

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961

ZHCSIJ3C - JUNE 2008 - REVISED JULY 2018

ADS79xx 兼容引脚型 12/10/8 位、1MSPS、16/12/8/4 通道、 单端、 串行 接口 ADC

- 1 特性
- 1MHz 采样率串行器件
- 12/10/8 位分辨率产品系列
- 零等待时间
- **20MHz** 串行接口
- 模拟电源范围: 2.7V 至 5.25V
- I/O 电源范围: 1.7V 至 5.25V
- 两个软件可选择单极,输入范围: 0 到 V_{RFF} 和 0 到 2 x V_{RFF}
- 针对通道选择的自动和手动模式
- 4 通道、8 通道器件和 12 通道、16 通道器件大小 相同
- 每通道两个可编程警报级别
- TSSOP 封装中四个可独立配置的 GPIO: VQFN 封装中一个 GPIO
- 典型功率耗散值: 1MSPS下为14.5 mW (+VA = 5 V, +VBD = 3 V)
- 断电电流(1μA)
- 输入带宽(3db时为47MHz)
- 38 引脚、30 引脚 TSSOP 和 32 引脚、24 引脚 **VQFN** 封装
- 2 应用
- PLC/IPC
- 光线路卡监控
- 医疗仪表
- 数字电源
- 多通道通用信号监控
- 高速数据采集系统
- 高速闭合回路系统

详细方框图

3 说明

🥭 Tools &

Software

ADS79xx 是一个 12/10/8 位引脚兼容型多通道模数转 换器系列。器件比较表显示了此产品系列中的所有 12 款器件。

这些器件包含一个基于电容器的 SAR 模数转换器,具 有固有的采样保持。

这些器件接受从 2.7V 到 5.25V 的宽模拟电源范围。极 低功耗使这些器件适用于电池供电和隔离电源 应用。

1.7V 到 5.25V 的宽 I/O 电源范围使这些器件可以无缝 连接最常用的数字主机。为了便于与微控制器和数字信 号处理器(DSP)的连接,此出口受CS和SCLK控制。

此输入信号在CS的下降边沿上进行采样。它使用 SCLK进行转换,串行数据输出,和读取串行数据。这 些器件还可对预选择的通道进行自动定序或为下一转换 周期手动选择通道。

有两种软件可选择输入范围(OV 到 VREF 和 OV 到 2× V_{RFE}),可独立配置的 GPIO (对于 TSSOP 为 4 个, VQFN 封装器件上有 1 个) 以及每通道 2 个可编 程警报阈值。这些 特性 使得这些器件适用于大多数数 据采集 应用。

这些器件具备强大的断电特性。当器件以较低转换速度 运行时,此特性非常有助于节能。

此系列中的 16 通道、12 通道器件采用 38 引脚 TSSOP 和 32 引脚 VQFN 封装, 4/8 通道器件采用 30 引脚 TSSOP 和 24 引脚 VQFN 封装。

器件信息の								
器件型号	封装	封装尺寸(标称值)						
	TSSOP (30)	7.80mm × 4.40mm						
ADS79xx	VQFN (24)	4.00mm x 4.00mm						
ADS/9XX	TSSOP (38)	9.70mm x 4.40mm						
	VQFN (32)	5.00mm × 5.00mm						

四 //. /上 占 (1)

(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961

特性......1

应用......1

说明......1

修订历史记录 2

器件比较表......5

Pin Configuration and Functions 5

7.4 Thermal Information: TSSOP...... 11

7.5 Thermal Information: VQFN..... 11

Electrical Characteristics: ADS7950, ADS7951, ADS7952, ADS7953 12

Electrical Characteristics, ADS7954, ADS7955,

Electrical Characteristics, ADS7958, ADS7959,

7.9 Timing Requirements 17

7.11 Typical Characteristics (12-Bit Devices Only)...... 21

7.12 Typical Characteristics (12-Bit Devices Only)...... 27

7.10 Typical Characteristics (All ADS79xx Family

Absolute Maximum Ratings 10

ESD Ratings...... 10

Recommended Operating Conditions 10

ADS7956, ADS7957 14

ADS7960, ADS7961 15

ZHCSIJ3C -JUNE 2008-REVISED JULY 2018

1

2

3

4

5

6

7

7.1

7.2

7.3

76

7.7

7.8

目录

8	Detai	iled Description	28
	8.1	Overview	28
	8.2	Functional Block Diagram	29
	8.3	Feature Description	29
	8.4	Device Functional Modes	29
	8.5	Programming	41
9	Appli	ication and Implementation	46
	9.1	Application Information	46
	9.2	Typical Applications	48
10	Pow	er Supply Recommendations	51
11	Layo	out	52
	11.1	Layout Guidelines	52
	11.2	Layout Examples	52
12	器件	和文档支持	54
	12.1	文档支持	54
	12.2	相关链接	54
	12.3	接收文档更新通知	54
	12.4	社区资源	54
	12.5	商标	54
	12.6	静电放电警告	54
	12.7	术语表	54
13	机械	、封装和可订购信息	55

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Changes from Revision B (July 2015) to Revision C

2	版权 © 2008–2018. Texas Instruments Incorp	orated
•	Added input to Reference input resistance parameter name	14
•	Changed VBD = 1.7 V to 5.25 V to VBD = 1.7 V to +VA in condition statement	
•	Changed unit from Numbers to Conversion in Invalid conversions after power up or reset parameter	
•	Changed maximum specification from FFC Hex to 4092 LSB in Alarm Setting parameters	
•	Added input to Reference input resistance parameter name	
•	Changed minimum specification from -1 LSB to -0.99 LSB in first row of <i>Differential linearity</i> parameter	
•	Changed VBD = 1.7 V to 5.25 V to VBD = 1.7 V to +VA in condition statement.	
•	Changed value of Input current to any pin except supply pins row from ±10 mA (max) to -10 mA (min) and 10 mA (max) in Absolute Maximum Ratings table	
•	Changed pin name and description of Alarm pin in <i>Pin Functions: VQFN Packages</i> table	9
•	Added active low to description of CS pin in Pin Functions: VQFN Packages table	
•	Added settings to description of Range pin in <i>Pin Functions: TSSOP Packages</i> table: added (1) to high and (0) to low	
•	Changed pin name and description of Alarm pin in <i>Pin Functions: TSSOP Packages</i> table	
•	Added active low to definition of CS pin in Pin Functions: TSSOP Packages table	
•	Changed I/O column of <i>Pin Functions: TSSOP Packages</i> table to show full definition instead of abbreviation	
•	Added 30-pin DBT package	
•	Changed RGE to RHB for two 32-pin VQFN pin diagrams	
•	已删除 配套产品 表	
•	已更改将(OV到2.5V和OV到5V)更改为(OV到V _{REF} 和OV到2×V _{REF})(在说明部分中)	
•	已更改光线路卡监控和多通道通用信号监控应用要点	
•	已更改 GPIO 特性项目符号	
•	已更改 将 0 到 2.5V 和 0 到 5V 更改为 0 到 V _{REF} 和 0 到 2 x V _{REF} (在 输入范围 特性 项目中)	1

www.ti.com.cn

Page

TEXAS INSTRUMENTS

www.ti.com.cn

修订历史记录 (接下页)

•	Changed maximum specification from FFC Hex to 4092 LSB in Alarm Setting parameters 14
•	Changed VBD = 1.7 V to 5.25 V to VBD = 1.7 V to +VA in condition statement
•	Added input to Reference input resistance parameter name 16
•	Changed maximum specification from FF Hex to 255 LSB in Alarm Setting parameters
•	Changed unit from Numbers to Conversion in Invalid conversions after power up or reset parameter
•	Changed REF and GND pins to REFP and REFM pins in the Reference section
•	Added Example Manual Mode Timing Diagram figure and corresponding text to Operating in Manual Mode section 33
•	Added Example Auto-1 Mode Timing Diagram figure and corresponding text to the Operating in Auto-1 Mode section
•	Added Example Auto-2 Mode Timing Diagram figure and corresponding text to the Operating in Auto-2 Mode section
•	Changed 2.5V to V _{REF} in first DI06 row and 5V to 2xV _{REF} in second DI06 row
•	Changed binary code from 0001 1111 1111 to 0011 1111 1111 in Full scale row of Ideal Input Voltages for 10-Bit Devices and Digital Output Codes for 10-Bit Devices (ADS7954/55/56/57) table
•	Changed 10-Bit to 8-Bit in title of Ideal Input Voltages for 8-Bit Devices and Digital Output Codes for 8-Bit Devices (ADS7958/59/60/61) table
•	Changed Application Diagram for an Unbuffered MXO figure note
•	Changed Recommended Layout figure title to Recommended Layout for the TSSOP Packaged Device
•	Added Recommended Layout for the VQFN Packaged Device figure

Changes from Revision A (April 2010) to Revision B

•	已添加添加了 ESD 额定值表、	特性 说明 部分,	器件功能模式,	应用和实施 部分,	<i>电源建议</i> 部分,	布局 部分,	器件
	和文档支持部分以及机械、封续	装和可订购信息 部分	分				1

Changes from Original (June 2008) to Revision A

•	已添加 将 QFN 信息添加到 特性	
•	已添加 将 QFN 信息添加到了 说明	1
•	Changed VEE to AGND and VCC to +VA on 38-pin TSSOP pinout	5
•	Added QFN pinout	5
•	Added QFN pinout	5
•	Added QFN pinout	
•	Added QFN pinout	
•	Added terminal functions for QFN packages	8
•	Changed ADS7950/4/8 QFN package MXO pin from 7 to 3	8
•	Added V _{REF} = 2.5 V ± 0.1 V to <i>Electrical Characteristics</i> , ADS7950/51/52/53	12
•	Added while 2V _{REF} ≤ +VA to full-scale input span range 2 test conditions	12
•	Added while 2V _{REF} ≤ +VA to Absolute input range span range 2 test conditions	
•	Added Total unadjusted error (TUE) specification	12
•	Changed reference voltage at REFP min and max values	13
•	Added Note to Electrical Characteristics, ADS7950/51/52/53	13
•	Added V _{REF} = 2.5 V ± 0.1 V to <i>Electrical Characteristics</i> , ADS7954/55/56/57 test conditions	14
•	Added while 2V _{REF} ≤ +VA to full-scale input span range 2 test conditions	14
•	Added while 2V _{REF} ≤ +VA to full-scale input span range 2 test conditions	14
•	Changed V _{ref} reference voltage at REFP min value from 2.49 V to 2.0 V	14
•	Changed V _{ref} reference voltage at REFP max value from 2.51 V to 3.0 V	14

Page

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961 ZHCSIJ3C – JUNE 2008–REVISED JULY 2018

TEXAS INSTRUMENTS

www.ti.com.cn

•	Added $V_{ref} = 2.5 V \pm 0.1 V$ to <i>Electrical Characteristics</i> , ADS7958/59/60/61 test conditions	
•	Added while 2V _{REF} ≤ +VA to full-scale input span range 2 test conditions	15
•	Added while 2V _{REF} ≤ +VA to full-scale input span range 2 test conditions	15
•	Changed V _{ref} reference voltage at REFP min value from 2.49 V to 2.0 V	16
•	Changed V _{ref} reference voltage at REFP max value from 2.51 V to 3.0 V	16
•	Changed t _{su1} values from max to min	17
•	Changed t _{su2} values from max to min	17
•	Added TOTAL UNADJUSTED ERROR (TUE Max) graph	
•	Added TOTAL UNADJUSTED ERROR (TUE Min) graph	25
•	Changed GPIO pins description	28
•	Added device powerdown through GPIO in the case of the TSSOP packaged devices	28
•	Added note to Table 1	33
•	Added note to Table 2	36
•	Added note to Table 5	40
•	Added note to Programming GPIO Registers description	42
•	Added QFN information to Table 11	43
•	Changed DI12 = 1? from No or No to Yes or No in Figure 59	44
•	Added note to Figure 60	46

