TMP390 ZHCSJR8A - MAY 2019 - REVISED AUGUST 2020 # TMP390 超小型、双通道(高低温跳变)、0.5µA 电阻器可编程温度开关 ## 1 特性 - 电阻器可编程的温度跳闸点和迟滞选项 - 电阻器容差可实现零误差 - 迟滞选项:5°C、10°C和20°C - 适用于过热或欠温检测的独立输出 - 通道 A (过热): +30°C 至 +124°C, 阶跃为 2°C - 通道 B (欠温) : -50°C 至 +25°C, 阶跃为 - 精度级别选项(在-55°C至+130°C范围内达到最 大值): - A2 电平: ±3.0°C (在 0°C 至 +70°C 范围内为 ±1.5°C) - A3 电平: ±3.5°C(在 0°C至 +70°C 范围内为 ±2.0°C) - 超低功耗: 25°C 时为 0.5µA(典型值) - 电源电压: 1.62 至 5.5 V - 开漏输出 - 跳闸测试功能支持系统内测试 - 采用 SOT-563 (1.60mm × 1.20mm)、 6 引脚封装 ## 2 应用 - 直流/交流逆变器 - 直流/直流转换器 - 温度变送器 - 环境控制系统 (ECS) - 电动工具 - 移动电源 - 无线基础设施 - WLAN/Wi-Fi 接入点 - 核心路由器 - 边缘路由器 - 宏远程无线电单元 (RRU) # 3 说明 TMP390 器件属于超低功耗、双通道、电阻可编程温 度开关系列,可在-50°C至+130°C范围内对系统过 热事件进行保护和检测。TMP390 可提供独立的过热 (热)和欠温(冷)检测。跳闸温度 (T_{TRIP}) 和热迟滞 (T_{HYST}) 选项可由两个位于 SETA 和 SETB 引脚上的 E96 系列电阻器 (1% 容差)进行编程。通道 A 电阻器 的阻值范围为 1.05KΩ 至 909KΩ, 具有 48 个不同阻 值。通道 B 电阻器的阻值范围为 $10.5 \text{K}\Omega$ 至 $909 \text{K}\Omega$ SETA 输入的接地电阻器值可设置通道 A 的 T_{TRIP} 阈 值。SETB 输入的接地电阻器值可设置通道 B 的 T_{TRIP} 阈值,两个通道的 T_{HYST} 选项可设置为 $5^{\circ}C$ 或 $10^{\circ}C$, 以防止发生不需要的数字输出切换。当 SETB 输入接 地,通道 A 运行时具有 20°C 的迟滞。电阻器精度对 T_{TRIP} 精度没有影响。 为使客户能够进行电路板级制造, TMP390 可通过发 挥 SETA 或 SETB 引脚功能激活数字输出,从而支持 跳闸测试功能。 #### 器件信息 | 器件型号 | 封装 ⁽¹⁾ | 封装尺寸(标称值) | |--------|-------------------|-----------------| | TMP390 | SOT-563 (6) | 1.60mm × 1.20mm | 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 ### 器件比较 | 器件型号 | 功能 | 输出类型 | |--------|-----|------| | TMP390 | 热/冷 | 工作 | | TMP392 | 热/温 | 开漏 | # **Table of Contents** | 1 特性 | 1 | 7.4 Device Functional Modes | 10 | |--------------------------------------|---|--|-----------------| | 2 应用 | | 8 Application and Implementation | 11 | | 3 说明 | | 8.1 Applications Information | 11 | | 4 Revision History | | 8.2 Typical Applications | 11 | | 5 Pin Configuration and Functions | | 9 Power Supply Recommendations | 17 | | Pin Functions | | 10 Layout | 18 | | 6 Specifications | | 10.1 Layout Guidelines | 18 | | 6.1 Absolute Maximum Ratings | | 10.2 Layout Example | 18 | | 6.2 ESD Ratings | | 11 Device and Documentation Support | 19 | | 6.3 Recommended Operating Conditions | | 11.1 Receiving Notification of Documentation Updates | <mark>19</mark> | | 6.4 Thermal Information | | 11.2 Support Resources | | | 6.5 Electrical Characteristics | | 11.3 Trademarks | 19 | | 6.6 Typical Characteristics | | 11.4 Electrostatic Discharge Caution | 19 | | 7 Detailed Description | | 11.5 Glossary | 19 | | 7.1 Overview | | 12 Mechanical, Packaging, and Orderable | | | 7.2 Functional Block Diagram | | Information | 19 | | 7.3 Feature Description | | | | # **4 Revision History** 注:以前版本的页码可能与当前版本的页码不同 | Changes from Revision * (May 2019) to Revision A (August 2020) | Page | |---|------| | • 在标题中添加了"高低温跳闸" | 1 | | Updated T _J to 150°C from 155°C | 4 | | Updated T _{stg} to 150°C from 155°C | 4 | | Removed T _A section on unspecified performance | | | Updated R _{⊕ JA} from 210.3 °C/W to 230 °C/W | 4 | | Updated R_{⊕ JC(top)} from 105 °C/W to 103.4 °C/W | | | Updated R_{⊕ JB} from 87.5 °C/W to 111.6 °C/W | 4 | | Updated | 4 | | • Updated Ψ_{JB} from 87 °C/W to 110.5 °C/W | 4 | | Added Thermal Mass paramater | 4 | | Added 20°C hysteresis option for single channel operation | 5 | | Updated to separate SETA and SETB resistor ranges | 5 | | Added test condition for average quiescent current | 5 | | • Changed