dominant - with bus fault)	See 图 8-1 , $\text{TXD} = 0 \text{ V}$, $\text{STB} = 0 \text{ V}$, $\text{CANH} = -12 \text{ V}$, $R_L = \text{open}$, $C_L = \text{open}$, $R_{CM} = \text{open}$	180			
		Normal mode (recessive)	See 图 8-1 , $\text{TXD} = V_{CC}$ or V_{IO} , $R_L = 50 \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$, $\text{STB} = 0 \text{ V}$	1.5	2.5		
		Standby mode	Devices with the "V" suffix (I/O level-shifting), V_{CC} not needed in Standby mode, See 图 8-1 , $\text{TXD} = V_{IO}$, $R_L = 50 \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$, $\text{STB} = V_{IO}$	0.5	5		
			Devices without the "V" suffix (5-V only), See 图 8-1 , $\text{TXD} = V_{CC}$, $R_L = 50 \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$, $\text{STB} = V_{CC}$	22		μA	
I_{IO}	I/O supply current	Normal mode	RXD floating, $\text{TXD} = \text{STB} = 0$ or 5.5 V	90	300		
		Standby mode	RXD floating, $\text{TXD} = \text{STB} = V_{IO}$, $V_{CC} = 0$ or 5.5 V	12	17		
UV _{VCC}	Rising undervoltage detection on V_{CC} for protected mode		All devices	4.2	4.4	V	
	Falling undervoltage detection on V_{CC} for protected mode			3.8	4.0		
V _{HYS(UVCC)}	Hysteresis voltage on UV _{VCC}			200		mV	
UV _{VIO}	Undervoltage detection on V_{IO} for protected mode		Devices with the "V" suffix (I/O level-shifting)	1.3	2.75	V	
V _{HYS(UVIO)}	Hysteresis voltage on UV _{VIO} for protected mode			80		mV	
STB Terminal (Mode Select Input)							
V _{IH}	High-level input voltage		Devices with the "V" suffix (I/O level-shifting)	0.7 $\times V_{IO}$		V	
			Devices without the "V" suffix (5-V only)	2			
V _{IL}	Low-level input voltage		Devices with the "V" suffix (I/O level-shifting)	0.3 $\times V_{IO}$		V	
			Devices without the "V" suffix (5-V only)	0.8			
I _{IH}	High-level input leakage current		$\text{STB} = V_{CC} = V_{IO} = 5.5 \text{ V}$	-2	2	μA	
I _{IL}	Low-level input leakage current		$\text{STB} = 0 \text{ V}$, $V_{CC} = V_{IO} = 5.5 \text{ V}$	-20	0		
I _{Ik_g(OFF)}	Unpowered leakage current		$\text{STB} = 5.5 \text{ V}$, $V_{CC} = V_{IO} = 0 \text{ V}$	-1	0		
TXD Terminal (CAN Transmit Data Input)							
V _{IH}	High-level input voltage		Devices with the "V" suffix (I/O level-shifting)	0.7 $\times V_{IO}$		V	
			Devices without the "V" suffix (5-V only)	2			
V _{IL}	Low-level input voltage		Devices with the "V" suffix (I/O level-shifting)	0.3 $\times V_{IO}$		V	
			Devices without the "V" suffix (5-V only)	0.8			
I _{IH}	High-level input leakage current		$\text{TXD} = V_{CC} = V_{IO} = 5.5 \text{ V}$	-2.5	0	1	
I _{IL}	Low-level input leakage current		$\text{TXD} = 0 \text{ V}$, $V_{CC} = V_{IO} = 5.5 \text{ V}$	-100	-25	-7	
I _{Ik_g(OFF)}	Unpowered leakage current		$\text{TXD} = 5.5 \text{ V}$, $V_{CC} = V_{IO} = 0 \text{ V}$	-1	0	1	
C _I	Input capacitance		$V_{IN} = 0.4 \times \sin(2 \times \pi \times 2 \times 10^6 \times t) + 2.5 \text{ V}$	5		pF	

7.7 Electrical Characteristics (continued)

Over recommended operating conditions with $T_A = -55^\circ\text{C}$ to 125°C (unless otherwise noted).

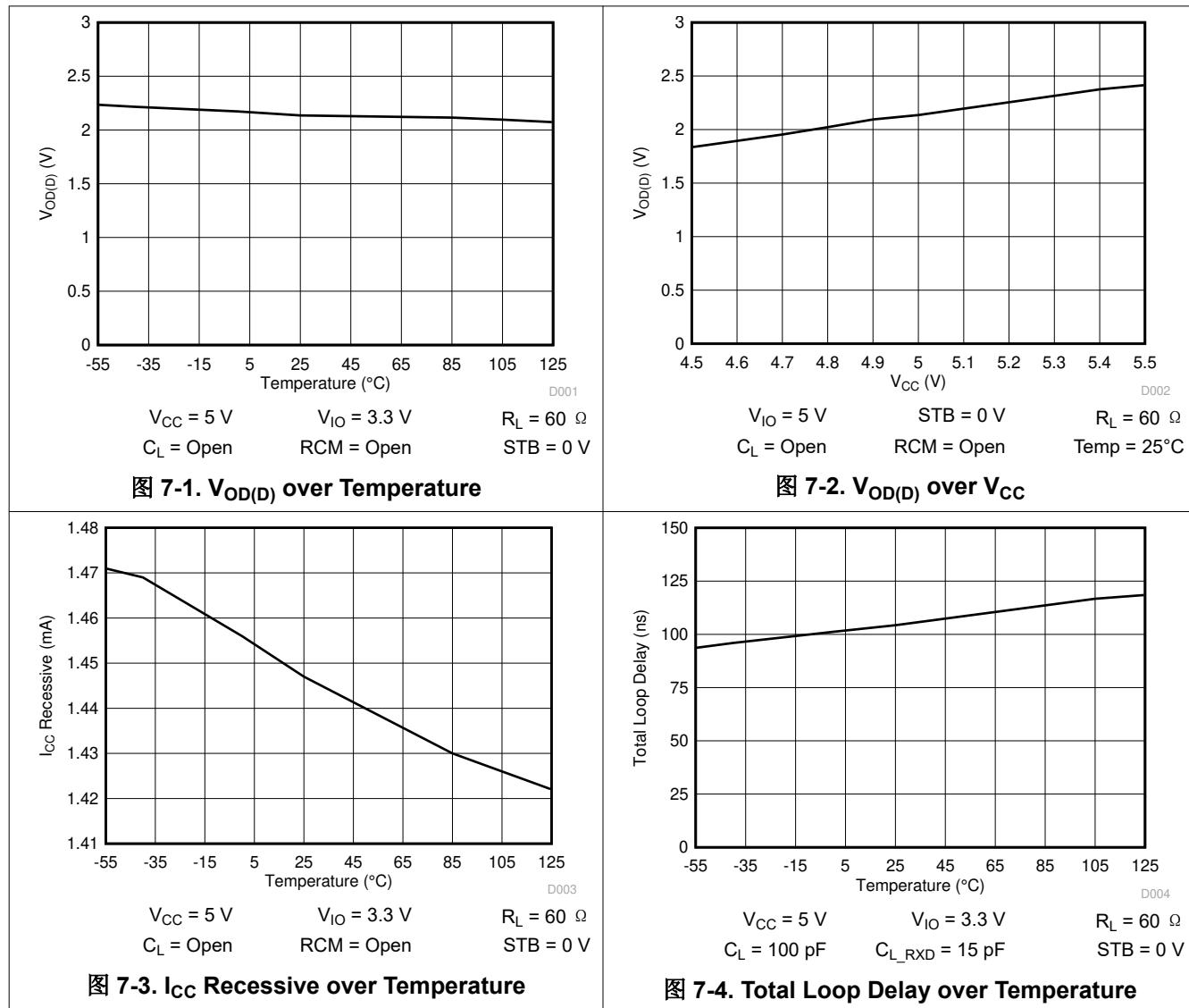
PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
RXD Terminal (Can Receive Data Output)						
V_{OH}	High-level output voltage	Devices with the "V" suffix (I/O level-shifting), See 图 8-2 , $I_O = -2\text{ mA}$.	$0.8 \times V_{IO}$		4	4.6
		Devices without the "V" suffix (5V only), See 图 8-2 , $I_O = -2\text{ mA}$.	4			
V_{OL}	Low-level output voltage	Devices with the "V" suffix (I/O level-shifting), See 图 8-2 , $I_O = +2\text{ mA}$.	$0.2 \times V_{IO}$		0.2	0.4
		Devices without the "V" suffix (5-V only), See 图 8-2 , $I_O = +2\text{ mA}$.	0.2			
$I_{lkg(OFF)}$	Unpowered leakage current	RXD = 5.5 V, $V_{CC} = 0\text{ V}$, $V_{IO} = 0\text{ V}$	-1	0	1	μA
Driver Electrical Characteristics						
$V_{O(DOM)}$	Bus output voltage (dominant)	CANH	See 图 8-1 and 图 9-3 , TXD = 0 V, STB = 0 V, $50\ \Omega \leq R_L \leq 65\ \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$		2.75	4.5
		CANL	0.5		2.25	
$V_{O(REC)}$	Bus output voltage (recessive)	CANH and CANL	See 图 8-1 and 图 9-3 , TXD = V_{CC} or V_{IO} , $V_{IO} = V_{CC}$, STB = 0 V, $R_L = \text{open}$ (no load), $R_{CM} = \text{open}$		2	$0.5 \times V_{CC}$
$V_{O(STB)}$	Bus output voltage (Standby mode)	CANH	See 图 8-1 and 图 9-3 , STB = V_{IO} , $R_L = \text{open}$ (no load), $R_{CM} = \text{open}$		-0.1	0
		CANL	0.1		-0.1	0
		CANH - CANL	0.1		-0.2	0.2
$V_{OD(DOM)}$	Differential output voltage (dominant)	CANH - CANL	See 图 8-1 and 图 9-3 , TXD = 0 V, STB = 0 V, $45\ \Omega \leq R_L < 50\ \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$		1.4	3
			See 图 8-1 and 图 9-3 , TXD = 0 V, STB = 0 V, $50\ \Omega \leq R_L \leq 65\ \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$		1.5	3
			See 图 8-1 and 图 9-3 , TXD = 0 V, STB = 0 V, $R_L = 2240\ \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$		1.5	5
$V_{OD(REC)}$	Differential output voltage (recessive)	CANH - CANL	See 图 8-1 and 图 9-3 , TXD = V_{CC} , STB = 0 V, $R_L = 60\ \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$		-120	12
			See 图 8-1 and 图 9-3 , TXD = V_{CC} , STB = 0 V, $R_L = \text{open}$ (no load), $C_L = \text{open}$, $R_{CM} = \text{open}$		-50	50
V_{SYM}	Output symmetry (dominant or recessive) ($V_{O(CANH)} + V_{O(CANL)} / V_{CC}$)		See 图 8-1 and 图 10-2 , STB at 0 V, $R_{term} = 60\ \Omega$, $C_{split} = 4.7\text{ nF}$, $C_L = \text{open}$, $R_{CM} = \text{open}$, $T_{XD} = 250\text{ kHz}$, 1 MHz		0.9	1.1
V_{SYM_DC}	DC Output symmetry (dominant or recessive) ($V_{CC} - V_{O(CANH)} - V_{O(CANL)}$)		See 图 8-1 and 图 9-3 , STB = 0 V, $R_L = 60\ \Omega$, $C_L = \text{open}$, $R_{CM} = \text{open}$		-0.4	0.4
$I_{OS(ss_DOM)}$	Short-circuit steady-state output current, dominant, Normal mode		See 图 9-3 and 图 8-7 , STB at 0 V, $V_{CANH} = -5\text{ V}$ to 40 V , CANL = open , TXD = 0 V		-100	100
			See 图 9-3 and 图 8-7 , STB at 0 V, $V_{CANL} = -5\text{ V}$ to 40 V , CANH = open , TXD = 0 V			
$I_{OS(ss_REC)}$	Short-circuit steady-state output current, recessive, Normal mode		See 图 9-3 and 图 8-7 , STB at 0 V, $-27\text{ V} \leq V_{BUS} \leq 32\text{ V}$, Where $V_{BUS} = \text{CANH} = \text{CANL}$, TXD = V_{CC}		-5	5