5 器件比较表

通道数量	分辨率						
也但奴里	12 位	10 位	8 位				
16	ADS7953	ADS7957	ADS7961				
12	ADS7952	ADS7956	ADS7960				
8	ADS7951	ADS7955	ADS7959				
4	ADS7950	ADS7954	ADS7958				

6 Pin Configuration and Functions

DBT Package 38-Pin TSSOP Top View

GPIO2	[1		38 GPIO1	GPIO2	1			38 (GPIO1
GPIO3	2		37 GPIO0	GPIO3	2		Ē	37 (GPIO0
REFM	3		36 +VBD	REFM	3		ļ	36	+VBD
REFP	4		35 BDGND	REFP	4		Ē	35	BDGND
+VA	5		34 SDO	+VA	5		2	34	SDO
AGND	6		33 SDI	AGND	6		Ē	33	SDI
MXO	7		32 SCLK	MXO	7		Ē	32	SCLK
AINP	8		31 CS	AINP	8		Ē	31	CS
AINM	9	ADS7952	30 AGND	AINM	9	795 795		30 /	AGND
AGND	10	ADS7956 ADS7960	29 +VA	AGND	10	796		29	+VA
NC	11		28 CH0	CH15	11		Ē	28 (CH0
NC	12		27 CH1	CH14	12		Ē	27 (CH1
NC	13		26 CH2	CH13	13		1	26 (CH2
NC	14		25 CH3	CH12	14			25 (СНЗ
CH11	15		24 CH4	CH11	15		Ē	24 (CH4
CH10	16		23 CH5	CH10	16		1	23 (CH5
CH9	17		22 CH6	CH9	17		1	22	CH6
CH8	18		21 CH7	CH8	18		1	21	CH7
AGND	19		20 AGND	AGND	19		1	20	AGND
			1				_		

DBT Package 30-Pin TSSOP Top View

GPIO2	1		30 GPIO1	GPIO2	1		30	GPIO1
GPI03	2		29 GPIO0	GPIO3	2		29	GPIO0
REFM	3		28 +VBD	REFM	3		28	+VBD
REFP	4		27 BDGND	REFP	4		27	BDGND
+VA	5		26 SDO	+VA	5		26	SDO
AGND	6		25 SDI	AGND	6		25	SDI
мхо	7	ADS7950	24 SCLK	MXO	7	ADS7951 ADS7955	24	SCLK
AINP	8	ADS7954 ADS7958	23 CS	AINP	8	ADS7959	23	CS
AINM	9		22 AGND	AINM	9		22	AGND
AGND	10		21 +VA	AGND	10		21	+VA
NC	11		20 CH0	CH7	11		20	CH0
CH3	12		19 NC	CH6	12		19	CH1
NC	13		18 CH1	CH5	13		18	CH2
CH2	14		17 NC	CH4	14		17	СНЗ
NC	15		16 NC	NC	15		16	NC
			J		ı			

Pin Functions: TSSOP Packages

PIN						
NAME	ADS7953 ADS7957 ADS7961	ADS7952 ADS7956 ADS7960	ADS7951 ADS7955 ADS7959	ADS7950 ADS7954 ADS7958	I/O	DESCRIPTION
REFERENCE		-				
REFP	4	4	4	4	Analog input	Reference input
REFM	3	3	3	3	Analog input	Reference ground
ADC ANALOO	g input					
AINP	8	8	8	8	Analog input	ADC input signal
AINM	9	9	9	9	Analog input	ADC input ground
MULTIPLEXE	R					
МХО	7	7	7	7	Analog output	Multiplexer output
Ch0	28	28	20	20	Analog input	Analog channel for multiplexer
Ch1	27	27	19	18	Analog input	Analog channel for multiplexer
Ch2	26	26	18	14	Analog input	Analog channel for multiplexer
Ch3	25	25	17	12	Analog input	Analog channel for multiplexer
Ch4	24	24	14	_	Analog input	Analog channel for multiplexer
Ch5	23	23	13	_	Analog input	Analog channel for multiplexer
Ch6	22	22	12	_	Analog input	Analog channel for multiplexer
Ch7	21	21	11		Analog input	Analog channel for multiplexer
Ch8	18	18	_	_	Analog input	Analog channel for multiplexer
Ch9	17	17	_	_	Analog input	Analog channel for multiplexer

www.ti.com.cn

Instruments

Texas

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961

ZHCSIJ3C -JUNE 2008-REVISED JULY 2018

Pin Functions: TSSOP Packages (continued)

		PIN				
NAME	ADS7953 ADS7957 ADS7961	ADS7952 ADS7956 ADS7960	ADS7951 ADS7955 ADS7959	ADS7950 ADS7954 ADS7958	I/O	DESCRIPTION
Ch10	16	16	_	—	Analog input	Analog channel for multiplexer
Ch11	15	15	—		Analog input	Analog channel for multiplexer
Ch12	14	—	—	—	Analog input	Analog channel for multiplexer
Ch13	13	—	_	—	Analog input	Analog channel for multiplexer
Ch14	12	_	—	—	Analog input	Analog channel for multiplexer
Ch15	11	_	_	—	Analog input	Analog channel for multiplexer
DIGITAL CON	TROL SIGNA	LS				
CS	31	31	23	23	Digital input	Chip-select input pin; active low
SCLK	32	32	24	24	Digital input	Serial clock input pin
SDI	33	33	25	25	Digital input	Serial data input pin
SDO	34	34	26	26	Digital output	Serial data output pin
GENERAL-PU	IRPOSE INPU	TS/OUTPUT	S ⁽¹⁾			
GPIO0					Digital I/O	General-purpose input or output
Alarm	37	37	29	29	Digital output	Active high alarm output. For configuration, see the <i>Programming</i> section.
GPIO1					Digital I/O	General-purpose input or output
Low alarm	38	38	30	30	Digital output	Active high output indicating low alarm
GPIO2					Digital I/O	General-purpose input or output
Range	1	1	1	1	Digital input	Selects ADC input range: High (1) -> Range 2 (0 to 2xV _{REF}) / Low (0) -> Range 1 (0 to V _{REF})
GPIO3					Digital I/O	General-purpose input or output
PD	2	2	2	2	Digital input	Active low power-down input
POWER SUP	PLY AND GRO	DUND				
+VA	5, 29	5, 29	5, 21	5, 21	_	Analog power supply
AGND	6, 10, 19, 20, 30	6, 10, 19, 20, 30	6, 10, 22	6, 10, 22	_	Analog ground
+VBD	36	36	28	28	_	Digital I/O supply
BDGND	35	35	27	27	_	Digital ground
NC PINS				1		
_	_	11, 12, 13, 14	15, 16	11, 13, 15, 16, 17, 19	_	Pins internally not connected, do not float these pins, connect these pins to ground

(1) These pins have programmable dual functionality. See Table 12 for functionality programming.

Pin Functions: VQFN Packages

PIN PIN PIN						
PIN NAME	ADS7953 ADS7957 ADS7961	ADS7952 ADS7956 ADS7960	ADS7951 ADS7955 ADS7959	ADS7950 ADS7954 ADS7958	I/O	DESCRIPTION
REFERENCE				T	r T	
REFP	31	31	24	24	Analog input	Reference input
REFM	30	30	23	23	Analog input	Reference ground
ADC ANALOG		T			I	
AINP	3	3	4	4	Analog input	ADC input signal
AINM	4	4	5	5	Analog input	ADC input ground
MULTIPLEXE	र	1				
МХО	2	2	3	3	Analog output	Multiplexer output
Ch0	20	18	13	11	Analog input	Analog-input channel for multiplexer
Ch1	19	17	12	10	Analog input	Analog-input channel for multiplexer
Ch2	18	16	11	9	Analog input	Analog-input channel for multiplexer
Ch3	17	15	10	8	Analog input	Analog-input channel for multiplexer
Ch4	16	14	9	—	Analog input	Analog-input channel for multiplexer
Ch5	15	13	8	—	Analog input	Analog-input channel for multiplexer
Ch6	14	12	7	—	Analog input	Analog-input channel for multiplexer
Ch7	13	11	6	_	Analog input	Analog-input channel for multiplexer
Ch8	12	10	_	_	Analog input	Analog-input channel for multiplexer
Ch9	11	9	_	_	Analog input	Analog-input channel for multiplexer
Ch10	10	8	_	_	Analog input	Analog-input channel for multiplexer
Ch11	9	7			Analog input	Analog-input channel for multiplexer
Ch12	8		_	—	Analog input	Analog-input channel for multiplexer
Ch13	7	_	_	_	Analog input	Analog-input channel for multiplexer
Ch14	6	_	_	_	Analog input	Analog-input channel for multiplexer
Ch15	5	_	_	_	Analog input	Analog-input channel for multiplexer
DIGITAL CON	TROL SIGNA	LS		1		
CS	23	23	16	16	Digital input	Chip-select input pin; active low
SCLK	24	24	17	17	Digital input	Serial clock input pin
SDI	25	25	18	18	Digital input	Serial data input pin

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961

ZHCSIJ3C-JUNE 2008-REVISED JULY 2018

www.ti.com.cn

Pin Functions: VQFN Packages (continued)

		PIN				
PIN NAME	ADS7953 ADS7957 ADS7961	ADS7952 ADS7956 ADS7960	ADS7951 ADS7955 ADS7959	ADS7950 ADS7954 ADS7958	I/O	DESCRIPTION
SDO	26	26	19	19	Digital output	Serial data output pin
GENERAL-PU	IRPOSE INPU	T/OUTPUT ⁽¹)			
GPIO0					Digital I/O	General purpose input or output
Alarm	29	29	22	22	Digital output	Active high alarm output. For configuration, see the <i>Programming</i> section.
POWER SUPP	PLY AND GRO	DUND				
+VA	21, 32	21, 32	1, 14	1, 14	_	Analog power supply
AGND	1, 22	1, 22	2, 15	2, 15	_	Analog ground
+VBD	28	28	21	21	_	Digital I/O supply
BDGND	27	27	20	20	_	Digital ground
NC PINS						
_	—	5, 6, 19, 20	_	6, 7, 12, 13	—	Pins internally not connected, do not float these pins, connect these pins to ground

(1) This pin has programmable dual functionality. See Table 12 for functionality programming.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

	MIN	MAX	UNIT
AINP or CHn to AGND	-0.3	VA +0.3	V
+VA to AGND, +VBD to BDGND	-0.3	7	V
Digital input voltage to BDGND	-0.3	7	V
Digital output to BDGND	-0.3	VA + 0.3	V
Input current to any pin except supply pins	-10	10	mA
Operating temperature	-40	125	°C
Junction temperature (T _J Max)		150	°C
Storage temperature (T _{stg})	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) DBT packaged versions of ADS79xx family devices are rated for MSL2 260°C per the JSTD-020 specifications and the RGE and RHB packaged versions of ADS79xx family devices are rated for MSL3 260C per JSTD-020 specifications

7.2 ESD Ratings

			VALUE	UNIT
V	V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD) Electrostatic discharge	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _(+VA)	Analog power-supply voltage	2.7	3.3	5.25	V
V _(+VBD)	Digital I/O-supply voltage	1.7	3.3	V _(+VA)	V
V _(REF)	Reference voltage	2	2.5	3	V
$f_{({\rm SCLK})}$	SCLK frequency			20	MHz
T _A	Operating temperature range	-40		125	°C

ZHCSIJ3C-JUNE 2008-REVISED JULY 2018

7.4 Thermal Information: TSSOP

		ADS	795x	
	THERMAL METRIC ⁽¹⁾	DBT (TSSOP)	DBT (TSSOP)	UNIT
		38 PINS	30 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	83.6	89.8	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	29.8	22.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	44.7	43.1	°C/W
ΨJT	Junction-to-top characterization parameter	2.9	0.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	44.1	42.5	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Thermal Information: VQFN