standby current from 0.2µA to 0.25µA | 5 | | Changed power-on reset threshold voltage from 1.55V to 1.5V | | | | | # **5 Pin Configuration and Functions** 图 5-1. DRL Package 6-Pin SOT-563 Top View # **Pin Functions** | PIN I/O NO. NAME | | 1/0 | DESCRIPTION | | |------------------|------|--------------|---|--| | | | 1/0 | | | | 1 | SETA | Input | Channel A temperature set point. Connect a standard E96, 1% resistance between SETA and GND. | | | 2 | SETB | Input | Channel B temperature and Hysteresis set point. Connect a standard E96, 1% resistance between SETB and GND. | | | 3 | GND | Ground | Device ground. | | | 4 | ОИТВ | Logic Output | Channel B logic open-drain active low output. If unused, the output can be left floating or connected to GND. | | | 5 | VDD | Supply | Power supply voltage (1.62 V - 5.5 V). | | | 6 | OUTA | Logic Output | Channel A logic open-drain active low output. If unused, the output can be left floating or connected to GND. | | # **6 Specifications** # **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) (2) | | | MIN | MAX | UNIT | |-------------------------------------|------------|-------|-----------|------| | Supply voltage | VDD | - 0.3 | 6 | V | | Voltage at | OUTA, OUTB | -0.3 | 6 | V | | Voltage at | SETA, SETB | - 0.3 | VDD + 0.3 | V | | Junction temperature, T | | - 55 | 150 | °C | | Storage temperature, T _s | ig | - 60 | 150 | °C | - (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) Powering the device when the operating junction temperature is outside the *Recommended Operating Conditions*, may affect the functional operation of the device. The device must be power cycled after the system has returned to conditions as indicated under *Recommended Operating Conditions*. ## 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--|-------|------| | V | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | V | | V _(ESD) | Liectiostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±500 | | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - 2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. # **6.3 Recommended Operating Conditions** | | | MIN | NOM | MAX | UNIT | |-------------------|---|------|-----|-----------|------| | VDD | Supply voltage | 1.62 | 3.3 | 5.5 | V | | V _{OUTA} | Channel A output pull-up voltage (open-drain) | | | VDD + 0.3 | V | | V _{OUTB} | Channel B output pull-up voltage (open-drain) | | | VDD + 0.3 | V | | I _{SETA} | SETA pin circuit leakage current | -20 | | 20 | nA | | I _{SETB} | SETB pin circuit leakage current | -20 | | 20 | nA | | R _{PA} | Pullup resistor connected from OUTA to VDDIO(1) | 4 | 10 | | l-O | | R _{PB} | Pullup resistor connected from OUTB to VDDIO ⁽¹⁾ | ' | 10 | | kΩ | | T _A | Operating free-air temperature (specified performance) | - 55 | | 130 | °C | (1) Where VDDIO is an independent power supply other than VDD, and shall not exceed (VDD + 0.3) V. #### 6.4 Thermal Information | | | TMP390 | | |------------------------|--|-----------|-------| | | THERMAL METRIC ⁽¹⁾ | DRL (SOT) | UNIT | | | | 6 PINS | | | R ₀ JA | Junction-to-ambient thermal resistance | 230 | °C/W | | R ₀ JC(top) | Junction-to-case (top) thermal resistance | 103.4 | °C/W | | R ₀ JB | Junction-to-board thermal resistance | 111.6 | °C/W | | ψJT | Junction-to-top