7.7 Electrical Characteristics (continued)

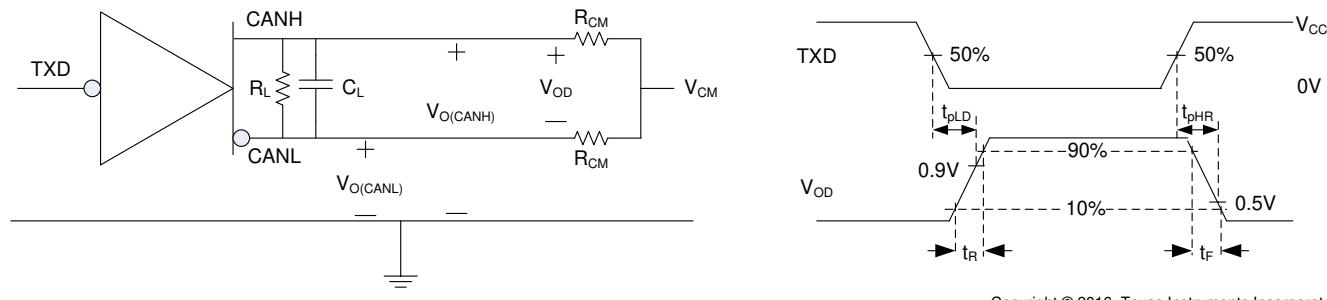
Over recommended operating conditions with $T_A = -55^\circ\text{C}$ to 125°C (unless otherwise noted).

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
Receiver Electrical Characteristics					
V_{CM}	Common mode range, Normal mode	See 图 8-2 and 表 8-1 , STB = 0 V	-30	+30	V
V_{IT+}	Positive-going input threshold voltage, Normal mode	See 图 8-2 , 表 9-5 and 表 8-1 , STB = 0 V, $-20\text{ V} \leq V_{CM} \leq +20\text{ V}$	900	500	mV
V_{IT-}	Negative-going input threshold voltage, Normal mode				
V_{IT+}	Positive-going input threshold voltage, Normal mode	See 图 8-2 , 表 9-5 and 表 8-1 , STB = 0 V, $-30\text{ V} \leq V_{CM} \leq +30\text{ V}$	1000	400	mV
V_{IT-}	Negative-going input threshold voltage, Normal mode				
V_{HYS}	Hysteresis voltage ($V_{IT+} - V_{IT-}$), Normal mode	See 图 8-2 , 表 9-5 and 表 8-1 , STB = 0 V	120		
V_{CM}	Common mode range, Standby mode	Devices with the "V" suffix (I/O level-shifting), See 图 8-2 , 表 9-5 and 表 8-1 , STB = V_{IO} , $4.5\text{ V} \leq V_{IO} \leq 5.5\text{ V}$	-12	12	V
		Devices with the "V" suffix (I/O level-shifting), See 图 8-2 , 表 9-5 and 表 8-1 , STB = V_{IO} , $3.0\text{ V} \leq V_{IO} \leq 4.5\text{ V}$	-2	+7	
		Devices without the "V" suffix (5V only), See 图 8-2 , 表 9-5 and 表 8-1 , STB = V_{CC}	-12	12	
$V_{IT(STANDBY)}$	Input threshold voltage, Standby mode	STB = V_{CC} or V_{IO}	400	1150	mV
$I_{LKG(OFF)}$	Power-off (unpowered) bus input leakage current	CANH = CANL = 5 V, $V_{CC} = V_{IO} = 0\text{ V}$		4.8	μA
C_I	Input capacitance to ground (CANH or CANL)	$TXD = V_{CC}$, $V_{IO} = V_{CC}$	24	30	pF
C_{ID}	Differential input capacitance (CANH to CANL)	$TXD = V_{CC}$, $V_{IO} = V_{CC}$	12	15	
R_{ID}	Differential input resistance	$TXD = V_{CC} = V_{IO} = 5\text{ V}$, STB = 0 V, $-30\text{ V} \leq V_{CM} \leq +30\text{ V}$	30	80	$\text{k}\Omega$
R_{IN}	Input resistance (CANH or CANL)		15	40	
$R_{IN(M)}$	Input resistance matching: $[1 - R_{IN(CANH)} / R_{IN(CANL)}] \times 100\%$	$V_{CANH} = V_{CANL} = 5\text{ V}$	-2%	+2%	

(1) All typical values are at 25°C and supply voltages of $V_{CC} = 5\text{ V}$ and $V_{IO} = 5\text{ V}$ (if applicable), $R_L = 60\text{ }\Omega$.

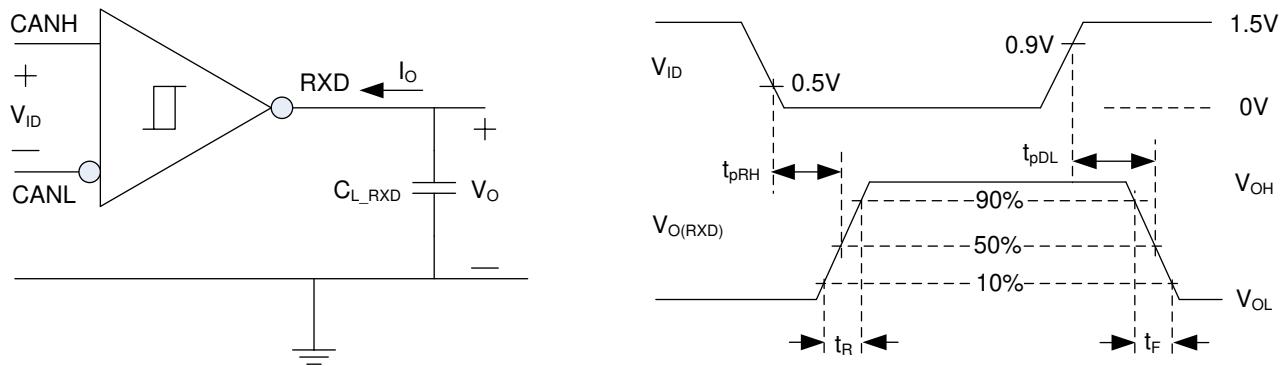

7.8 Switching Characteristics

Over recommended operating conditions with $T_A = -55^{\circ}\text{C}$ to 125°C (unless otherwise noted)


PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
Device Switching Characteristics						
$t_{\text{PROP(LOOP1)}}$	Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant	See 图 8-4 , STB = 0 V, $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(\text{RXD})} = 15 \text{ pF}$	100	160	ns	
$t_{\text{PROP(LOOP2)}}$	Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive		110	175		
t_{MODE}	Mode change time, from Normal to Standby or from Standby to Normal	See 图 8-3	9	45	μs	
$t_{\text{WK_FILTER}}$	Filter time for valid wake up pattern		0.5	1.85	μs	
Driver Switching Characteristics						
t_{pHR}	Propagation delay time, high TXD to driver recessive (dominant to recessive)	See 图 8-1 , STB = 0 V, $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $R_{CM} = \text{open}$	75	ns		
t_{pLD}	Propagation delay time, low TXD to driver dominant (recessive to dominant)		55			
$t_{\text{sk(p)}}$	Pulse skew ($ t_{\text{pHR}} - t_{\text{pLD}} $)		20			
t_R	Differential output signal rise time		45			
t_F	Differential output signal fall time		45			
$t_{\text{TXD_DTO}}$	Dominant timeout	See 图 8-6 , STB = 0 V, $R_L = 60 \Omega$, $C_L = \text{open}$	1.2	3.8	ms	
Receiver Switching Characteristics						
t_{pRH}	Propagation delay time, bus recessive input to high output (Dominant to Recessive)	See 图 8-2 , STB = 0 V, $C_{L(\text{RXD})} = 15 \text{ pF}$	65	ns		
t_{pDL}	Propagation delay time, bus dominant input to low output (Recessive to Dominant)		50			
t_R	RXD Output signal rise time		10			
t_F	RXD Output signal fall time		10			
FD Timing Parameters						
$t_{\text{BIT(BUS)}}$	Bit time on CAN bus output pins with $t_{\text{BIT(TXD)}} = 500 \text{ ns}$, all devices	See 图 8-5 , STB = 0 V, $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(\text{RXD})} = 15 \text{ pF}$, $\Delta t_{\text{REC}} = t_{\text{BIT(RXD)}} - t_{\text{BIT(BUS)}}$	435	530	ns	
	Bit time on CAN bus output pins with $t_{\text{BIT(TXD)}} = 200 \text{ ns}$, G device variants only		155	210		
$t_{\text{BIT(RXD)}}$	Bit time on RXD output pins with $t_{\text{BIT(TXD)}} = 500 \text{ ns}$, all devices		400	550		
	Bit time on RXD output pins with $t_{\text{BIT(TXD)}} = 200 \text{ ns}$, G device variants only		120	220		
Δt_{REC}	Receiver timing symmetry with $t_{\text{BIT(TXD)}} = 500 \text{ ns}$, all devices		-65	40		
	Receiver timing symmetry with $t_{\text{BIT(TXD)}} = 200 \text{ ns}$, G device variants only		-45	15		