		ADS7953, ADS	ADS7953, ADS7957, ADS7961		
	THERMAL METRIC ⁽¹⁾	RHB (VQFN)	RGE (VQFN)	UNIT	
		32 PINS	24 PINS		
R_{\thetaJA}	Junction-to-ambient thermal resistance	40.6	36.9	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	32.1	39.3	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	13.1	14.7	°C/W	
ΨJT	Junction-to-top characterization parameter	0.8	0.7	°C/W	
Ψјв	Junction-to-board characterization parameter	13	14.8	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	5.7	5.6	°C/W	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.6 Electrical Characteristics: ADS7950, ADS7951, ADS7952, ADS7953

VA = 2.7 V to 5.25 V, VBD = 1.7 V to +VA, V_{REF} = 2.5 V \pm 0.1 V, T_A = -40°C to 125°C, f_{sample} = 1 MHz (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT					
F _1 (1)	Range 1	0		V_{REF}	V
Full-scale input span ⁽¹⁾	Range 2 while 2xV _{REF} ≤ +VA	0		$2*V_{REF}$	V
Absolute input renge	Range 1	-0.2	V_{R} $2^{*}V_{R}$ $V_{REF} + 0$ $2^{*}V_{REF} + 0$ 15 61 12 12 ± 0.5 ± 0.75 1 ± 0.75 1 ± 0.75 1 ± 0.2 ± 0.2 ± 2		V
Absolute input range	Range 2 while 2xV _{REF} ≤ +VA	-0.2	2*V _R	_{REF} + 0.2	v
Input capacitance			15		pF
Input leakage current	$T_A = 125^{\circ}C$		61		nA
SYSTEM PERFORMANCE					
Resolution			12		Bits
No missing codes	ADS795XSB ⁽²⁾	12			Bits
No missing codes	ADS795XS ⁽²⁾	11			BItS
Integral linearity	ADS795XSB ⁽²⁾	-1	±0.5	1	LSB ⁽³⁾
	ADS795XS ⁽²⁾	-1.5	±0.75	1.5	
	ADS795XSB ⁽²⁾	-0.99	± 0.5 ± 0.75 ± 0.5 ± 0.75 ± 1.1 ± 0.2	1	LSB
Differential linearity	ADS795XS ⁽²⁾	-2	±0.75	1.5	LSB
Offset error ⁽⁴⁾		-3.5	±1.1	3.5	LSB
	Range 1	-2	±0.2	2	1.00
Gain error	Range 2		±0.2	VREF 2*VREF VREF + 0.2 2*VREF + 0.2 5 1 2 5 1 5 1 5 1 5 1 5 1 3.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 300	LSB
Total unadjusted error (TUE)			±2		LSB
SAMPLING DYNAMICS					
Conversion time	20 MHz SCLK			800	ns
Acquisition time		325			ns
Maximum throughput rate	20 MHz SCLK			1	MHz
Aperture delay			5		ns
Step response			150		ns
Overvoltage recovery			150		ns

(1) Ideal input span; does not include gain or offset error.

(2) ADS795X, where X indicates 0, 1, 2, or 3.

(3) LSB means least significant bit.
(4) Measured relative to an ideal full-scale input.

Electrical Characteristics: ADS7950, ADS7951, ADS7952, ADS7953 (continued)

VA = 2.7 V to 5.25 V, VBD = 1.7 V to +VA, V_{REF} = 2.5 V ± 0.1 V, T_A = -40°C to 125°C, f_{sample} = 1 MHz (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DYNAMIC CH	ARACTERISTICS					
Total harmonic	distortion ⁽⁵⁾	100 kHz		-82		dB
Signal-to-noise ratio		100 kHz, ADS795XSB ⁽²⁾	70	71.7		
Signal-to-noise	e ratio	100 kHz, ADS795XS ⁽²⁾	70 71.7 69 71.3 68 71.3 84 47 -95 -95 -85 -85 2 2.5 100 4			dB
0	a d'atantian	100 kHz, ADS795XSB ⁽²⁾	69	82 71.7 71.7 71.3 71.3 84 47 95 85 2.5 3 100 4092 4092 4092 4092 5B First 5B First 3.3 5.25 3.3 5.25 1.8 1.05 2.3 3.3 5.25 5.3 5.25 5.25		JD
Signal-to-noise	+ distortion	100 kHz, ADS795XS ⁽²⁾	68	71.3		dB
Spurious free of	dynamic range	100 kHz		84		dB
Small signal ba	andwidth	At –3 dB		47		MHz
Channel to cha	appel crossfolk	Any off-channel with 100 kHz, Full-scale input to channel being sampled with DC input (isolation crosstalk).		-95		dB
Channel-to-channel crosstalk		From previously sampled to channel with 100 kHz, Full-scale input to channel being sampled with DC input (memory crosstalk).		-85		ŭD
EXTERNAL R	EFERENCE INPUT					
V _{REF} reference	e voltage at REFP ⁽⁶⁾		2	2.5	3	V
Reference inpu	ut resistance	At fsample = 1 MHz		100		kΩ
ALARM SETT	ING					
High threshold	range		0		4092	LSB
Low threshold	range		0		4092	LSB
DIGITAL INPU	IT/OUTPUT	•	•		,	
Logic family		CMOS				
	V _{IH}		0.7*(+VBD)			
	V _{IL}	+VBD = 5 V			0.8	
Logic level	V _{IL}	+VBD = 3 V			0.4	V
	V _{OH}	At I _{source} = 200 μA	+VBD-0.2			
	V _{OL}	At I _{sink} = 200 μA	0.4			
Data format M	SB first		M	SB First		
POWER SUPP	PLY REQUIREMENTS					
+VA supply vo	Itage		2.7	3.3	5.25	V
+VBD supply v	voltage		1.7	3.3	5.25	V
	•	At +VA = 2.7 to 3.6 V and 1 MHz throughput		1.8		
		At +VA = 2.7 to 3.6 V static state		1.05		
Supply current	(normal mode)	At +VA = 4.7 to 5.25 V and 1 MHz throughput		2.3	3	mA
		At +VA = 4.7 to 5.25 V static state		1.1	1.5	
Power-down st	tate supply current			1		μA
+VBD supply c		+VA = 5.25 V, f _s = 1MHz		1		mA
Power-up time					1	μS
-	sions after power up or				1	Conversion

(5) Calculated on the first nine harmonics of the input frequency.
(6) Device is designed to operate over V_{REF} = 2 V to 3 V. However one can expect lower noise performance at V_{ref} < 2.4 V. This is due to SNR degradation resulting from lowered signal range.

7.7 Electrical Characteristics, ADS7954, ADS7955, ADS7956, ADS7957

+VA = 2.7 V to 5.25 V, +VBD = 1.7 V to +VA, V_{REF} = 2.5 V ± 0.1 V, T_A = -40°C to 125°C, f_{sample} = 1 MHz (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
ANALOG INPUT						
Evill seals insut on an (1)	Range 1	0		V _{REF}	V	
Full-scale input span ⁽¹⁾	Range 2 while 2xV _{REF} ≤ +VA	0		$2*V_{REF}$	V	
Abaaluta input range	Range 1	-0.20	V _{RE}	V _{REF} +0.20		
Absolute input range	Range 2 while 2xV _{REF} ≤ +VA	-0.20	2*V _{RE}	F +0.20	V	
Input capacitance			15		pF	
Input leakage current	$T_A = 125^{\circ}C$		61		nA	
SYSTEM PERFORMANCE						
Resolution			10		Bits	
No missing codes		10			Bits	
Integral linearity		-0.5	±0.2	0.5	LSB ⁽²⁾	
Differential linearity		-0.5	±0.2	0.5	LSB	
Offset error ⁽³⁾		-1.5	±0.5	1.5	LSB	
	Range 1	-1	±0.1	1		
Gain error	Range 2		±0.1		LSB	
SAMPLING DYNAMICS						
Conversion time	20 MHz SCLK			800	ns	
Acquisition time		325			ns	
Maximum throughput rate	20 MHz SCLK			1	MHz	
Aperture delay			5		ns	
Step response			150		ns	
Overvoltage recovery			150		ns	
DYNAMIC CHARACTERISTICS				1		
Total harmonic distortion ⁽⁴⁾	100 kHz		-80		dB	
Signal-to-noise ratio	100 kHz	60			dB	
Signal-to-noise + distortion	100 kHz	60				
Spurious free dynamic range	100 kHz		82		dB	
Full power bandwidth	At –3 dB		47		MHz	
	Any off-channel with 100 kHz, Full-scale input to channel being sampled with DC input.		-95			
Channel-to-channel crosstalk	From previously sampled to channel with 100 kHz, Full-scale input to channel being sampled with DC input.		-85		dB	
EXTERNAL REFERENCE INPUT						
V _{REF} reference voltage at REFP		2	2.5	3	V	
Reference input resistance	fsample = 1 MHz		100		kΩ	
ALARM SETTING				1		
High threshold range		000		4092	LSB	

(1) Ideal input span; does not include gain or offset error.

(2) LSB means least significant bit.

(3) Measured relative to an ideal full-scale input.

(4) Calculated on the first nine harmonics of the input frequency.

Electrical Characteristics, ADS7954, ADS7955, ADS7956, ADS7957 (continued)

+VA = 2.7 V to 5.25 V, +VBD = 1.7 V to +VA, V_{REF} = 2.5 V ± 0.1 V, T_A = -40°C to 125°C, f_{sample} = 1 MHz (unless otherwise noted)

P.	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPL	JT/OUTPUT					
Logic family		CMOS				
	V _{IH}		0.7*(+VBD)			
	V _{IL}	+VBD = 5 V			0.8	
Logic level	V _{IL}	+VBD = 3 V			0.4	V
	V _{OH}	At I _{source} = 200 μA	+VBD-0.2			
	V _{OL}	At $I_{sink} = 200 \ \mu A$	0.4			
Data format M	SB first		MS	B First		
POWER SUP	PLY REQUIREMENTS					
+VA supply vo	ltage		2.7	3.3	5.25	V
+VBD supply v	voltage		1.7	3.3	5.25	V
		At +VA = 2.7 to 3.6 V and 1MHz throughput		1.8		
Committee and and	(At +VA = 2.7 to 3.6 V static state		1.05	1	4
Supply current	t (normal mode)	At +VA = 4.7 to 5.25 V and 1 MHz throughput		2.3	3	mA
		At +VA = 4.7 to 5.25 V static state		1.1	1.5	
Power-down s	tate supply current			1		μA
+VBD supply of	current	+VA = 5.25V, f _s = 1MHz		1		mA
Power-up time)				1	μS
Invalid convers	sions after power up or				1	Conversion

7.8 Electrical Characteristics, ADS7958, ADS7959, ADS7960, ADS7961

+VA = 2.7 V to 5.25 V, +VBD = 1.7 V to +VA, V_{REF} = 2.5 V ± 0.1 V, T_A = -40°C to 125°C, f_{sample} = 1 MHz (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT					
Full-scale input span ⁽¹⁾	Range 1	0		V_{REF}	V
Full-scale input span.	Range 2 while 2xV _{REF} ≤ +VA	0	$\begin{array}{c cccc} 0 & 2^* V_{REF} \\ 0 & V_{REF} + 0.2 \\ 0 & 2^* V_{REF} + 0.2 \\ & 15 \\ & 61 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$2*V_{REF}$	v
	Range 1	-0.20	V _{RI}	_{EF} + 0.2	N/
Absolute input range	Range 2 while 2xV _{REF} ≤ +VA	-0.20	2*V _{RI}	_{EF} + 0.2	V
Input capacitance			15		pF
Input leakage current	T _A = 125°C		61		nA
SYSTEM PERFORMANCE					
Resolution			8		Bits
No missing codes		8			Bits
Integral linearity		-0.3	±0.1	0.3	LSB ⁽²⁾
Differential linearity		-0.3	±0.1	0.3	LSB
Offset error ⁽³⁾		-0.5	±0.2	0.5	LSB
	Range 1	-0.6	±0.1	0.6	
Gain error	Range 2		±0.1		LSB

(1) Ideal input span; does not include gain or offset error.