characterization parameter | 5.3 | °C/W | | ψ ЈВ | Junction-to-board characterization parameter | 110.5 | °C/W | | M _T | Thermal Mass | 1.83 | mJ/°C | For more information about traditional and new thermal metrics, see the Semiconductor IC Package Thermal Metrics application report, (SPRA953). Product Folder Links: TMP390 ### **6.5 Electrical Characteristics** Minimum and maximum specifications are over -55°C to 130°C and VDD = 1.62V - 5.5V (unless otherwise noted); typical specifications are at T_A = 25°C and VDD = 3.3 V. | specifica | ations are at T _A = 25°C and VDD | = 3.3 V. | | | | | | |--|--|---|-------------------------------------|------|------|-----|--------| | | PARAMETER | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | | TEMPE | RATURE TO DIGITAL CONVERTER | | | | | | | | TEMPE | RATURE MEASUREMENT | | | | | | | | | | | 0°C to 70°C, VDD = 2.5V
to 5.5V | -1.5 | ±0.5 | 1.5 | | | | | TMD200A2 | 0°C to 70°C, VDD = 1.62V to 2.5V | -2.0 | ±0.5 | 2.0 | °C | | | Trip Point Accuracy | TMP390A2 | -55°C to 130°C, VDD = 2.5V to 5.5V | -2.5 | ±0.5 | 2.5 | C | | | | | -55°C to 130°C, VDD = 1.62V to 2.5V | -3.0 | ±0.5 | 3.0 | | | | | TMPOOCAG | 0°C to 70°C | -2.0 | ±0.5 | 2.0 | °C | | | | TMP390A3 | -55°C to130°C | -3.5 | | 3.5 | °C | | | | 表 7-2 select | ion column 2 | | 5 | | °C | | T _{HYST} | Trip point hysteresis | 表 7-2 select | ion column 3 | | 10 | | °C | | THYSI | The point hysteresis | Channel A only when SETB connected to GND | | | 20 | | °C | | TRIP PO | DINT RESISTOR PROGRAMMING | _ | | | | | | | | SETA resistor range | | | 1.05 | | 909 | kΩ | | | SETB resistor range | | | 10.5 | | 909 | kΩ | | | SETA & SETB resistor tolerance | T _A =25°C | | -1.0 | | 1.0 | % | | | SETA & SETB resistor temperature coefficient | | | -100 | | 100 | ppm/°C | | | SETA & SETB resistor lifetime drift | | | -0.2 | | 0.2 | % | | DIGITAL | NPUT/OUTPUT | | | | | | | | C _{IN} | Input capacitance for SETA & SETB (includes PCB) | | | | | 50 | pF | | R _{PD} | Internal Pull down resistance | SETA & SET | В | | 125 | | kΩ | | V _{OL} | Output logic low level | I _{OL} = -3 mA | | 0 | | 0.4 | V | | I _{LKG} | Leakage current on output high level | | | -0.1 | | 0.1 | μΑ | | T _{Cov} | Conversion duration | | | | 0.65 | | ms | | T _S | Sampling period | | | | 0.5 | | s | | POWER | SUPPLY | | | | | | | | I _Q Average Quiescent current | | VDD = 1.62V | ' to 3.3V | | 0.5 | 1 | ^ | | I _{Standby} | Standby current | | | | 0.25 | | μА | | I _{Conv} | Conversion current | | | | 135 | | μА | | I _{SU} | Startup (Reset) peak current | Reset Time in | nterval only. | | 250 | | μА | | V _{POR} | Power-on-reset threshold voltage | Supply going | up | | 1.5 | | V | | | Brownout detect | Supply going | down | | 1.1 | | V | | | Power Reset Time | Time required power up | d by device to reset after | | 10 | | ms | # **6.6 Typical Characteristics** 图 6-1. Average Supply Current vs Operating Temperature 图 6-2. Trip Point Accuracy vs Operating Temperature 图 6-3. Sampling Period Variation vs Supply Voltage 图 6-4. Conversion Current vs Supply Voltage 图 6-5. Output Voltage vs Load Current $(T_{AMB} = 25^{\circ}C)$ # 7 Detailed Description #### 7.1 Overview The TMP390 ultra-low power, dual channel, resistor programmable temperature switches enable detection and