(1) All typical values are at 25°C and supply voltages of $V_{CC} = 5 \text{ V}$ and $V_{IO} = 5 \text{ V}$ (if applicable), $R_L = 60 \Omega$

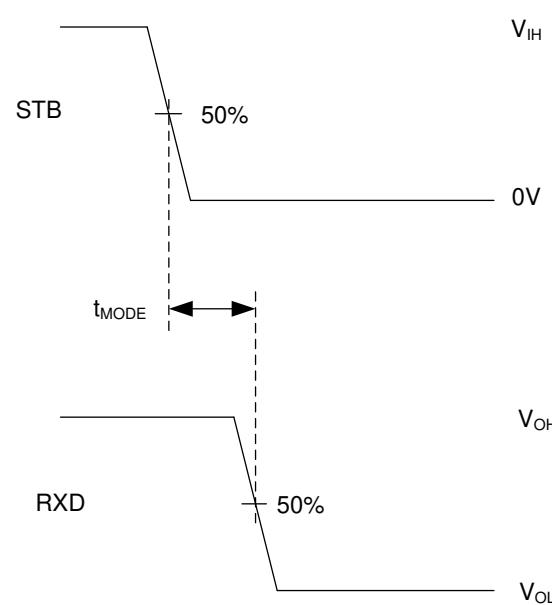
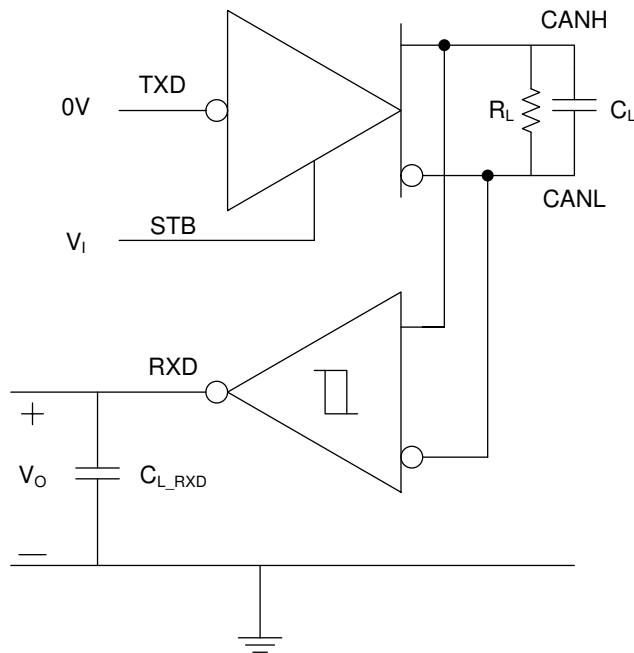
7.9 Typical Characteristics



8 Parameter Measurement Information

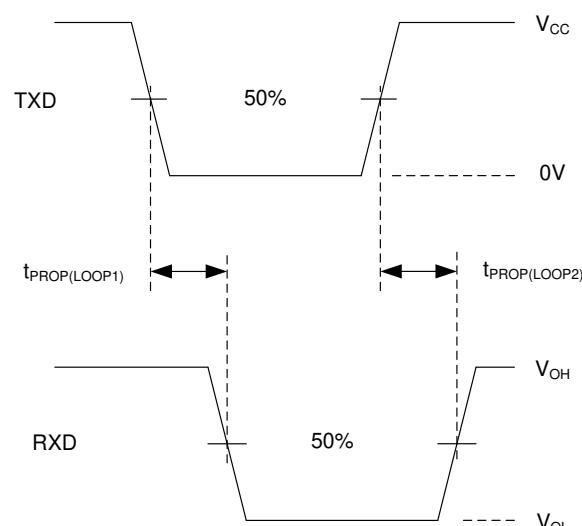
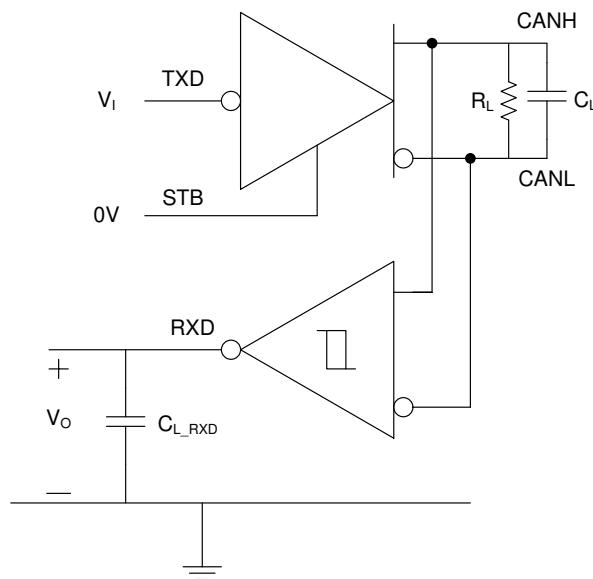
Copyright © 2016, Texas Instruments Incorporated

图 8-1. Driver Test Circuit and Measurement

Copyright © 2016, Texas Instruments Incorporated

图 8-2. Receiver Test Circuit and Measurement



表 8-1. Receiver Differential Input Voltage Threshold Test

INPUT (See Receiver Test Circuit and Measurement)			OUTPUT	
V_{CANH}	V_{CANL}	$ V_{ID} $	RXD	
-29.5 V	-30.5 V	1000 mV	L	V_{OL}
30.5 V	29.5 V	1000 mV	L	
-19.55 V	-20.45 V	900 mV	L	
20.45 V	19.55 V	900 mV	L	
-19.75 V	-20.25 V	500 mV	H	V_{OH}
20.25 V	19.75 V	500 mV	H	
-29.8 V	-30.2 V	400 mV	H	
30.2 V	29.8 V	400 mV	H	
Open	Open	X	H	