(2) LSB means least significant bit.

(3) Measured relative to an ideal full-scale input.

Electrical Characteristics, ADS7958, ADS7959, ADS7960, ADS7961 (continued)

+VA = 2.7 V to 5.25 V, +VBD = 1.7 V to +VA, V_{REF} = 2.5 V ± 0.1 V, T_A = -40°C to 125°C, f_{sample} = 1 MHz (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SAMPLING D	YNAMICS	· · · · · · · · · · · · · · · · · · ·					
Conversion tim	ie	20 MHz SCLK			800	ns	
Acquisition time			325			ns	
Maximum throughput rate		20 MHz SCLK			1	MHz	
Aperture delay				5		ns	
Step response				150		ns	
Overvoltage re	covery			150		ns	
DYNAMIC CH	ARACTERISTICS		I				
Total harmonic	distortion ⁽⁴⁾	100 kHz		-75		dB	
Signal-to-noise	ratio	100 kHz	49			dB	
Signal-to-noise	+ distortion	100 kHz	49				
Spurious free of	dynamic range	100 kHz	-78			dB	
Full power ban		At –3 dB		47		MH	
		Any off-channel with 100 kHz, Full-scale input to channel being sampled with DC input.	-95				
Channel-to-channel crosstalk		From previously sampled to channel with 100 kHz, Full-scale input to channel being sampled with DC input.	-85		dB		
EXTERNAL R	EFERENCE INPUT				·		
V _{REF} reference	voltage at REFP		2	2.5	3	V	
Reference inpu	ut resistance	fsample = 1 MHz		100		kΩ	
ALARM SETT	ING						
High threshold	range		000		255	LSE	
Low threshold	range		000		255	LSE	
DIGITAL INPU	T/OUTPUT						
Logic family		CMOS					
	V _{IH}		0.7*(+VBD)				
	V _{IL}	+VBD = 5 V			0.8		
Logic level	V _{IL}	+VBD = 3 V		0.4 +VBD-0.2		V	
	V _{OH}	At I _{source} = 200 μA	+VBD-0.2				
	V _{OL}	At $I_{sink} = 200 \ \mu A$	0.4				
Data format			MSB First				
POWER SUPP	PLY REQUIREMENTS						
+VA supply voltage			2.7	3.3	5.25	V	
+VBD supply v	oltage		1.7	3.3	5.25	V	
Supply current (normal mode)		At +VA = 2.7 to 3.6 V and 1 MHz throughput		1.8			
		At +VA = 2.7 to 3.6 V static state	1.05		mA		
		At +VA = 4.7 to 5.25 V and 1 MHz throughput		2.3	3	3	
		At +VA = 4.7 to 5.25 V static state		1.1	1.5		
Power-down state supply current				1		μA	
+VBD supply current		+VA = 5.25V, f _s = 1MHz		1		mA	
Power-up time					1	μS	
Invalid conversions after power up or reset				_	1	Conver	

(4) Calculated on the first nine harmonics of the input frequency.

7.9 Timing Requirements

All specifications typical at -40° C to 125° C, +VA = 2.7 V to 5.25 V (unless otherwise specified)⁽¹⁾⁽²⁾ (see Figure 1, Figure 2, Figure 3, and Figure 4)

			MIN N	IOM MAX	UNIT		
		+VBD = 1.8 V		16			
t _{conv}	Conversion time	+VBD = 3 V		16	SCLK		
		+VBD = 5 V		16			
		+VBD = 1.8 V	40		_		
	Minimum quiet sampling time needed from bus 3- state to start of next conversion	+VBD = 3 V	40		ns		
		+VBD = 5 V	40				
		+VBD = 1.8 V		38			
t _{d1}	Delay time, \overline{CS} low to first data (DO–15) out	+VBD = 3 V		27	ns		
		+VBD = 5 V		17			
		+VBD = 1.8 V	8				
su1	Setup time, \overline{CS} low to first rising edge of SCLK	+VBD = 3 V	6		ns		
		+VBD = 5 V	4				
		+VBD = 1.8 V		35	-		
d2	Delay time, SCLK falling to SDO next data bit valid	+VBD = 3 V		27			
		+VBD = 5 V		17			
		+VBD = 1.8 V	7		ns		
h1	Hold time, SCLK falling to SDO data bit valid	+VBD = 3 V	5				
	-	+VBD = 5 V	3				
		+VBD = 1.8 V		26	-		
d3	Delay time, 16 th SCLK falling edge to SDO 3-state	+VBD = 3 V		22			
		+VBD = 5 V		13			
t _{su2}		+VBD = 1.8 V	2				
	Setup time, SDI valid to rising edge of SCLK	+VBD = 3 V	3		ns		
542		+VBD = 5 V	4				
		+VBD = 1.8 V	12				
h2	Hold time, rising edge of SCLK to SDI valid	+VBD = 3 V	10		ns		
		+VBD = 5 V	6				
		+VBD = 1.8 V	20		+		
w1	Pulse duration CS high	+VBD = 3 V	20		ns		
	ç	+VBD = 5 V	20				
		+VBD = 1.8 V		24			
d4	Delay time \overline{CS} high to SDO 3-state	+VBD = 3 V		21	ns		
•04	, ,	+VBD = 5 V		12			
		+VBD = 1.8 V	20				
t _{wh}	Pulse duration SCLK high	+VBD = 3 V	20		ns		
		+VBD = 5 V	20				
t _{wl}		+VBD = 1.8 V	20				
	Pulse duration SCLK low	+VBD = 3 V	20		ns		
		+VBD = 5 V	20				
		+VBD = 1.8 V		20			
	Frequency SCLK	+VBD = 3 V		20	MHz		
		+VBD = 5 V		20			

(1) 1.8V specifications apply from 1.7 V to 1.9 V, 3 V specifications apply from 2.7 V to 3.6 V, 5 V specifications apply from 4.75 V to 5.25 V.

(2) With 50-pF load

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961

www.ti.com.cn

ZHCSIJ3C -JUNE 2008-REVISED JULY 2018

GPI status is latched in on \overline{CS} falling edge and transferred to SDO frame n

Figure 1. Device Operation Timing Diagram

Figure 2. Serial Interface Timing Diagram for 12-Bit Devices (ADS7950/51/52/53)

Figure 4. Serial Interface Timing Diagram for 8-Bit Devices (ADS7958/59/60/61)

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961 ZHCSIJ3C – JUNE 2008–REVISED JULY 2018

www.ti.com.cn

7.10 Typical Characteristics (All ADS79xx Family Devices)

ZHCSIJ3C-JUNE 2008-REVISED JULY 2018

7.11 Typical Characteristics (12-Bit Devices Only)

Typical Characteristics (12-Bit Devices Only) (continued)

ZHCSIJ3C - JUNE 2008 - REVISED JULY 2018

Typical Characteristics (12-Bit Devices Only) (continued)

ZHCSIJ3C – JUNE 2008 – REVISED JULY 2018

TEXAS INSTRUMENTS

www.ti.com.cn

Typical Characteristics (12-Bit Devices Only) (continued)

ZHCSIJ3C -JUNE 2008-REVISED JULY 2018

Typical Characteristics (12-Bit Devices Only) (continued)

ZHCSIJ3C – JUNE 2008 – REVISED JULY 2018

TEXAS INSTRUMENTS

www.ti.com.cn

Typical Characteristics (12-Bit Devices Only) (continued)

7.12 Typical Characteristics (12-Bit Devices Only)

8 Detailed Description

8.1 Overview

The ADS7950 to ADS7961 are 12-, 10-, 8-bit multichannel pin-compatible devices. The ADS79xx is a family of 12-, 10-, 8-bit, high-speed, low-power, successive approximation register (SAR) analog-to-digital converter (ADC) that uses an external reference. The architecture is based on charge redistribution, which inherently includes a sample/hold function. The analog inputs to the ADS79xx are provided to CHX input channels. All input channels share a common analog ground AGND. ADS79xx has multiplexer breakout feature which allows user to connect the signal conditioning circuit between multiplexer output (MXO) and ADC input (AINP). This feature enables use of common signal conditioning block for the input signal which exhibit similar performance characteristics. ADS79xx can be programmed to select a channel manually or can be programmed into the auto channel select mode to sweep through the input channels automatically

Figure 1, Figure 2, Figure 3, and Figure 4 show device operation timing. Device operation is controlled with \overline{CS} , SCLK, and SDI. The device outputs its data on SDO.

Each frame begins with the falling edge of \overline{CS} . With the falling edge of \overline{CS} , the input signal from the selected channel is sampled, and the conversion process is initiated. The device outputs data while the conversion is in progress. The 16-bit data word contains a 4-bit channel address, followed by a 12-bit conversion result in MSB first format. There is an option to read the GPIO status instead of the channel address. (Refer to Table 1, Table 2, and Table 5 for more details.)

The device selects a new multiplexer channel on the second SCLK falling edge. The acquisition phase starts on the fourteenth SCLK rising edge. On the next \overline{CS} falling edge the acquisition phase will end, and the device starts a new frame.

The TSSOP packaged devices have four *General Purpose IO* (GPIO) pins while QFN versions have only one GPIO. These four pins can be individually programmed as GPO or GPI. It is also possible to use them for preassigned functions, refer to Table <u>11</u>. GPO data can be written into the device through the SDI line. The device refreshes the GPO data on the CS falling edge as per the SDI data written in previous frame.

Similarly the device latches GPI status on the \overline{CS} falling edge and outputs the GPI data on the SDO line (if GPI read is enabled by writing DI04=1 in the previous frame) in the same frame starting with the \overline{CS} falling edge.

The falling edge of \overline{CS} clocks out DO15 (first bit of the four bit channel address), and remaining address bits are clocked out on every falling edge of SCLK until the third falling edge. The conversion result MSB is clocked out on the 4th SCLK falling edge and LSB on the 15th/13th/11th falling edge respectively for 12/10/8-bit devices. On the 16th falling edge of SCLK, SDO goes to the 3-state condition. The conversion ends on the 16th falling edge of SCLK. CS can be asserted (pulled high) only after 16 clocks have elapsed

The device reads a sixteen bit word on the SDI pin while it outputs the data on the SDO pin. SDI data is latched on every rising edge of SCLK starting with the 1st clock as shown in Figure 2, Figure 3, and Figure 4.

CS can be asserted (pulled high) only after 16 clocks have elapsed.

The device has two (high and low) programmable alarm thresholds per channel. If the input crosses these limits; the device flags out an alarm on GPIO0/GPIO1 depending on the GPIO program register settings (refer to Table 11). The alarm is asserted (under the alarm conditions) on the 12th falling edge of SCLK in the same frame when a data conversion is in progress. The alarm output is reset on the 10th falling edge of SCLK in the next frame.

The device offers a power-down feature to save power when not in use. There are two ways to powerdown the device. It can be powered down by writing DI05 = 1 in the mode control register (refer to Table 1, Table 2, and Table 5); in this case the device powers down on the 16th falling edge of SCLK in the next data frame. Another way to powerdown the device is through GPIO in the case of the TSSOP packaged devices. GPIO3 can act as the PD input (refer to Table 11 to assign this functionality to GPIO3). This is an asynchronous and active low input. The device powers down instantaneously after GPIO3 (PD) = 0. The device will power up again on the CS falling edge with DI05 = 0 in the mode control register and GPIO3 (PD) = 1.

8.2 Functional Block Diagram

NOTE: n* is number of channels (16,12,8, or 4) depending on the device from the ADS79xx product family. NOTE: There are 4 GPIOs in the TSSOP package and 1 GPIO in the QFN package.

8.3 Feature Description

8.3.1 Reference

The ADS79xx can operate with an external 2.5-V \pm 10-mV reference. A clean, low noise, well-decoupled reference voltage on the REFP pin is required to ensure good performance of the converter. A low noise band-gap reference like the REF5025 can be used to drive this pin. A 10- μ F ceramic decoupling capacitor is required between the REFP and REFM pins of the converter. The capacitor should be placed as close as possible to the pins of the device.

8.3.2 Power Saving

The ADS79xx devices offer a power-down feature to save power when not in use. There are two ways to power down the device. It can be powered down by writing DI05 = 1 in the Mode Control register (refer to Table 1, Table 2 and Table 5); in this case the device powers down on the 16th falling edge of SCLK in the next data frame. Another way to powerdown the device is through GPIO. GPIO3 can act as a PD input (refer to Table 11, for assigning this functionality to GPIO3). This is an asynchronous and active low input. The device powers down instantaneously after GPIO3 (PD) = 0. The device will powerup again on the CS falling edge while DI05 = 0 in the Mode Control register and GPIO3 (PD) = 1.

8.4 Device Functional Modes

8.4.1 Channel Sequencing Modes

There are three modes for channel sequencing, namely *Manual mode*, *Auto-1 mode*, *Auto-2 mode*. Mode selection is done by writing into the *Mode Control Register* (refer to Table 1, Table 2, and Table 5). A new multiplexer channel is selected on the second falling edge of SCLK (as shown in Figure 1) in all three modes.

Manual mode: When configured to operate in Manual mode, the next channel to be selected is programmed in each frame and the device selects the programmed channel in the next frame. On powerup or after reset the default channel is 'Channel-0' and the device is in Manual mode.

Auto-1 mode: In this mode the device scans pre-programmed channels in ascending order. A new multiplexer channel is selected every frame on the second falling edge of SCLK. There is a separate Program Register for pre-programming the channel sequence. Table 3 and Table 4 show Auto-1 'program register' settings.

Device Functional Modes (continued)

Once programmed the device retains 'Program Register settings until the device is powered down, reset, or reprogrammed. It is allowed to exit and re-enter the Auto-1 mode any number of times without disturbing 'program register' settings.

The Auto-1 program register is reset to FFF/FF/FF/F hex for the 16-, 12-, 8-, 4 channel devices respectively upon device powerup or reset; implying the device scans all channels in ascending order.

Auto-2 mode: In this mode the user can configure the program register to select the last channel in the scan sequence. The device scans all channels from channel 0 up to and including the last channel in ascending order. The multiplexer channel is selected every frame on the second falling edge of SCLK. There is a separate 'program register' for pre-programming of the last channel in the sequence (multiplexer depth). Table 6 lists the 'Auto-2 prog' register settings for selection of the last channel in the sequence.

Once programmed the device retains program register settings until the device is powered down, reset, or reprogrammed. It is allowed to exit and re-enter Auto-2 mode any number of times, without disturbing the 'program register' settings.

On powerup or reset the bits D9-D6 of the Auto-2 program register are reset to F/B/7/3 hex for the 16/12/8/4 channel devices respectively; implying the device scans all channels in ascending order.

8.4.2 Device Programming and Mode Control

The following section describes device programming and mode control. These devices feature two types of registers to configure and operate the devices in different modes. These registers are referred as 'Configuration Registers'. There are two types of 'Configuration Registers' namely 'Mode Control Registers' and 'Program Registers'.

8.4.2.1 Mode Control Register

A 'Mode Control Register' is configured to operate the device in one of three channel sequencing modes, namely Manual mode, Auto-1 Mode, Auto-2 Mode. It is also used to control user programmable features like range selection, device power-down control, GPIO read control, and writing output data into the GPIO.

8.4.2.2 Program Registers

The 'Program Registers' are used for device configuration settings and are typically programmed once on powerup or after device reset. There are different program registers such as 'Auto-1 mode programming' for preprogramming the channel sequence, 'Auto-2 mode programming' for selection of the last channel in the sequence, 'Alarm programming' for all 16 channels (or 12, 8, 4 channels depending on the device) and GPIO for individual pin configuration as GPI or GPO or a pre-assigned function.

8.4.3 Device Power-Up Sequence

The device power-up sequence is shown in Figure 49. By default, the Mode Control Register is configured for manual mode and the default channel is channel 0. As explained previously, these devices offer Program Registers to configure user programmable features like GPIOs, Alarms, and to pre-program the channel sequence for Auto modes. At 'power up or on reset' these registers are set to the default values listed in Table 1 to Table 11. On power up or after reset It is required to program Mode Control Register and Program Register to required mode of operation. Once configured; the device is ready to use in any of the three channel sequencing modes namely Manual, Auto-1, and Auto-2.

Device Functional Modes (continued)

- (1) The device continues its operation in manual mode channel 0 throughout the programming sequence and outputs valid conversion results. It is possible to change channel, range, GPIO by inserting extra frames in between two programming blocks. It is also possible to bypass any programming block if the user does not intend to use that feature.
- (2) It is possible to reprogram the device at any time during operation, regardless of what mode the device is in. During programming the device continues its operation in whatever mode it is in and outputs valid data.

Figure 49. Device Power-Up Sequence

8.4.4 Operating in Manual Mode

The flowchart in Figure 50 illustrates the steps involved in operating in manual channel sequencing mode. Table 1 lists the mode control register settings for manual mode. There are no program registers in manual mode.

Device Functional Modes (continued)

Figure 50. Entering and Running in Manual Channel Sequencing Mode

Device Functional Modes (continued)

Figure 51 shows an example in which manual mode is used to scan channels 4, 7, and 9. The command to select channel 4 (CH4) is issued in the Nth frame and the data corresponding to CH4 is available in the (N + 2)th frame. Internally, the SDI command is parsed and on the rising edge of \overrightarrow{CS} of the (N+1)th frame and the MUX switches accordingly on the second falling edge of SCLK in this frame. On the rising edge of \overrightarrow{CS} of the (N+2)th frame, the input signal for CH4 is sampled and the ADC sends the conversion data in this third frame. The device follows the same steps and the ADC sends the conversion data for CH7 and CH9 in the subsequent two frames.

Figure 51. Example Manual Mode Timing Diagram

BITS	RESET STATE	LOGIC STATE	FUNCTION						
DI15-12	0001	0001	Selects Manual Mode						
DI11	0	1	Enables programming of bits DI06-00.						
		0	Device retains values	Device retains values of DI06-00 from the previous frame.					
DI10-07	0000		•	lata represents the address of the next channel to be selected in the next frame. DI10: MSB and or example, 0000 represents channel- 0, 0001 represents channel-1 and so forth.					
DI06	0	0	Selects 0 to V _{REF} input range (Range 1)						
		1	Selects 0 to 2xV _{REF} input range (Range 2)						
DI05	0	0	Device normal operation	Device normal operation (no powerdown)					
		1	Device powers down on 16th SCLK falling edge						
DI04	0	0	SDO outputs current c result on DO1100.	hannel address of the cha	nnel on DO1512 follo	owed by 12 bit conversion			
		1		oth input and output) is ma DO00 represent 12-bit co		12 in the order shown below. current channel.			
			DOI5	DOI4	DOI3	DOI2			
				GPIO3 ⁽¹⁾	GPIO2 ⁽¹⁾	GPIO1 ⁽¹⁾	GPIO0 ⁽¹⁾		
DI03-00	0000	GPIO data for the channels configured as output. Device will ignore the data for the channel which is conf as input. SDI bit and corresponding GPIO information is given below				channel which is configured			
			DI03	DI02	DI01	DI00			
			GPIO3 ⁽¹⁾	GPIO2 ⁽¹⁾	GPIO1 ⁽¹⁾	GPIO0 ⁽¹⁾			

Table 1. Mo	de Control	Register	Settings	for	Manual Mode
-------------	------------	----------	----------	-----	-------------

(1) GPIO 1 to 3 are available only in TSSOP packaged devices. QFN device offers GPIO 0 only.

٦

8.4.5 Operating in Auto-1 Mode

Figure 52 illustrates the steps involved in entering and operating in Auto-1 Channel Sequencing mode. Table 2 lists the Mode Control Register settings for Auto-1 mode.

Figure 52. Entering and Running in Auto-1 Channel Sequencing Mode

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961

ZHCSIJ3C – JUNE 2008 – REVISED JULY 2018

Consider a case where Auto-1 mode is selected to scan channels 2 (CH2), 5 (CH5), and 6 (CH6) as represented in Figure 53. The program register for Auto-1 mode must be programmed as described in Figure 53 before entering into this auto sequencing mode. The device enters into Auto-1 mode on receiving the Auto-1 mode command in the Nth frame. This step causes the device to find the first enabled channel in ascending order and switch the MUX for CH2 in the (N+1)th frame. In the (N+2)th frame, the ADC samples the signal on CH2, shifts out the conversion results, and the MUX also internally switches to CH5. In the (N+3)th frame, the ADC samples and shifts out the conversion result for CH5 and the MUX also internally switches to CH6. This process repeats until the last enabled channel is reached, in which case the process loops back to the first enabled channel. Entering Auto-1 mode from any other mode also causes the device to restart from the first enabled channel. However, modifying the contents of the Auto-1 mode program register while operating in Auto-1 mode causes the device to scan for the next enabled channel.

Figure 53. Example Auto-1 Mode Timing Diagram

BITS	RESET STATE	LOGIC STATE	FUNCTION						
DI15-12	0001	0010	Selects Auto-1 Mode						
DI11	0	1	Enables programming of bits DI10-00.						
		0	Device retains values of DI10-00 from previous frame.						
DI10	0	1	The channel counter is reset to the lowest programmed channel in the Auto-1 Program Register						
		0	The channel counter increments every conversion (No reset)						
DI09-07	000	xxx	Do not care						
DI06	0	0	Selects 0 to V _{REF} input ra	Selects 0 to V _{REF} input range (Range 1)					
		1	Selects 0 to 2xV _{REF} input range (Range 2)						
DI05	0	0	Device normal operation	Device normal operation (no powerdown)					
		1	Device powers down on t	Pevice powers down on the 16th SCLK falling edge					
DI04	0	0	SDO outputs current channel address of the channel on DO1512 followed by 12-bit conversion result on DO1100.						
			1		input and output) is mappe 000 represent 12-bit conver				
				DO15	DO14	DO13	DO12		
			GPIO3 ⁽¹⁾	GPIO2 ⁽¹⁾	GPIO1 ⁽¹⁾	GPIO0 ⁽¹⁾			
DI03-00	0000			d as output. Device will igno PIO information is given be		el which is configured			
			DI03	DI02	DI01	DI00			
			GPIO3 ⁽¹⁾	GPIO2 ⁽¹⁾	GPIO1 ⁽¹⁾	GPIO0 ⁽¹⁾			

Table 2. Mode Control Register Settings for Auto-1 Mode

(1) GPIO 1 to 3 are available only in TSSOP packaged devices. QFN device offers GPIO 0 only.

The Auto-1 Program Register is programmed (once on powerup or reset) to pre-select the channels for the Auto-1 sequence. Auto-1 Program Register programming requires two CS frames for complete programming. In the first CS frame the device enters the Auto-1 register programming sequence and in the second frame it programs the Auto-1 Program Register. Refer to Table 2, Table 3, and Table 4 for complete details.

NOTE: The device continues its operation in selected mode during programming. SDO is valid, however it is not possible to change the range or write GPIO data into the device during programming.

Figure 54. Auto-1 Register Programming Flowchart

BITS	RESET STATE	LOGIC STATE	FUNCTION			
FRAME 1						
DI15-12	NA	1000	Device enters Auto-1 program sequence. Device programming is done in the next frame.			
DI11-00	NA	Do not care				
FRAME 2						
DI15-00	All 1s	1 (individual bit)	A particular channel is programmed to be selected in the channel scanning sequence. The channel numbers are mapped one-to-one with respect to the SDI bits; for example, DI15 \rightarrow Ch15, DI14 \rightarrow Ch14 DI00 \rightarrow Ch00			
		0 (individual bit)	A particular channel is programmed to be skipped in the channel scanning sequence. The channel numbers are mapped one-to-one with respect to the SDI bits; for example DI15 \rightarrow Ch15, DI14 \rightarrow Ch14 DI00 \rightarrow Ch00			

Table 3. Program Register Settings for Auto-1 Mode

Table 4. Mapping of Channels to SDI Bits for 16, 12, 8, 4 Channel Devices

Device ⁽¹⁾		SDI BITS														
	DI15	DI14	DI13	DI12	DI11	DI10	DI09	DI08	DI07	DI06	DI05	DI04	DI03	DI02	DI01	D100
16 Chan	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0
12 Chan	Х	Х	Х	Х	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0
8 Chan	Х	Х	Х	Х	Х	Х	Х	Х	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0
4 Chan	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1/0	1/0	1/0	1/0

(1) When operating in Auto-1 mode, the device only scans the channels programmed to be selected.