Copyright © 2016, Texas Instruments Incorporated

图 8-3. t_{MODE} Test Circuit and Measurement

Copyright © 2016, Texas Instruments Incorporated

图 8-4. $t_{PROP(LOOP)}$ Test Circuit and Measurement

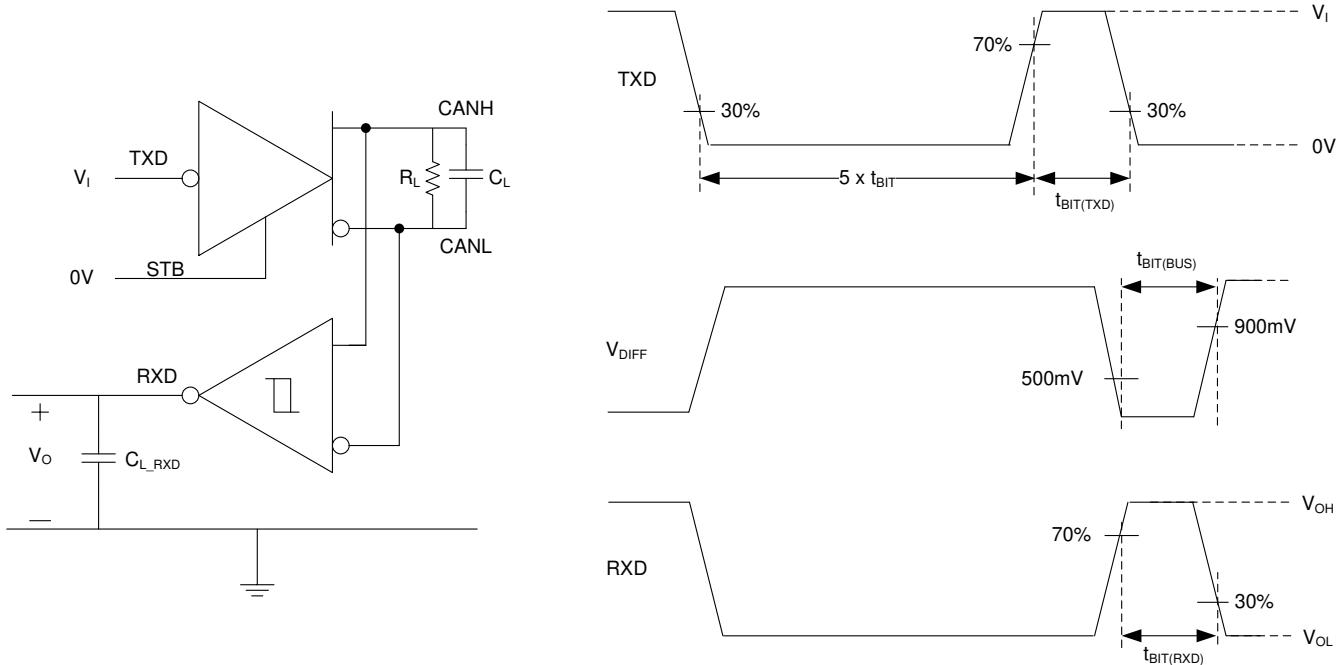
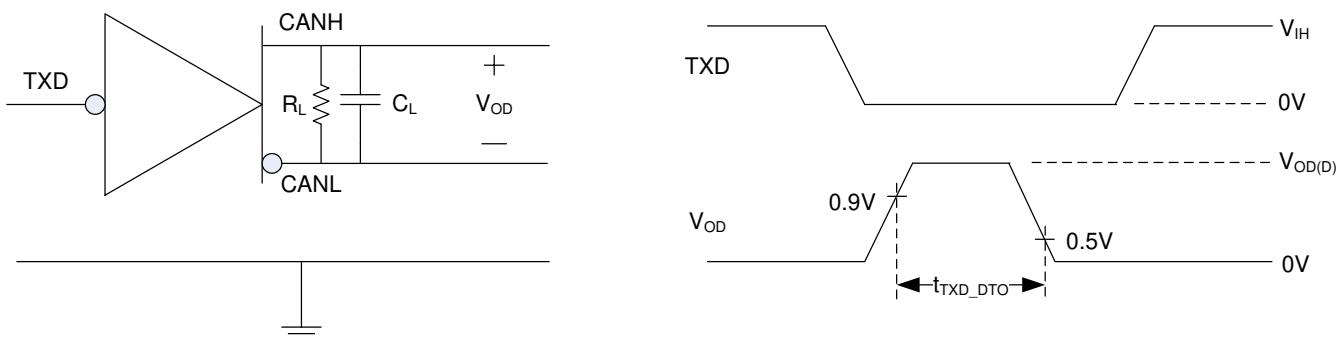
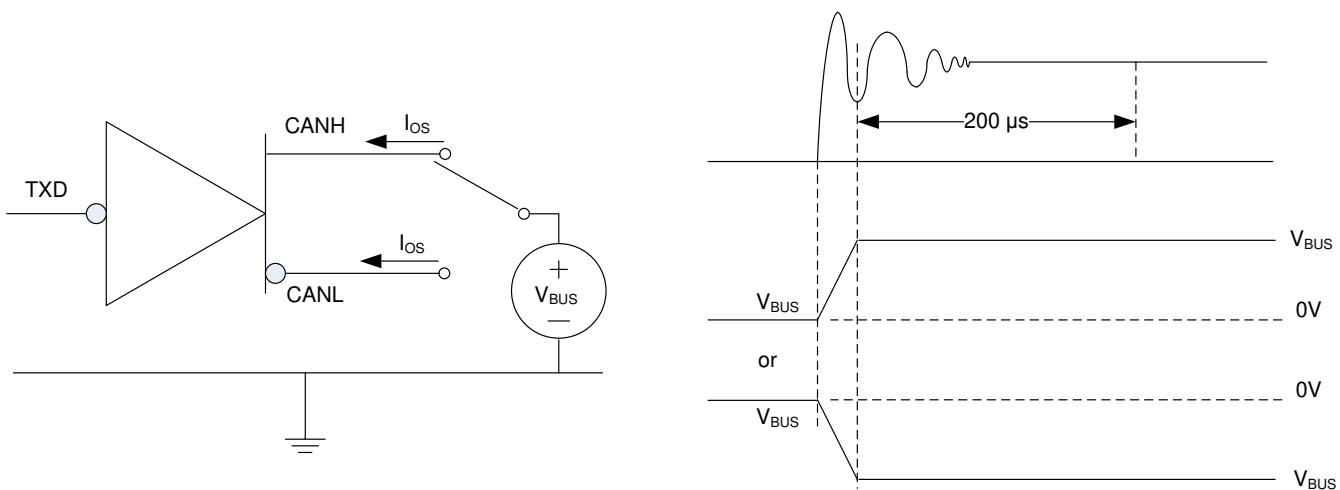
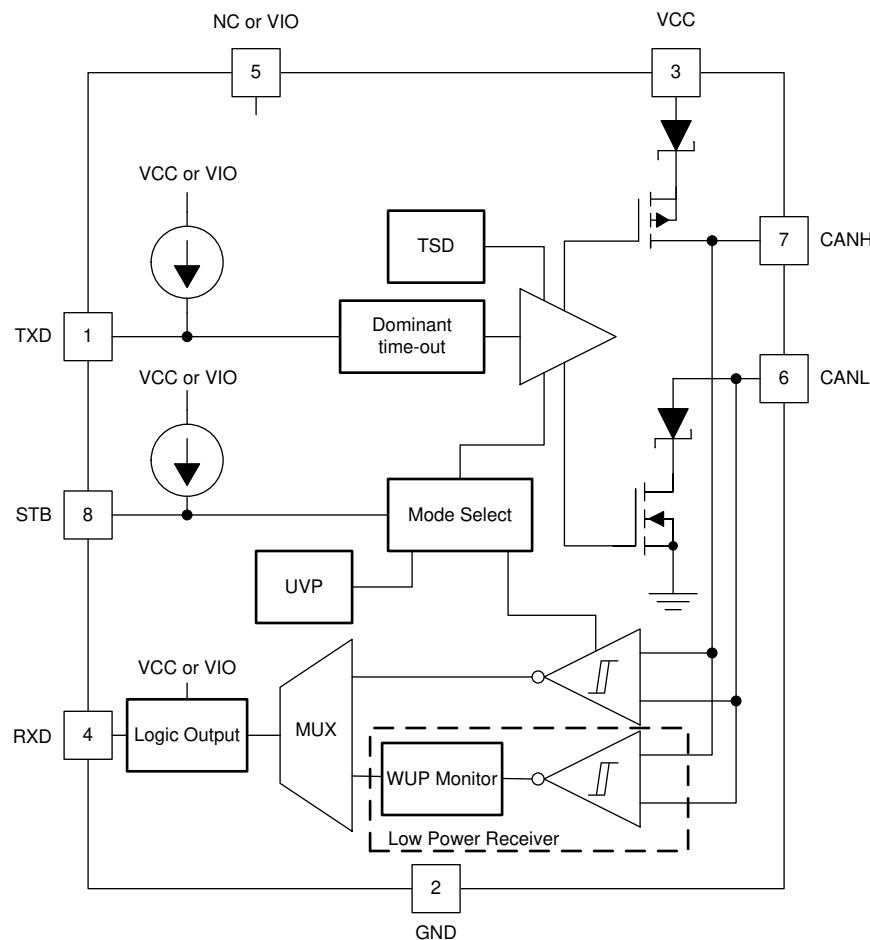




图 8-5. CAN FD Timing Parameter Measurement

Copyright © 2016, Texas Instruments Incorporated

图 8-6. TXD Dominant Timeout Test Circuit and Measurement

Copyright © 2016, Texas Instruments Incorporated


图 8-7. Driver Short Circuit Current Test and Measurement

9 Detailed Description

9.1 Overview

These CAN transceivers meet the ISO11898-2 (2016) High Speed CAN (Controller Area Network) physical layer standard. They are designed for data rates in excess of 1 Mbps for CAN FD and enhanced timing margin / higher data rates in long and highly-loaded networks. These devices provide many protection features to enhance device and CAN robustness.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 TXD Dominant Timeout (DTO)

During normal mode (the only mode where the CAN driver is active), the TXD DTO circuit prevents the transceiver from blocking network communication in the event of a hardware or software failure where TXD is held dominant longer than the timeout period t_{TXD_DTO} . The DTO circuit timer starts on a falling edge on TXD. The DTO circuit disables the CAN bus driver if no rising edge is seen before the timeout period expires. This frees the bus for communication between other nodes on the network. The CAN driver is re-activated when a recessive signal is seen on the TXD terminal, thus clearing the TXD DTO condition. The receiver and RXD terminal still reflect activity on the CAN bus, and the bus terminals are biased to the recessive level during a TXD dominant timeout.

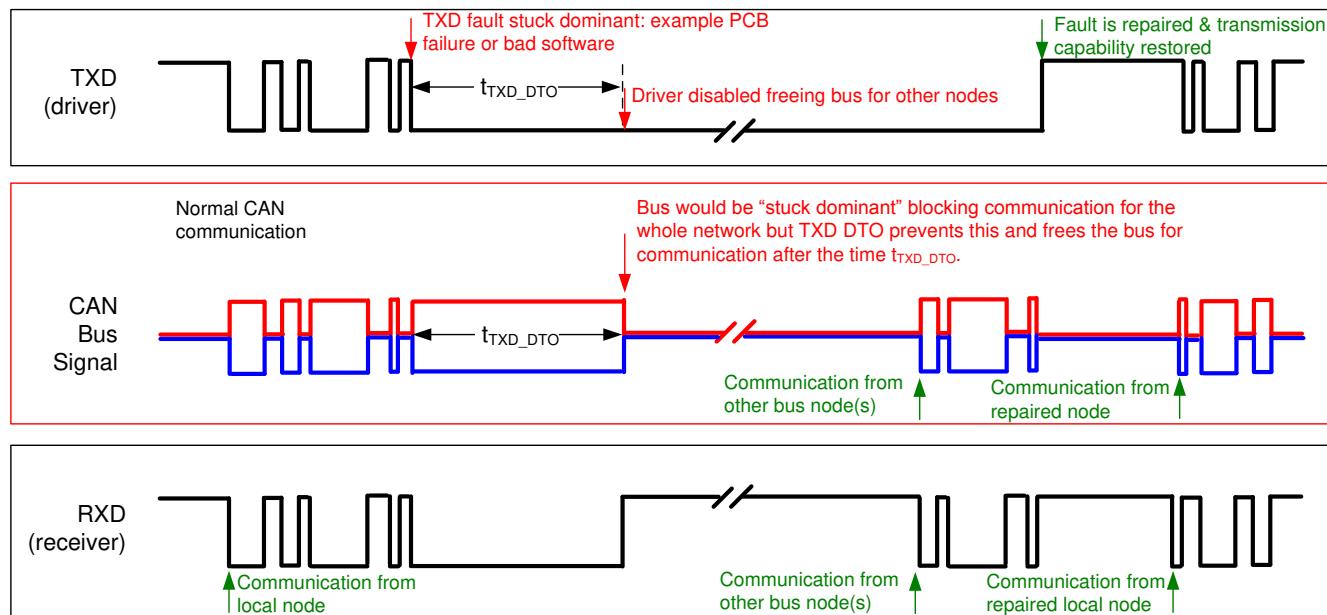


图 9-1. Example Timing Diagram for TXD DTO

备注

The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the t_{TXD_DTO} minimum, limits the minimum data rate. Calculate the minimum transmitted data rate by: Minimum Data Rate = $11 / t_{TXD_DTO}$.