ZHCSIJ3C – JUNE 2008 – REVISED JULY 2018 8.4.6 Operating in Auto-2 Mode

Figure 55 illustrates the steps involved in entering and operating in Auto-2 channel sequencing mode. Table 5 lists the mode control register settings for Auto-2 mode.

Figure 55. Entering and Running in Auto-2 Channel Sequencing Mode

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961

www.ti.com.cn

ZHCSIJ3C-JUNE 2008-REVISED JULY 2018

Figure 56 shows an example in which Auto-2 mode is used to scan channels 0, 1, and 2. Auto-2 mode is selected to scan all channels until channel 2 (CH2) in ascending order by programming the Auto-2 register as described in Figure 56. The device enters Auto-2 mode on receiving the Auto-2 mode command in the Nth frame. This step causes the MUX to switch to CH0 in the (N+1)th frame. In the (N+2)th frame, the ADC samples and shifts out the conversion results for CH0 because the MUX internally switches to CH1. In the (N+3)th frame, the ADC samples and the shifts out the conversion result for CH1 and the MUX also switches to CH2, and so on. When this process reaches the maximum selected channel, CH2 in this case, the device returns to CH0 and repeats the cycle as long as the device remains in Auto-2 mode. Entering Auto-2 mode from any other mode also causes the device to restart from CH0. Additionally, modifying the contents of the for Auto-2 program register while operating in Auto-2 also causes the device to scan for restart from CH0.

Figure 56. Example Auto-2 Mode Timing Diagram

TEXAS INSTRUMENTS

www.ti.com.cn

BITS	RESET STATE	LOGIC STATE		FUNCT	ION				
DI15-12	0001	0011	Selects Auto-2 Mode						
DI11	0	1	Enables programming of I	bits DI10-00.					
		0	Device retains values of D	DI10-00 from the previous fi	ame.				
DI10	0	1	Channel number is reset t	to Ch-00.					
		0	Channel counter increment	nts every conversion.(No re	eset).				
DI09-07	000	ххх	Do not care						
DI06	0	0	Selects V _{REF} i/p range (Ra	Selects V _{REF} i/p range (Range 1)					
		1	Selects 2xV _{REF} i/p range	Selects 2xV _{REF} i/p range (Range 2)					
DI05	0	0	Device normal operation (evice normal operation (no powerdown)					
		1	Device powers down on the 16th SCLK falling edge						
DI04	+ 0 <u>0</u> 1		SDO outputs the current channel address of the channel on DO1512 followed by the 12-bit conversion result on DO1100.						
			GPIO3-GPIO0 data (both input and output) is mapped onto DO15-DO12 in the order shown below. Lower data bits DO11-DO00 represent the 12-bit conversion result of the current channel.						
			DO15	DO14	DO13	DO12			
			GPIO3 ⁽¹⁾	GPIO2 ⁽¹⁾	GPIO1 ⁽¹⁾	GPIO0 ⁽¹⁾			
DI03-00	0000	GPIO data for the channels configured as output. Device ignores data for the channel which is configured as input. SDI bit and corresponding GPIO information is given below							
			DI03	DI02	DI01	D100			
			GPIO3 ⁽¹⁾	GPIO2 ⁽¹⁾	GPIO1 ⁽¹⁾	GPIO0 ⁽¹⁾			

Table 5. Mode Control Register Settings for Auto-2 Mode

(1) GPIO 1 to 3 are available only in TSSOP packaged devices. QFN device offers GPIO 0 only.

The Auto-2 Program Register is programmed (once on powerup or reset) to pre-select the last channel (or sequence depth) in the Auto-2 sequence. Unlike Auto-1 Program Register programming, Auto-2 Program Register programming requires only 1 \overline{CS} frame for complete programming. See Figure 57 and Table 6 for complete details.

NOTE: The device continues its operation in the selected mode during programming. SDO is valid, however it is not possible to change the range or write GPIO data into the device during programming.

Figure 57. Auto-2 Register Programming Flowchart

ZHCSIJ3C - JUNE 2008-REVISED JULY 2018

www.ti.com.cn

Table 6. Program Register Settings for Auto-2 Mode

BITS	RESET STATE	LOGIC STATE	FUNCTION
DI15-12	NA	1001	Auto-2 program register is selected for programming
DI11-10	NA	Do not care	
D109-06	NA	aaaa	This 4-bit data represents the address of the last channel in the scanning sequence. During device operation in Auto-2 mode, the channel counter starts at CH-00 and increments every frame until it equals "aaaa". The channel counter roles over to CH-00 in the next frame.
DI05-00	NA	Do not care	

8.4.7 Continued Operation in a Selected Mode

Once a device is programmed to operate in one of the modes, the user may want to continue operating in the same mode. Mode Control Register settings to continue operating in a selected mode are detailed in Table 7.

BITS	RESET STATE	LOGIC STATE	FUNCTION			
DI15-12	0001	0000	The device continues to operate in the selected mode. In Auto-1 and Auto-2 modes the channel counter increments normally, whereas in the Manual mode it continues with the last selected channel. The device ignores data on DI11-DI00 and continues operating as per the previous settings. This feature is provided so that SDI can be held low when no changes are required in the Mode Control Register settings.			
DI11-00	All '0'	Device ignores these bits when DI15-12 is set to 0000 logic state				

Table 7. Continued Operation in a Selected Mode

8.5 Programming

8.5.1 Digital Output

As discussed previously in *Overview*, the digital output of the ADS79xx devices is SPI compatible. The following tables list the output codes corresponding to various analog input voltages.

Table 8. Ideal Input Voltages for 12-Bit Devices and Output Codes for 12-Bit Devices (ADS7	950/51/52/53)

DESCI	RIPTION	ANALOG VALUE	DIGITAL OUTPUT		
Full scale range Range $1 \rightarrow V_{REF}$		Range $2 \rightarrow 2 \times V_{REF}$	STRAIGHT BINARY		
Least significant bit (LSB)	V _{REF} / 4096	2V _{REF} / 4096	BINARY CODE	HEX CODE	
Full scale	V _{REF} – 1 LSB	2V _{REF} – 1 LSB	1111 1111 1111	FFF	
Midscale	V _{REF} / 2	V _{REF}	1000 0000 0000	800	
Midscale – 1 LSB	V _{REF} / 2 – 1 LSB	V _{REF} – 1 LSB	0111 1111 1111	7FF	
Zero	0 V	0 V	0000 0000 0000	000	

Table 9. Ideal Input Voltages for 10-Bit Devices and Digital Output Codes for 10-Bit Devices (ADS7954/55/56/57)

DESCRIF	PTION	ANALOG VALUE	DIGITAL OUTPUT		
Full scale range	Full scale range Range $1 \rightarrow V_{REF}$		STRAIGHT BINARY		
Least significant bit (LSB)	V _{REF} / 1024	2V _{REF} / 1024	BINARY CODE	HEX CODE	
Full scale	V _{REF} – 1 LSB	2V _{REF} – 1 LSB	0011 1111 1111	3FF	
Midscale	V _{REF} / 2	V _{REF}	0010 0000 0000	200	
Midscale – 1 LSB	V _{REF} / 2 – 1 LSB	V _{REF} – 1 LSB	0001 1111 1111	1FF	
Zero	0 V	0 V	0000 0000 0000	000	

Table 10. Ideal Input Voltages for 8-Bit Devices and Digital Output Codes for 8-Bit Devices (ADS7958/59/60/61)

DESCRI	PTION	ANALOG VALUE	DIGITAL OUTPUT		
Full scale range	Range 1 \rightarrow V _{REF}	Range $2 \rightarrow 2 \times V_{REF}$	STRAIGHT BINARY		
Least significant bit (LSB)	V _{REF} / 256	2V _{REF} / 256	BINARY CODE	HEX CODE	
Full scale	V _{REF} – 1 LSB	2V _{REF} – 1 LSB	1111 1111	FF	
Midscale	V _{REF} / 2	V _{REF}	1000 0000	80	
Midscale – 1 LSB	V _{REF} / 2 – 1 LSB	V _{REF} – 1 LSB	0111 1111	7F	
Zero	0 V	0 V	0000 0000	00	

8.5.2 GPIO Registers

NOTE

GPIO 0, 1, 2, and 3 are available in the TSSOP packages. Only GPIO 0 is available in the VQFN packages.

The device has four general purpose input and output (GPIO) pins. Each of the four pins can be independently programmed as general purpose output (GPO) or general purpose input (GPI). It is also possible to use the GPIOs for some pre-assigned functions (refer to Table 11 for details). GPO data can be written into the device through the SDI line. The device refreshes the GPO data on every \underline{CS} falling edge as per the SDI data written in the previous frame. Similarly, the device latches GPI status on the \underline{CS} falling edge and outputs it on SDO (if GPI is read enabled by writing DI04 = 1 during the previous frame) in the same frame starting on the \underline{CS} falling edge.

The details regarding programming the GPIO registers are illustrated in the flowchart in Figure 58. Table 11 lists the details regarding GPIO Register programming settings.

NOTE: The device continues its operation in selected mode during programming. SDO is valid, however it is not possible to change the range or write GPIO data into the device during programming.

Figure 58. GPIO Program Register Programming Flowchart

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961

ZHCSIJ3C-JUNE 2008-REVISED JULY 2018

www.ti.com.cn

Table 11. GPIO Program Register Settings

BITS	RESET STATE	LOGIC STATE	FUNCTION				
DI15-12	NA	0100	Device selects GPIO Program Registers for programming.				
DI11-10	00	00	o not program these bits to any logic state other than '00'				
D109	0	1	Device resets all registers in the next \overline{CS} frame to the reset state shown in the corresponding tables (it also resets itself).				
		0	Device normal operation				
DI08	0	1	Device configures GPIO3 as the device power-down input.				
		0	GPIO3 remains general purpose I or O. Program 0 for QFN packaged devices.				
DI07	0	1	Device configures GPIO2 as device range input.				
		0	GPIO2 remains general purpose I or O. Program 0 for QFN packaged devices.				
DI06-04	000	000	GPIO1 and GPIO0 remain general purpose I or O. Valid setting for QFN packaged devices.				
		xx1	Device configures GPIO0 as 'high or low' alarm output. This is an active high output. GPIO1 remains general purpose I or O. Valid setting for QFN packaged devices.				
		010	Device configures GPIO0 as high alarm output. This is an active high output. GPIO1 remains general purpose I or O. Valid setting for QFN packaged devices.				
		100	Device configures GPIO1 as low alarm output. This is an active high output. GPIO0 remains general purpose I or O. Setting not allowed for QFN packaged devices.				
		110	Device configures GPIO1 as low alarm output and GPIO0 as a high alarm output. These are active high outputs. Setting not allowed for QFN packaged devices.				
Note: The	following s	ettings are	valid for GPIO which are not assigned a specific function through bits DI0804				
DI03	0	1	GPIO3 pin is configured as general purpose output. Program 1 for QFN packaged devices.				
		0	GPIO3 pin is configured as general purpose input. Setting not allowed for QFN packaged devices.				
DI02	0	1	GPIO2 pin is configured as general purpose output. Program 1 for QFN packaged devices.				
		0	GPIO2 pin is configured as general purpose input. Setting not allowed for QFN packaged devices.				
DI01	0	1	GPIO1 pin is configured as general purpose output. Program 1 for QFN packaged devices.				
		0	GPIO1 pin is configured as general purpose input. Setting not allowed for QFN packaged devices.				
DI00	0	1	GPIO0 pin is configured as general purpose output. Valid setting for QFN packaged devices.				
		0	GPIO0 pin is configured as general purpose input. Valid setting for QFN packaged devices.				