9.3.2 Thermal Shutdown (TSD)

If the junction temperature of the device exceeds the thermal shutdown threshold (T_{TSD}), the device turns off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops at least the thermal shutdown hysteresis temperature (T_{TSD_HYS}) below the thermal shutdown temperature (T_{TSD}) of the device.

9.3.3 Undervoltage Lockout

The supply terminals have undervoltage detection that places the device in protected mode. This protects the bus during an undervoltage event on either the V_{CC} or V_{IO} supply terminals.

表 9-1. Undervoltage Lockout 5 V Only Devices (Devices without the "V" Suffix)

V_{CC}	DEVICE STATE ⁽¹⁾	BUS OUTPUT	RXD
$> UV_{VCC}$	Normal	Per TXD	Mirrors Bus ⁽²⁾
$< UV_{VCC}$	Protected	High Impedance	High Impedance

(1) See the V_{IT} section of the Electrical Characteristics.

(2) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.

表 9-2. Undervoltage Lockout I/O Level Shifting Devices (Devices with the "V" Suffix)

V_{CC}	V_{IO}	DEVICE STATE	BUS OUTPUT	RXD
$> UV_{VCC}$	$> UV_{VIO}$	Normal	Per TXD	Mirrors Bus ⁽¹⁾
$< UV_{VCC}$	$> UV_{VIO}$	STB = High: Standby Mode	Recessive	Bus Wake RXD Request ⁽²⁾
		STB = Low: Protected Mode	High Impedance	High (Recessive)
$> UV_{VCC}$	$< UV_{VIO}$	Protected	High Impedance	High Impedance
$< UV_{VCC}$	$< UV_{VIO}$	Protected	High Impedance	High Impedance

(1) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.

(2) Refer to [节 9.4.3.1](#)

备注

After an undervoltage condition is cleared and the supplies have returned to valid levels, the device typically resumes normal operation within 50 μ s.

9.3.4 Unpowered Device

The device is designed to be 'ideal passive' or 'no load' to the CAN bus if it is unpowered. The bus terminals (CANH, CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the bus. This is critical if some nodes of the network are unpowered while the rest of the network remains in operation. The logic terminals also have extremely low leakage currents when the device is unpowered to avoid loading down other circuits that may remain powered.

9.3.5 Floating Terminals

These devices have internal pull ups on critical terminals to place the device into known states if the terminals float. The TXD terminal is pulled up to V_{CC} or V_{IO} to force a recessive input level if the terminal floats. The STB terminal is also pulled up to force the device into low power Standby mode if the terminal floats.

9.3.6 CAN Bus Short Circuit Current Limiting

The device has two protection features that limit the short circuit current when a CAN bus line is short-circuit fault condition: driver current limiting (both dominant and recessive states) and TXD dominant state time out to prevent permanent higher short circuit current of the dominant state during a system fault. During CAN communication the bus switches between dominant and recessive states, thus the short circuit current may be viewed either as the instantaneous current during each bus state or as an average current of the two states. For system current (power supply) and power considerations in the termination resistors and common-mode choke ratings, use the average short circuit current. Determine the ratio of dominant and recessive bits by the data in the CAN frame plus the following factors of the protocol and PHY that force either recessive or dominant at certain times:

- Control fields with set bits
- Bit stuffing
- Interframe space

- TXD dominant time out (fault case limiting)

These ensure a minimum recessive amount of time on the bus even if the data field contains a high percentage of dominant bits. The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short circuit currents. The average short circuit current may be calculated with the following formula:

$$I_{OS(AVG)} = \%Transmit \times [(\%REC_Bits \times I_{OS(ss)}_{REC}) + (\%DOM_Bits \times I_{OS(ss)}_{DOM})] + [\%Receive \times I_{OS(ss)}_{REC}] \quad (1)$$

Where:

- $I_{OS(AVG)}$ is the average short circuit current
- $\%Transmit$ is the percentage the node is transmitting CAN messages
- $\%Receive$ is the percentage the node is receiving CAN messages
- $\%REC_Bits$ is the percentage of recessive bits in the transmitted CAN messages
- $\%DOM_Bits$ is the percentage of dominant bits in the transmitted CAN messages
- $I_{OS(ss)}_{REC}$ is the recessive steady state short circuit current
- $I_{OS(ss)}_{DOM}$ is the dominant steady state short circuit current

备注

Consider the short circuit current and possible fault cases of the network when sizing the power ratings of the termination resistance and other network components.

9.3.7 Digital Inputs and Outputs

9.3.7.1 Devices with V_{CC} Only (Devices without the "V" Suffix):

The 5-V V_{CC} only devices are supplied by a single 5-V rail. The digital inputs have TTL input thresholds and are therefore 5 V and 3.3 V compatible. The RXD outputs on these devices are driven to the V_{CC} rail for logic high output. Additionally, the TXD and STB pins are internally pulled up to V_{CC} . The internal bias of the mode pins may only place the device into a known state if the terminals float, they may not be adequate for system-level biasing during transients or noisy environments.

备注

TXD pull up strength and CAN bit timing require special consideration when these devices are used with CAN controllers with an open-drain TXD output. An adequate external pull up resistor must be used to ensure that the CAN controller output of the microcontroller maintains adequate bit timing to the TXD input.

9.3.7.2 Devices with V_{IO} I/O Level Shifting (Devices with "V" Suffix):

These devices use a 5 V V_{CC} power supply for the CAN driver and high speed receiver blocks. These transceivers have a second power supply for I/O level-shifting (V_{IO}). This supply is used to set the CMOS input thresholds of the TXD and pins and the RXD high level output voltage. Additionally, the internal pull ups on TXD and STB are pulled up to V_{IO} .

9.4 Device Functional Modes

The device has two main operating modes: Normal mode and Standby mode. Operating mode selection is made via the STB input terminal.

表 9-3. Operating Modes

STB Terminal	MODE	DRIVER	RECEIVER	RXD Terminal
LOW	Normal Mode	Enabled (ON)	Enabled (ON)	Mirrors Bus State ⁽¹⁾
HIGH	Standby Mode	Disabled (OFF)	Disabled (OFF) (Low Power Bus Monitor is Active)	High (Unless valid WUP has been received)

(1) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.

9.4.1 CAN Bus States

The CAN bus has two states during powered operation of the device: *dominant* and *recessive*. A dominant bus state is when the bus is driven differentially, corresponding to a logic low on the TXD and RXD terminal. A recessive bus state is when the bus is biased to $V_{CC} / 2$ via the high-resistance internal input resistors R_{IN} of the receiver, corresponding to a logic high on the TXD and RXD terminals.

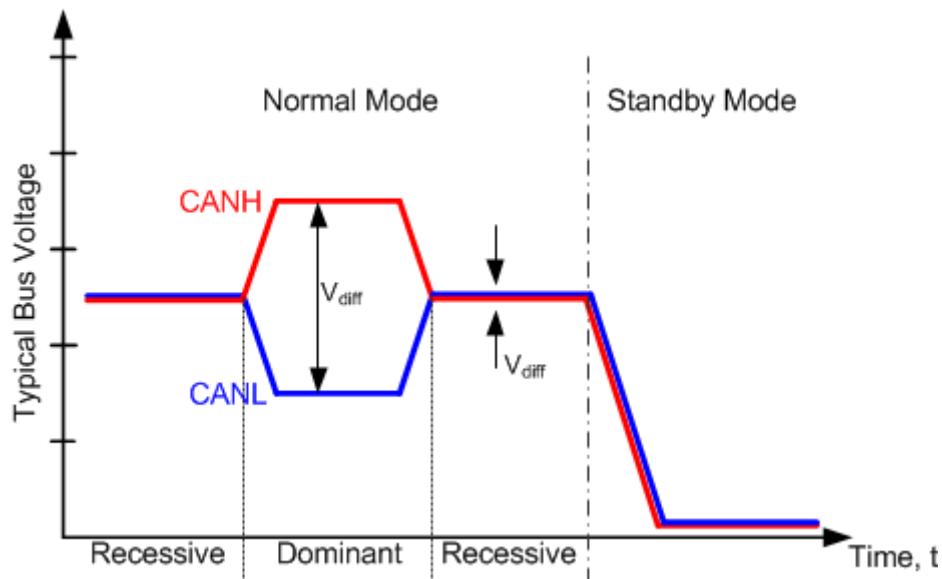
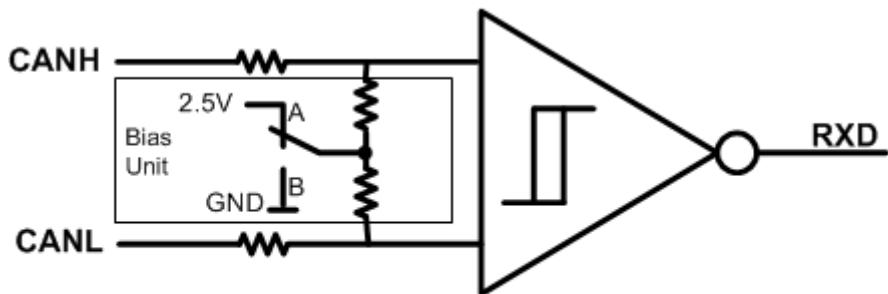



图 9-2. Bus States (Physical Bit Representation)

A: Normal Modes
 B: Standby Mode (Low Power)

图 9-3. Bias Unit (Recessive Common Mode Bias) and Receiver

9.4.2 Normal Mode

Select the *Normal mode* of device operation by setting STB terminal low. The CAN driver and receiver are fully operational and CAN communication is bi-directional. The driver translates a digital input on TXD to a differential output on CANH and CANL. The receiver translates the differential signal from CANH and CANL to a digital output on RXD.

9.4.3 Standby Mode

Activate low power Standby mode by setting STB terminal high. In this mode the bus transmitter will not send data nor will the normal mode receiver accept data as the bus lines are biased to ground minimizing the system supply current. Only the low power receiver will be actively monitoring the bus for activity. RXD indicates a valid wake up event after a wake-up pattern (WUP) has been detected on the Bus. The low power receiver is powered using only the V_{IO} pin. This allows V_{CC} to be removed reducing power consumption further.

9.4.3.1 Remote Wake Request via Wake Up Pattern (WUP) in Standby Mode

The TCAN1042 family offers a remote wake request feature that is used to indicate to the host microcontroller that the bus is active and the node should return to normal operation.