8.5.3 Alarm Thresholds for GPIO Pins

Each channel has two alarm program registers, one for setting the high alarm threshold and the other for setting the low alarm threshold. For ease of programming, two alarm programming registers per channel, corresponding to four consecutive channels, are assembled into one group (a total eight registers). There are four such groups for 16 channel devices and 3/2/1 such groups for 12/8/4 channel devices respectively. The grouping of the various channels for each device in the ADS79xx family is listed in Table 12. The details regarding programming the alarm thresholds are illustrated in the flowchart in Figure 59. Table 13 lists the details regarding the Alarm Program Register settings.

GROUP NO.	REGISTERS	APPLICABLE FOR DEVICE
0	High and low alarm for channel 0, 1, 2, and 3	ADS795350, ADS795754, ADS796158
1	High and low alarm for channel 4, 5, 6, and 7	ADS795351, ADS795755, ADS796159
2	High and low alarm for channel 8, 9, 10, and 11	ADS7953 and 52, ADS7957 and 56, ADS7961 and 60
3	High and low alarm for channel 12, 13, 14, and 15	ADS7953, ADS7957, ADS7961

Table 12. Grouping	of Alarm	Program Registers
--------------------	----------	-------------------

Each alarm group requires 9 \overline{CS} frames for programming their respective alarm thresholds. In the first frame the device enters the programming sequence and in each subsequent frame it programs one of the registers from the group. The device offers a feature to program less than eight registers in one programming sequence. The device exits the alarm threshold programming sequence in the next frame after it encounters the first 'Exit Alarm Program' bit high.

TEXAS INSTRUMENTS

www.ti.com.cn

NOTE: The device continues its operation in selected mode during programming. SDO is valid, however it is not possible to change the range or write GPIO data into the device during programming.

Figure 59. Alarm Program Register Programming Flowchart

ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955 ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961

ZHCSIJ3C-JUNE 2008-REVISED JULY 2018

www.ti.com.cn

Table 13. Alarm Program Register Settings

BITS	RESET STATE	LOGIC STATE	FUNCTION
FRAME 1			
DI15-12	NA	1100	Device enters 'alarm programming sequence' for group 0
		1101	Device enters 'alarm programming sequence' for group 1
		1110	Device enters 'alarm programming sequence' for group 2
		1111	Device enters 'alarm programming sequence' for group 3
Note: DI1: format.	5-12 = 11bb is the a	larm progra	mming request for group bb. Here 'bb' represents the alarm programming group number in binary
DI11-14	NA	Do not car	e
FRAME 2	AND ONWARDS	-j	
DI15-14	NA	сс	Where "cc" represents the lower two bits of the channel number in binary format. The device programs the alarm for the channel represented by the binary number "bbcc". "bb" is programmed in the first frame.
DI13	NA	1	High alarm register selection
		0	Low alarm register selection
DI12	NA	0	Continue alarm programming sequence in next frame
		1	Exit Alarm Programming in the next frame. Note: If the alarm programming sequence is not terminated using this feature then the device will remain in the alarm programming sequence state and all SDI data will be treated as alarm thresholds.
DI11-10	NA	хх	Do not care
DI09-00	All ones for high alarm register and all zeros for low alarm register	word of th Alarm) or compared	t data represents the alarm threshold. The 10-bit alarm threshold is compared with the upper 10-bit e 12-bit conversion result. The device sets off an alarm when the conversion result is higher (High lower (Low Alarm) than this number. For 10-bit devices, all 10 bits of the conversion result are with the set threshold. For 8-bit devices, all 8 bits of the conversion result are compared with DI09 d DI00, 01 are 'do not care'.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

In general applications, when the internal multiplexer is updated, the previously converted channel charge is stored in the 15-pF internal input capacitance that disturbs the voltage at the newly selected channel. This disturbance is expected to settle to 1 LSB during sampling (acquisition) time to avoid degrading converter performance. The initial absolute disturbance error at the channel input must be less than 0.5 V to prevent source current saturation or slewing that causes significantly long settling times. Fortunately, significantly reducing disturbance error is easy to accomplish by simply placing a large enough capacitor at the input of each channel. Specifically, with a 150-pF capacitor, instantaneous charge distribution keeps disturbance error less than 0.46 V because the internal input capacitance can only hold up to 75 pC (or 5 V × 15 pF). The remaining error must be corrected by the voltage source at each input, with impedance low enough to settle within 1 LSB. The following application examples explain the considerations for the input source impedance (R_{SOURCE}).

9.1.1 Analog Input

The ADS79xx device family offers 12/10/8-bit ADCSs with 16/12/8/4 channel multiplexers for analog input. The multiplexer output is available on the MXO pin. AINP is the ADC input pin. The devices offers flexibility for a system designer as both signals are accessible externally.

Typically it is convenient to short MXO to the AINP pin so that signal input to each multiplexer channel can be processed independently. In this condition, TI recommends limiting source impedance to 50 Ω or less. Higher source impedance may affect the signal settling time after a multiplexer channel change. This condition can affect linearity and total harmonic distortion.

GPIO 0,1,2 and 3 are available only in TSSOP packaged devices. QFN device offers 'GPIO 0' only. As a result all references related to 'GPIO 0' only are valid in case of QFN package devices.

Figure 60. Typical Application Diagram Showing MXO Shorted to AINP

Application Information (continued)

Another option is to add a common ADC driver buffer between the MXO and AINP pins. This relaxes the restriction on source impedance to a large extent. Refer to *Typical Characteristics (All ADS79xx Family Devices)* for the effect of source impedance on device performance. The typical characteristics show that the device has respectable performance with up to $1k\Omega$ source impedance. This topology (including a common ADC driver) is useful when all channel signals are within the acceptable range of the ADC. In this case the user can save on signal conditioning circuit for each channel.

Figure 61. Typical Application Diagram Showing Common Buffer/PGA for All Channels

When the converter samples an input, the voltage difference between AINP and AGND is captured on the internal capacitor array. The (peak) input current through the analog inputs depends upon a number of factors: sample rate, input voltage, and source impedance. The current into the ADS79xx charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. When the converter goes into hold mode, the input impedance is greater than 1 G Ω .

Care must be taken regarding the absolute analog input voltage. To maintain linearity of the converter, the Ch0 ... Chn and AINP inputs should be within the limits specified. Outside of these ranges, converter linearity may not meet specifications.

Application Information (continued)

Figure 62. ADC and MUX Equivalent Circuit

9.2 Typical Applications

9.2.1 Unbuffered Multiplexer Output (MXO)

This application is the most typical application, but requires the lowest R_{SOURCE} for good performance. In this configuration, the $2xV_{REF}$ range allows larger source impedance than the $1xV_{REF}$ range because the $1xV_{REF}$ range LSB size is smaller, thus making it more sensitive to settling error.

A. A restriction on the source impedance exists. $R_{SOURCE} \le 100 \Omega$ for the 1xV_{REF} 12-bit settling at 1 MSPS or $R_{SOURCE} \le 250 \Omega$ for the 2xV_{REF} 12-bit settling at 1 MSPS.

Figure 63. Application Diagram for an Unbuffered MXO

9.2.1.1 Design Requirements

The design is optimized to show the input source impedance (R_{SOURCE}) from the 100 Ω to 10000 Ω required to meet the 1-LSB settling at 12-bit, 10-bit, and 8-bit resolutions at different throughput in $1xV_{REF}$ (2.5-V) and $2xV_{REF}$ (5-V) input ranges.

9.2.1.2 Detailed Design Procedure

Although the required input source impedance can be estimated assuming a 0.5-V initial error and exponential recovery during sampling (acquisition) time, this estimation over-simplifies the complex interaction between the converter and source, thus yielding inaccurate estimates. Thus, this design uses an iterative approach with the converter itself to provide reliable impedance values.

To determine the actual maximum source impedance for a particular resolution and sampling rate, two subsequent channels are set at least 95% of the full-scale range apart. With a $1xV_{REF}$ range and 2.5 V_{REF} , the channel difference is at least 2.375 V. With $2xV_{REF}$ and 2.5 V_{REF} , the difference is at least 4.75 V. With a source impedance from 100 Ω to 10,000 Ω , the conversion runs at a constant rate and a channel update is issued that captures the first couple samples after the update. This process is repeated at least 100 times to remove any noise and to show a clear settling error. The first sample after the channel update is then compared against the second one. If the first and second samples are more than 1 LSB apart, throughput rate is reduced until the settling error becomes 1 LSB, which then sets the maximum throughput for the selected impedance. The whole process is repeated for nine different impedances from 100 Ω to 10000 Ω .

Typical Applications (continued)

9.2.1.3 Application Curves

These curves show the $\mathsf{R}_{\mathsf{SOURCE}}$ for an unbuffered MXO.

Typical Applications (continued)

9.2.2 OPA192 Buffered Multiplexer Output (MXO)

The use of a buffer relaxes the R_{SOURCE} requirements to an extent. Charge from the sample-and-hold capacitor no longer dominates as a residual charge from a previous channel. Although having good performance is possible with a larger impedance using the OPA192, the output capacitance of the MXO also holds the previous channel charge and cannot be isolated, which limits how large the input impedance can finally be for good performance. In this configuration, the 1xV_{REF} range allows slightly higher impedance because the OPA192 (20 V/µs) slews approximately 2.5 V in contrast to the 2xV_{REF} range that requires the OPA192 to slew approximately 5 V.

A. Restriction on the source impedance exists. $R_{(SOURCE)} \le 500 \ \Omega$ for a 12-bit settling at 1 MSPS with both 1xV_{REF} and 2xV_{REF} ranges.

Figure 66. Application Diagram for an OPA192 Buffered MXO

9.2.2.1 Design Requirements

The design is optimized to show the input source impedance (R_{SOURCE}) from the 100 Ω to 10000 Ω required to meet a 1-LSB settling at 12-bit, 10-bit, and 8-bit resolutions at different throughput in $1xV_{REF}$ (2.5 V) and $2xV_{REF}$ (5 V) input ranges.

9.2.2.2 Detailed Design Procedure

The design procedure is similar to the unbuffered-MXO application, but includes an operation amplifier in unity gain as a buffer. The most important parameter for multiplexer buffering is slew rate. The amplifier must finish slewing before the start of sampling (acquisition) to keep the buffer operating in small-signal mode during sampling (acquisition) time. Also, between the buffer output and converter input (INP), there must be a capacitor large enough to keep the buffer in small-signal operation during sampling (acquisition) time. Because 150 pF is large enough to protect the buffer form hold charge from internal capacitors, this value selected along with the lowest impedance that allows the op amp to remain stable.

The converter allows the MXO to settle approximately 600 ns before sampling. During this time, the buffer slews and then enters small-signal operation. For a 5-V step change, slew rate stays constant during the first 4 V. The last 1 V includes a transition from slewing and non-slewing. Thus, the buffer cannot be assumed to keep a constant slew during the 600 ns available for MXO settling. Assuming that the last 1-V slew is reduced to half is recommended. For this reason, slew is 10 V/µs or (5 V_{ref} + 1 V) / 0.6 µs to account for the 1-V slow slew. The OPA192 has a 20-V/us slew, and is capable of driving 150 pF with more than a 50° phase margin with a 50- Ω or 100- Ω R_{iso}, making the OPA192 an ideal selection for the ADS79xx-Q1 family of converters.

Typical Applications (continued)

9.2.2.3 Application Curves

These curves show the R_{SOURCE} for an OPA192 buffered MXO.