These devices use the multiple filtered dominant wake up pattern (WUP) from the ISO11898-2 (2016) to qualify bus activity. Once a valid WUP has been received the wake request will be indicated to the microcontroller by a falling edge and low corresponding to a "filtered" dominant on the RXD output terminal.

The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second filtered dominant pulse. These filtered dominant, recessive, dominant pulses do not need to occur in immediate succession. There is no timeout that will occur between filtered bits of the WUP. Once a full WUP has been detected the device will continue to drive the RXD output low every time an additional filtered dominant signal is received from the bus.

For a dominant or recessive signal to be considered "filtered", the bus must continually remain in that state for more than t_{WK_FILTER} . Due to variability in the t_{WK_FILTER} , the following three scenarios can exist:

1. Bus signals that last less than $t_{WK_FILTER(MIN)}$ will never be detected as part of a valid WUP
2. Bus signals that last more than $t_{WK_FILTER(MIN)}$ but less than $t_{WK_FILTER(MAX)}$ may be detected as part of a valid WUP
3. Bus signals that last more than $t_{WK_FILTER(MAX)}$ will always be detected as part of a valid WUP

Once the first filtered dominant signal is received, the device is now waiting on a filtered recessive signal, other bus traffic will not reset the bus monitor. Once the filtered recessive signal is received, the monitor is now waiting on a second filtered dominant signal, and again other bus traffic will not reset the monitor. After reception of the full WUP, the device will transition to driving the RXD output pin low for the remainder of any dominant signal that remains on the bus for longer than t_{WK_FILTER} .

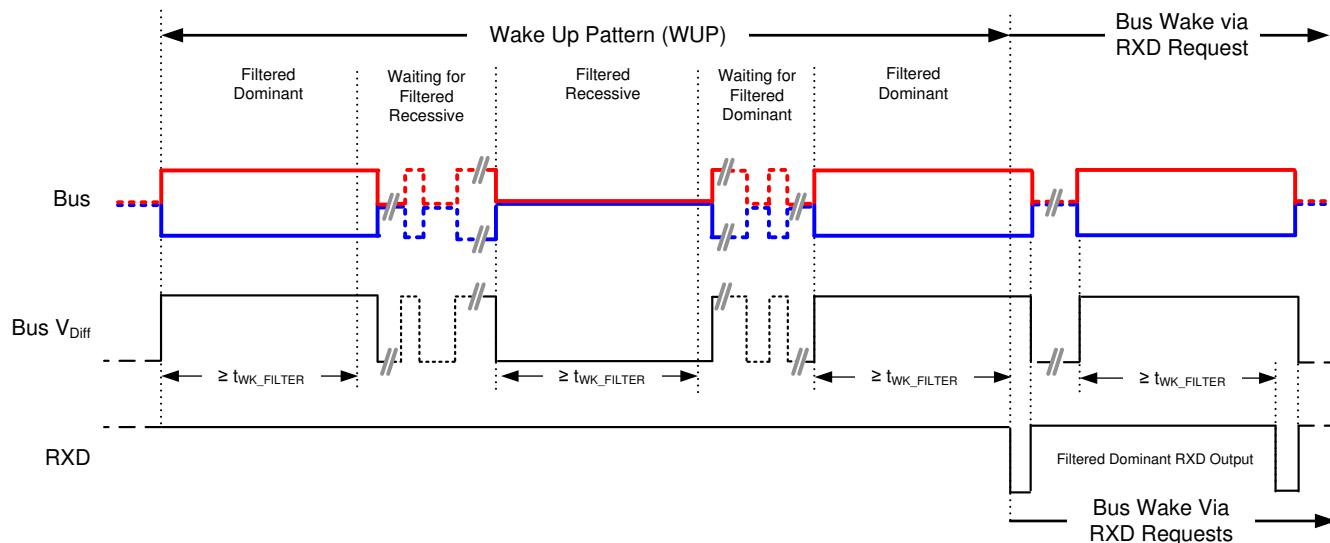


图 9-4. Wake Up Pattern (WUP)

9.4.4 Driver and Receiver Function Tables

表 9-4. Driver Function Table

DEVICE	INPUTS		OUTPUTS		DRIVEN BUS STATE
	STB ⁽¹⁾	TXD ^{(1) (2)}	CANH ⁽¹⁾	CANL ⁽¹⁾	
All Devices	L	L	H	L	Dominant
		H or Open	Z	Z	Recessive
	H or Open	X	Z	Z	Recessive

(1) H = high level, L = low level, X = irrelevant, Z = common mode (recessive) bias to $V_{CC} / 2$. See [CAN Bus States](#) for bus state and common mode bias information.
 (2) Devices have an internal pull up to V_{CC} or V_{IO} on TXD terminal. If the TXD terminal is open, the terminal is pulled high and the transmitter remain in recessive (non-driven) state.

表 9-5. Receiver Function Table

DEVICE MODE	CAN DIFFERENTIAL INPUTS $V_{ID} = V_{CANH} - V_{CANL}$	BUS STATE	RXD TERMINAL ⁽¹⁾
Normal	$V_{ID} \geq V_{IT+}(MAX)$	Dominant	L ⁽²⁾
	$V_{IT-}(MIN) < V_{ID} < V_{IT+}(MAX)$?	? ⁽²⁾
	$V_{ID} \leq V_{IT-}(MIN)$	Recessive	H ⁽²⁾
	Open ($V_{ID} \approx 0$ V)	Open	H

(1) H = high level, L = low level, ? = indeterminate.
 (2) See [Receiver Electrical Characteristics](#) section for input thresholds.

10 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围，TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计，以确保系统功能。

10.1 Application Information

These CAN transceivers are typically used in applications with a host microprocessor or FPGA that includes the data link layer portion of the CAN protocol. Below are typical application configurations for both 5 V and 3.3 V microprocessor applications. The bus termination is shown for illustrative purposes.

10.2 Typical Applications

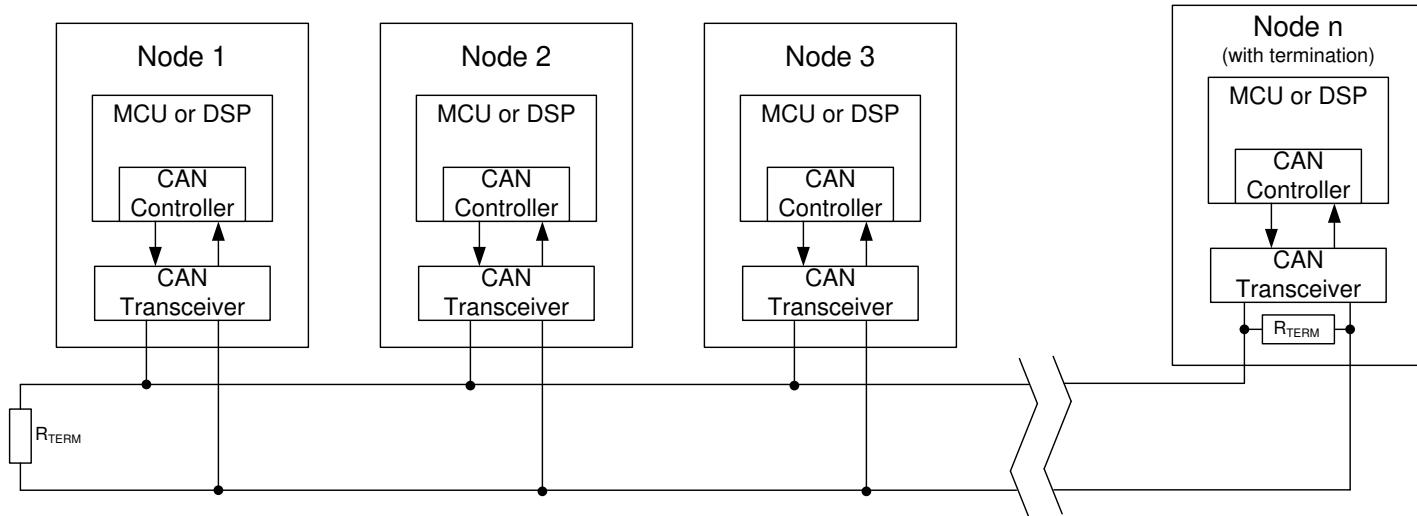


图 10-1. Typical CAN Bus Application

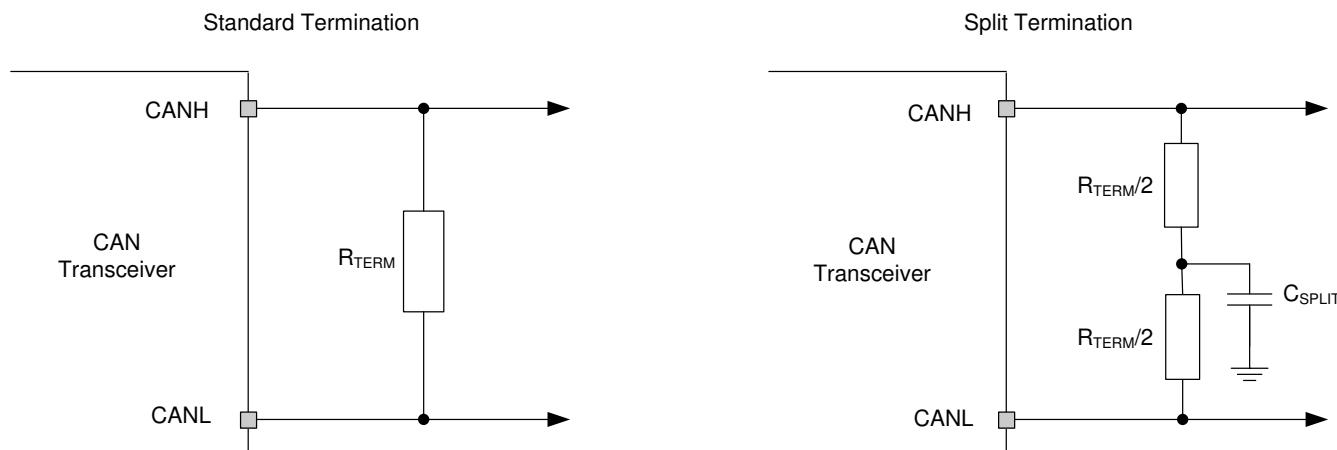
10.2.1 Design Requirements

10.2.1.1 Bus Loading, Length and Number of Nodes

The ISO 11898-2 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A large number of nodes requires transceivers with high input impedance such as the TCAN1042 family of transceivers.

Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898-2. They have made system-level trade-offs for data rate, cable length, and parasitic loading of the bus. Examples of some of these specifications are ARINC825, CANopen, DeviceNet and NMEA2000.

The TCAN1042 family is specified to meet the 1.5 V requirement with a 50Ω load, incorporating the worst case including parallel transceivers. The differential input resistance of the TCAN1042 family is a minimum of $30\text{ k}\Omega$. If 100 TCAN1042 family transceivers are in parallel on a bus, this is equivalent to a 300Ω differential load worst case. That transceiver load of $300\ \Omega$ in parallel with the 60Ω gives an equivalent loading of $50\ \Omega$. Therefore, the TCAN1042 family theoretically supports up to 100 transceivers on a single bus segment. However, for CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings, network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes is typically much lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m by careful system design and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.


This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO 11898-2 CAN standard. In using this flexibility comes the responsibility of good network design and balancing these tradeoffs.

10.2.2 Detailed Design Procedures

10.2.2.1 CAN Termination

The ISO 11898 standard specifies the interconnect to be a twisted pair cable (shielded or unshielded) with $120\ \Omega$ characteristic impedance (Z_0). Resistors equal to the characteristic impedance of the line should be used to terminate both ends of the cable to prevent signal reflections. Unterminated drop lines (stubs) connecting nodes to the bus should be kept as short as possible to minimize signal reflections. The termination may be on the cable or in a node, but if nodes may be removed from the bus, the termination must be carefully placed so that two terminations always exist on the network.

Termination may be a single $120\ \Omega$ resistor at the end of the bus, either on the cable or in a terminating node. If filtering and stabilization of the common mode voltage of the bus is desired, then split termination may be used. (See [图 10-2](#)). Split termination improves the electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common-mode voltages at the start and end of message transmissions.

Copyright © 2016, Texas Instruments Incorporated

图 10-2. CAN Bus Termination Concepts

The family of transceivers have variants for both 5-V only applications and applications where level shifting is needed for a 3.3-V microcontroller.

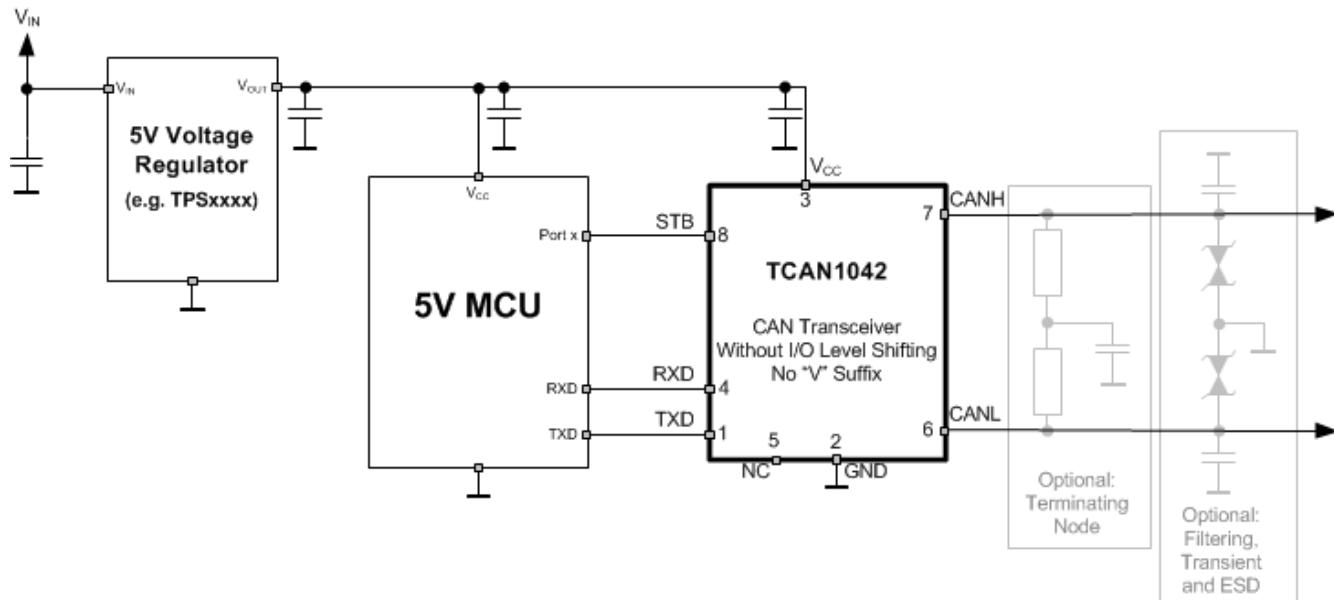


图 10-3. Typical CAN Bus Application Using 5V CAN Controller

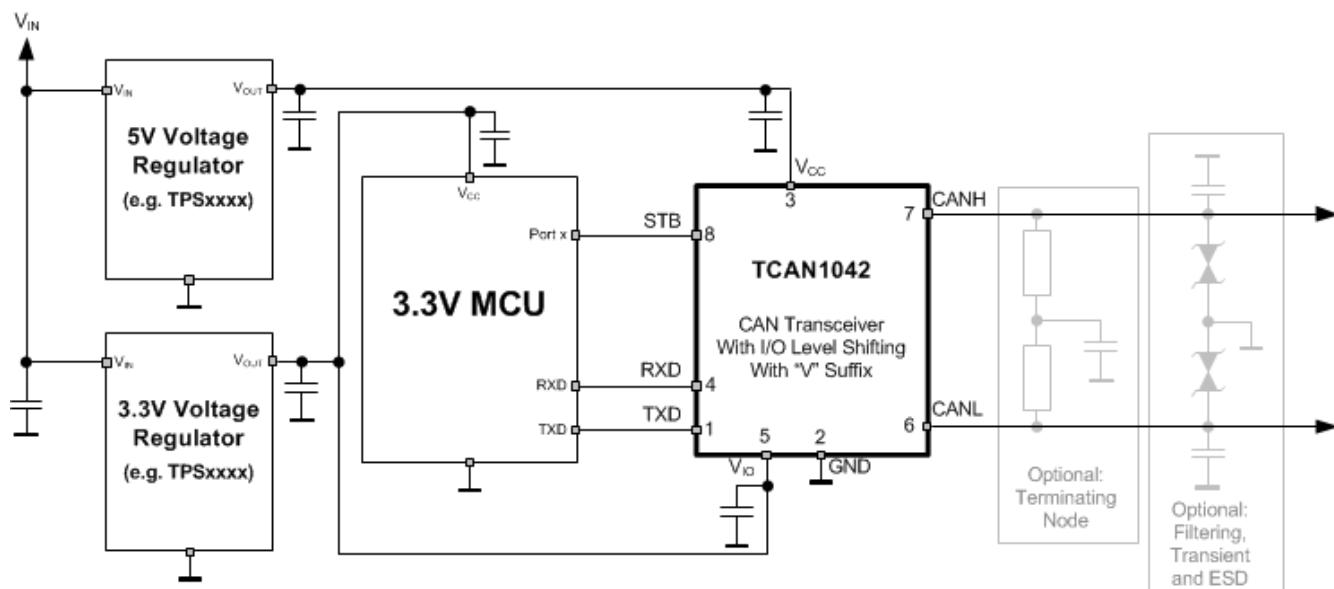


图 10-4. Typical CAN Bus Application Using 3.3 V CAN Controller

10.2.3 Application Curves

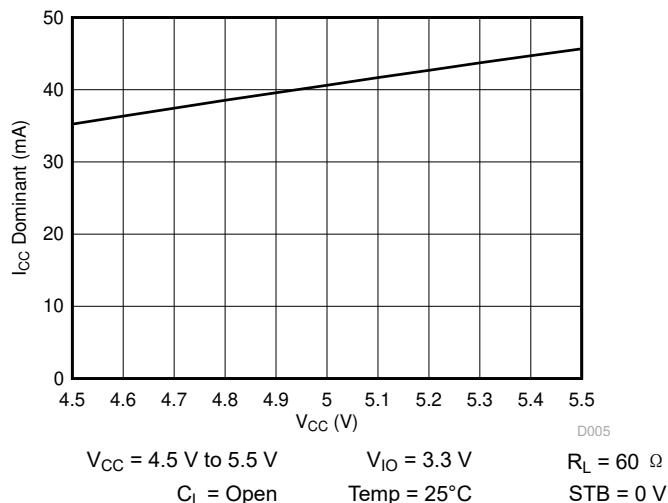


图 10-5. I_{CC} Dominant Current over V_{CC} Supply Voltage

11 Power Supply Recommendations

These devices are designed to operate from a V_{CC} input supply voltage range between 4.5 V and 5.5 V. Some devices have an output level shifting supply input, V_{IO} , designed for a range between 3 V and 5.5 V. Both supply inputs must be well regulated. A bulk capacitance, typically $4.7 \mu\text{F}$, should be placed near the CAN transceiver's main V_{CC} supply output, and in addition a bypass capacitor, typically $0.1 \mu\text{F}$, should be placed as close to the device V_{CC} and V_{IO} supply terminals. This helps to reduce supply voltage ripple present on the outputs of the switched-mode power supplies and also helps to compensate for the resistance and inductance of the PCB power planes and traces.

Layout

Robust and reliable bus node design often requires the use of external transient protection device in order to protect against EFT and surge transients that may occur in industrial environments. Because ESD and transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency layout techniques must be applied during PCB design. The family comes with high on-chip IEC ESD protection, but if higher levels of system level immunity are desired external TVS diodes can be used. TVS diodes and bus filtering capacitors should be placed as close to the on-board connectors as possible to prevent noisy transient events from propagating further into the PCB and system.