10 Power Supply Recommendations

The devices are designed to operate from an analog supply voltage (+VA) range from 2.7 V to 5.25 V and a digital supply voltage (+VBD) range from 1.7 V to 5.25 V. Both supplies must be well regulated. The analog supply is always greater than or equal to the digital supply. A 1- μ F ceramic decoupling capacitor is required at each supply pin and must be placed as close as possible to the device.

11 Layout

11.1 Layout Guidelines

- A copper fill area underneath the device ties the AGND, BDGND, AINM, and REFM pins together. This copper fill area must also be connected to the analog ground plane of the PCB using at least four vias.
- The power sources must be clean and properly decoupled by placing a capacitor close to each of the three supply pins, as shown in Figure 69 and Figure 70. To minimize ground inductance, ensure that each capacitor ground pin is connected to a grounding via by a very short and thick trace.
- The REFP pin requires a 10-μF ceramic capacitor to meet performance specifications. Place the capacitor directly next to the device. This capacitor ground pin must be routed to the REFM pin by a very short trace, as shown in Figure 69 and Figure 70.
- Do not place any vias between a capacitor pin and a device pin.

NOTE

The full-power bandwidth of the converter makes the ADC sensitive to high frequencies in digital lines. Organize components in the PCB by keeping digital lines apart from the analog signal paths. This design configuration is critical to minimize crosstalk. For example, in Figure 69, input drivers are expected to be on the left of the converter and the microcontroller on the right.

11.2 Layout Examples

Figure 69. Recommended Layout for the TSSOP Packaged Device

Layout Examples (continued)

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

请参阅如下相关文档:

- 《REF50xx 低噪声、极低温漂、高精度电压基准》
- 《采用 e-trim™ 技术的 36V、轨至轨输入/输出、低失调电压、低输入偏置电流 OPAx192 精密运算放大器》

12.2 相关链接

下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。

器件	产品文件夹	立即订购	技术文档	工具与软件	支持和社区
ADS7950	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7951	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7952	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7953	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7954	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7955	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7956	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7957	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7958	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7959	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7960	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
ADS7961	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处

表 14. 相关链接

12.3 接收文档更新通知

要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.4 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 设计支持

12.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可 能会损坏集成电路。

🕂 🜊 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。

12.7 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ADS7950SBDBT	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7950 B	Samples
ADS7950SBDBTR	ACTIVE	TSSOP	DBT	30	2000	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7950 B	Samples
ADS7950SBRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7950 B	Samples
ADS7950SBRGET	ACTIVE	VQFN	RGE	24	250	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7950 B	Samples
ADS7950SDBT	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7950	Samples
ADS7950SDBTR	ACTIVE	TSSOP	DBT	30	2000	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7950	Samples
ADS7951SBDBT	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7951 B	Samples
ADS7951SBDBTR	ACTIVE	TSSOP	DBT	30	2000	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7951 B	Samples
ADS7951SBRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS 7951 B	Samples
ADS7951SBRGET	ACTIVE	VQFN	RGE	24	250	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS 7951 B	Samples
ADS7951SDBT	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7951	Samples
ADS7951SDBTG4	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7951	Samples
ADS7951SDBTR	ACTIVE	TSSOP	DBT	30	2000	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7951	Samples
ADS7951SRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS 7951	Samples
ADS7951SRGET	ACTIVE	VQFN	RGE	24	250	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS 7951	Samples
ADS7952SBDBT	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7952 B	Samples

PACKAGE OPTION ADDENDUM

7-Oct-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ADS7952SBDBTG4	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7952 B	Samples
ADS7952SBDBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7952 B	Samples
ADS7952SBRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7952 B	Samples
ADS7952SBRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7952 B	Samples
ADS7952SDBT	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7952	Samples
ADS7952SDBTG4	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7952	Samples
ADS7952SDBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7952	Samples
ADS7952SRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7952	Sample
ADS7952SRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7952	Samples
ADS7953SBDBT	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7953 B	Samples
ADS7953SBDBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7953 B	Samples
ADS7953SBRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7953 B	Samples
ADS7953SBRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7953 B	Samples
ADS7953SDBT	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7953	Samples
ADS7953SDBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	Call TI	Level-2-260C-1 YEAR	-40 to 125	ADS7953	Sample
ADS7953SRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7953	Samples
ADS7953SRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	ADS 7953	Sample

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Sampl
ADS7954SDBT	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7954	Sampl
ADS7954SDBTR	ACTIVE	TSSOP	DBT	30	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7954	Sampl
ADS7954SRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7954	Sampl
ADS7954SRGET	ACTIVE	VQFN	RGE	24	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7954	Sampl
ADS7955SDBT	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7955	Sampl
ADS7955SDBTR	ACTIVE	TSSOP	DBT	30	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7955	Samp
ADS7955SRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7955	Samp
ADS7955SRGET	ACTIVE	VQFN	RGE	24	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7955	Samp
ADS7956SDBT	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7956	Samp
ADS7956SDBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7956	Samp
ADS7956SRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7956	Samp
ADS7956SRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7956	Samp
ADS7957SDBT	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7957	Samp
ADS7957SDBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7957	Samp
ADS7957SRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7957	Samp
ADS7957SRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7957	Samp
ADS7958SDBT	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7958	Samp
ADS7958SDBTR	ACTIVE	TSSOP	DBT	30	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7958	Samp
ADS7958SRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7958	Samp

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ADS7958SRGET	ACTIVE	VQFN	RGE	24	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7958	Samples
ADS7959SDBT	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7959	Samples
ADS7959SDBTR	ACTIVE	TSSOP	DBT	30	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7959	Samples
ADS7959SRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7959	Samples
ADS7959SRGET	ACTIVE	VQFN	RGE	24	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7959	Samples
ADS7960SDBT	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7960	Samples
ADS7960SDBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7960	Samples
ADS7960SRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7960	Samples
ADS7960SRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7960	Samples
ADS7961SDBT	ACTIVE	TSSOP	DBT	38	50	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7961	Samples
ADS7961SDBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7961	Samples
ADS7961SDBTRG4	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS7961	Samples
ADS7961SRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7961	Samples
ADS7961SRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	ADS 7961	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

PACKAGE OPTION ADDENDUM

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955, ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961 :

• Automotive : ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1, ADS7955-Q1, ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

Texas Instruments

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS7950SBDBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
ADS7950SBRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7950SBRGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7950SDBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
ADS7951SBDBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
ADS7951SBRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7951SBRGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7951SDBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
ADS7951SRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7951SRGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7952SBDBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
ADS7952SBRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7952SBRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7952SDBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
ADS7952SRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7952SRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7953SBDBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
ADS7953SBRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com

5-Jan-2022

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS7953SBRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7953SDBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
ADS7953SRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7953SRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7954SDBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
ADS7954SRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7954SRGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7955SDBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
ADS7955SRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7955SRGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7956SDBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
ADS7956SRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7956SRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7957SDBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
ADS7957SRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7957SRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7958SDBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
ADS7958SRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7958SRGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7959SDBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
ADS7959SRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7959SRGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
ADS7960SDBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
ADS7960SRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7960SRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7961SDBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
ADS7961SRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
ADS7961SRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

5-Jan-2022

All dimensions are nominal			D :	070			
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS7950SBDBTR	TSSOP	DBT	30	2000	853.0	449.0	35.0
ADS7950SBRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
ADS7950SBRGET	VQFN	RGE	24	250	210.0	185.0	35.0
ADS7950SDBTR	TSSOP	DBT	30	2000	853.0	449.0	35.0
ADS7951SBDBTR	TSSOP	DBT	30	2000	853.0	449.0	35.0
ADS7951SBRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
ADS7951SBRGET	VQFN	RGE	24	250	210.0	185.0	35.0
ADS7951SDBTR	TSSOP	DBT	30	2000	853.0	449.0	35.0
ADS7951SRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
ADS7951SRGET	VQFN	RGE	24	250	210.0	185.0	35.0
ADS7952SBDBTR	TSSOP	DBT	38	2000	853.0	449.0	35.0
ADS7952SBRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS7952SBRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
ADS7952SDBTR	TSSOP	DBT	38	2000	853.0	449.0	35.0
ADS7952SRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS7952SRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
ADS7953SBDBTR	TSSOP	DBT	38	2000	853.0	449.0	35.0
ADS7953SBRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS7953SBRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
ADS7953SDBTR	TSSOP	DBT	38	2000	853.0	449.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com

5-Jan-2022

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS7953SRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS7953SRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
ADS7954SDBTR	TSSOP	DBT	30	2000	853.0	449.0	35.0
ADS7954SRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
ADS7954SRGET	VQFN	RGE	24	250	210.0	185.0	35.0
ADS7955SDBTR	TSSOP	DBT	30	2000	853.0	449.0	35.0
ADS7955SRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
ADS7955SRGET	VQFN	RGE	24	250	210.0	185.0	35.0
ADS7956SDBTR	TSSOP	DBT	38	2000	853.0	449.0	35.0
ADS7956SRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS7956SRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
ADS7957SDBTR	TSSOP	DBT	38	2000	853.0	449.0	35.0
ADS7957SRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS7957SRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
ADS7958SDBTR	TSSOP	DBT	30	2000	853.0	449.0	35.0
ADS7958SRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
ADS7958SRGET	VQFN	RGE	24	250	210.0	185.0	35.0
ADS7959SDBTR	TSSOP	DBT	30	2000	853.0	449.0	35.0
ADS7959SRGER	VQFN	RGE	24	3000	367.0	367.0	35.0
ADS7959SRGET	VQFN	RGE	24	250	210.0	185.0	35.0
ADS7960SDBTR	TSSOP	DBT	38	2000	853.0	449.0	35.0
ADS7960SRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS7960SRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
ADS7961SDBTR	TSSOP	DBT	38	2000	853.0	449.0	35.0
ADS7961SRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS7961SRHBT	VQFN	RHB	32	250	210.0	185.0	35.0

TUBE

B - Alignment groove width

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
ADS7950SBDBT	DBT	TSSOP	30	60	530	10.2	3600	3.5
ADS7950SDBT	DBT	TSSOP	30	60	530	10.2	3600	3.5
ADS7951SBDBT	DBT	TSSOP	30	60	530	10.2	3600	3.5
ADS7951SDBT	DBT	TSSOP	30	60	530	10.2	3600	3.5
ADS7951SDBTG4	DBT	TSSOP	30	60	530	10.2	3600	3.5
ADS7952SBDBT	DBT	TSSOP	38	50	530	10.2	3600	3.5
ADS7952SBDBTG4	DBT	TSSOP	38	50	530	10.2	3600	3.5
ADS7952SDBT	DBT	TSSOP	38	50	530	10.2	3600	3.5
ADS7952SDBTG4	DBT	TSSOP	38	50	530	10.2	3600	3.5
ADS7953SBDBT	DBT	TSSOP	38	50	530	10.2	3600	3.5
ADS7953SDBT	DBT	TSSOP	38	50	530	10.2	3600	3.5
ADS7954SDBT	DBT	TSSOP	30	60	530	10.2	3600	3.5
ADS7955SDBT	DBT	TSSOP	30	60	530	10.2	3600	3.5
ADS7956SDBT	DBT	TSSOP	38	50	530	10.2	3600	3.5
ADS7957SDBT	DBT	TSSOP	38	50	530	10.2	3600	3.5
ADS7958SDBT	DBT	TSSOP	30	60	530	10.2	3600	3.5
ADS7959SDBT	DBT	TSSOP	30	60	530	10.2	3600	3.5
ADS7960SDBT	DBT	TSSOP	38	50	530	10.2	3600	3.5
ADS7961SDBT	DBT	TSSOP	38	50	530	10.2	3600	3.5

DBT0030A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

DBT0030A

EXAMPLE BOARD LAYOUT

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DBT0030A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RGE0024H

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

RGE0024H

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

RGE0024H

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations..

RHB 32

5 x 5, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for any larger diameter vias placed in the thermal pad.

PACKAGE OUTLINE

DBT0038A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

DBT0038A

EXAMPLE BOARD LAYOUT

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DBT0038A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司