12.1 Layout Guidelines

- Place the protection and filtering circuitry as close to the bus connector, J1, to prevent transients, ESD and noise from propagating onto the board. In this layout example a transient voltage suppression (TVS) device, D1, has been used for added protection. The production solution can be either bi-directional TVS diode or varistor with ratings matching the application requirements. This example also shows optional bus filter capacitors C4 and C5. Additionally (not shown) a series common mode choke (CMC) can be placed on the CANH and CANL lines between the transceiver U1 and connector J1.
- Design the bus protection components in the direction of the signal path. Do not force the transient current to divert from the signal path to reach the protection device.
- Use supply (V_{CC}) and ground planes to provide low inductance.

备注

High-frequency currents follows the path of least impedance and not the path of least resistance.

- Use at least two vias for supply (V_{CC}) and ground connections of bypass capacitors and protection devices to minimize trace and via inductance.
- Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver, examples are C1, C2 on the V_{CC} supply and C6 and C7 on the V_{IO} supply.
- Bus termination: this layout example shows split termination. This is where the termination is split into two resistors, R6 and R7, with the center or split tap of the termination connected to ground via capacitor C3. Split termination provides common mode filtering for the bus. When bus termination is placed on the board instead of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the bus thus also removing the termination. See the application section for information on power ratings needed for the termination resistor(s).
- To limit current of digital lines, serial resistors may be used. Examples are R2, R3, and R4. These are not required.
- Terminal 1: R1 is shown optionally for the TXD input of the device. If an open drain host processor is used, this is mandatory to ensure the bit timing into the device is met.
- Terminal 5: For "V" variants of the family, bypass capacitors should be placed as close to the pin as possible (example C6 and C7). For device options without V_{IO} I/O level shifting, this pin is not internally connected and can be left floating or tied to any existing net, for example a split pin connection.
- Terminal 8: is shown assuming the mode terminal, STB, will be used. If the device will only be used in normal mode, R4 is not needed and R5 could be used for the pull down resistor to GND.

12.2 Layout Example

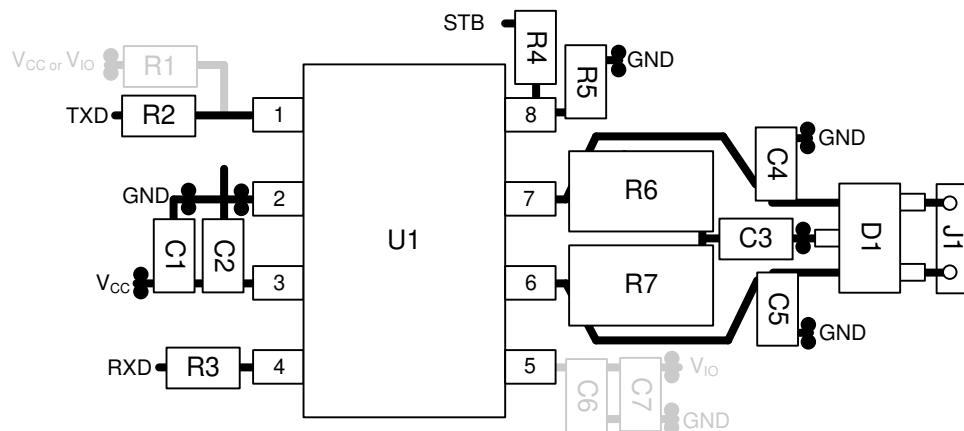


图 12-1. Layout Example

12 Device and Documentation Support

12.1 接收文档更新通知

要接收文档更新通知，请导航至 ti.com 上的器件产品文件夹。点击 [订阅更新](#) 进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

12.2 支持资源

[TI E2E™ 支持论坛](#)是工程师的重要参考资料，可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的 [《使用条款》](#)。

12.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.4 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 术语表

[TI 术语表](#) 本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TCAN1042HD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	1042	Samples
TCAN1042HDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	1042	Samples
TCAN1042HGD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	1042	Samples
TCAN1042HGDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	1042	Samples
TCAN1042HGVD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	1042V	Samples
TCAN1042HGVDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	1042V	Samples
TCAN1042HVD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	1042V	Samples
TCAN1042HVDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	1042V	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

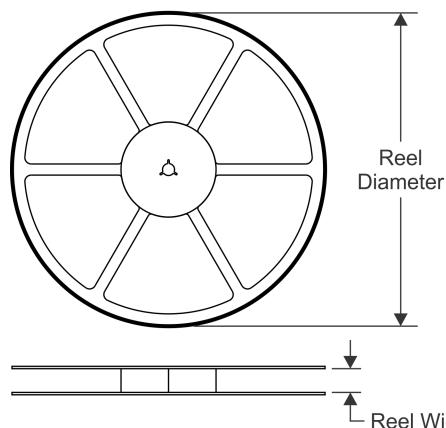
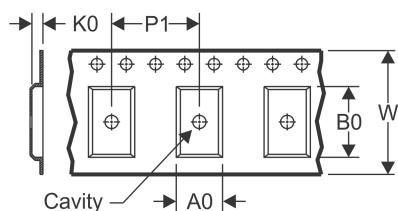
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

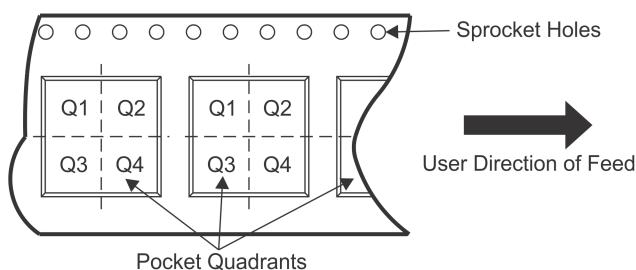
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

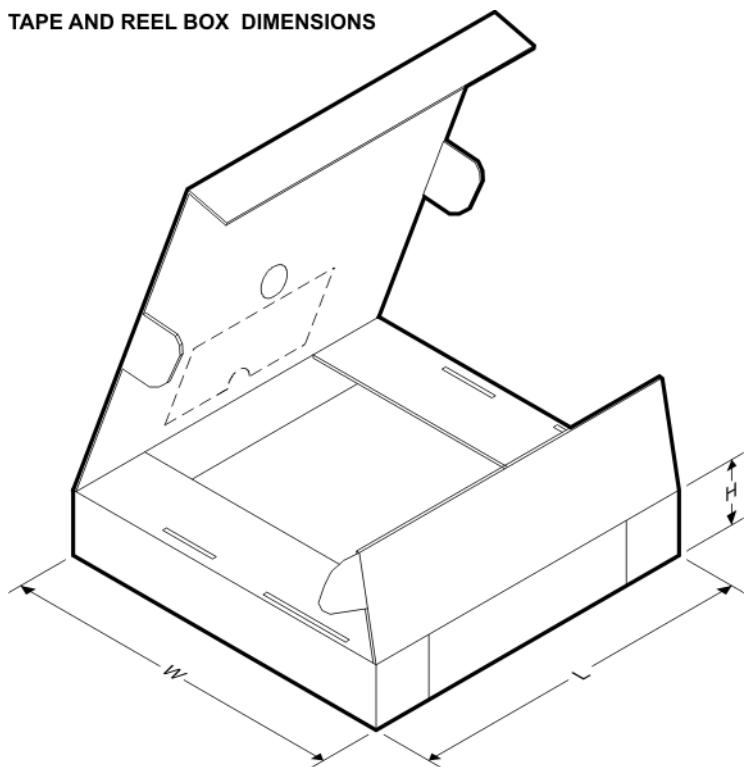


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TCAN1042H, TCAN1042HG, TCAN1042HGV, TCAN1042HV :


- Automotive : [TCAN1042H-Q1](#), [TCAN1042HG-Q1](#), [TCAN1042HGV-Q1](#), [TCAN1042HV-Q1](#)

NOTE: Qualified Version Definitions:

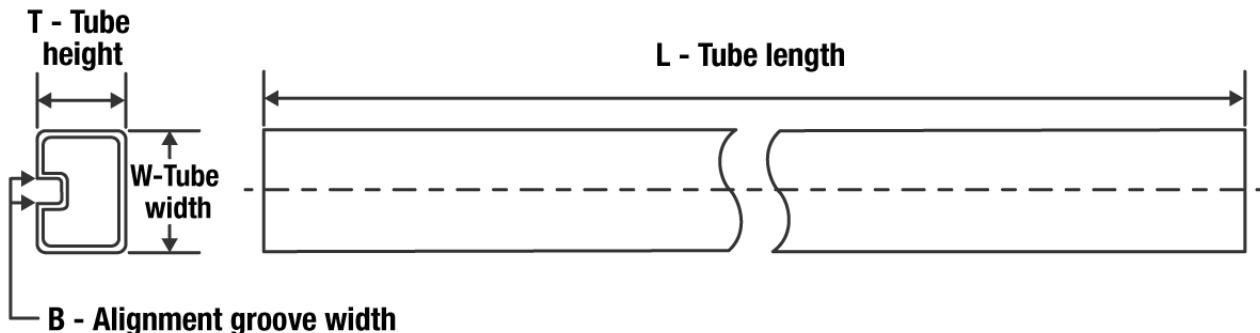
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TCAN1042HDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TCAN1042HGDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TCAN1042HGVDR	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
TCAN1042HGVDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TCAN1042HVDR	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
TCAN1042HVDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TCAN1042HDR	SOIC	D	8	2500	853.0	449.0	35.0
TCAN1042HGDR	SOIC	D	8	2500	853.0	449.0	35.0
TCAN1042HGVDR	SOIC	D	8	2500	340.5	336.1	25.0
TCAN1042HGVDR	SOIC	D	8	2500	853.0	449.0	35.0
TCAN1042HVDR	SOIC	D	8	2500	340.5	336.1	25.0
TCAN1042HVDR	SOIC	D	8	2500	853.0	449.0	35.0

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
TCAN1042HD	D	SOIC	8	75	507	8	3940	4.32
TCAN1042HGD	D	SOIC	8	75	507	8	3940	4.32
TCAN1042HGVD	D	SOIC	8	75	507	8	3940	4.32
TCAN1042HVD	D	SOIC	8	75	507	8	3940	4.32

重要声明和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成任何索赔、损害、成本、损失和债务，TI 对此概不负责。

TI 提供的产品受 [TI 的销售条款](#) 或 [ti.com](#) 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址：Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, 德州仪器 (TI) 公司