protection of system thermal events over a wide temperature range. The TMP390 offers independent overtemperature (hot) and undertemperature (cold) detection. The trip temperatures and hysteresis options are programmed by two E96-series (1%) standard decade value resistors on the SETA and SETB pins. The TMP390 can enable a customer board-level manufacturing test through the trip test function that can force the SETA or SETB pins to logic high to activates the digital outputs. ### 7.2 Functional Block Diagram R_{SETA} and R_{SETB} select trip thresholds and hysteresis options. 图 7-1. Simplified Schematic #### 7.3 Feature Description The TMP390 requires two resistors to set the two trip points and hysteresis, according to $\frac{1}{8}$ 7-1 and $\frac{1}{8}$ 7-2, for the hot and cold channel device. The output of the TMP390 is open-drain and requires two pullup resistors. TI recommends to use a pullup voltage supply that does not exceed VDD + 0.3 V. The pullup resistors used in between the $\overline{\text{OUTA}}$ and $\overline{\text{OUTB}}$ pins and the pullup supply should be greater than 1 k Ω . The device powers on when the supply voltage goes beyond 1.5 V, and starts sampling the input resistors to set the two trip points and hysteresis value after power-on. These values will remain the same until the device goes through a power cycle. After the device sets the trip points and hysteresis level, the device will update the output every half a second. The conversion time is typically 0.65 ms when the temperature is checked against the trip points and the outputs are updated. The device remains in standby mode between conversions. If either channel is not used, the output can be grounded or left floating. #### 7.3.1 TMP390 Programming Tables The temperature threshold and hysteresis options for the TMP390 device are programmed using two external 1% E96 standard resistors. The specific resistor value to ground on the SETA input sets the temperature threshold of channel A. The specific resistor value to ground on the SETB input sets the temperature threshold of channel B, as well as the hysteresis for both channel A and channel B. **CHANNEL A (HOT) CHANNEL A (HOT) TRIP RESET CHANNEL A (HOT) TRIP RESET CHANNEL A NOMINAL 1%** TRIP TEMPERATURE TEMPERATURE (°C) FOR TEMPERATURE (°C) FOR RESISTORS (KΩ) (°C) HYSTERESIS = 5°C HYSTERESIS = 10°C 25 30 1.05 20 32 1.21 27 22 1.40 34 24 表 7-1. TMP390 Channel A Threshold Setting # 表 7-1. TMP390 Channel A Threshold Setting (continued) | CHANNEL A (HOT) TRIP TEMPERATURE (°C) | CHANNEL A NOMINAL 1%
RESISTORS (ΚΩ) | annel A Threshold Setting (con
CHANNEL A (HOT) TRIP RESET
TEMPERATURE (°C) FOR
HYSTERESIS = 5°C | CHANNEL A (HOT) TRIP RESET TEMPERATURE (°C) FOR HYSTERESIS = 10°C | |---------------------------------------|--|--|---| | 36 | 1.62 | 31 | 26 | | 38 | 1.87 | 33 | 28 | | 40 | 2.15 | 35 | 30 | | 42 | 2.49 | 37 | 32 | | 44 | 2.43 | 39 | 34 | | 46 | 3.32 | 41 | 36 | | 48 | 3.83 | 43 | 38 | | 50 | 4.42 | 45 | 40 | | 52 | 5.11 | 47 | 42 | | 54 | 5.90 | 49 | 44 | | 56 | 6.81 | 51 | 46 | | 58 | 7.87 | 53 | 48 | | 60 | 9.09 | 55 | 50 | | 62 | 10.5 | 57 | 52 | | 64 | 12.1 | 59 | 54 | | 66 | 14.0 | 61 | 56 | | 68 | 16.2 | 63 | 58 | | 70 | 18.7 | 65 | 60 | | 70 | | 67 | 62 | | 74 | 21.5 | | 64 | | 76 | 24.9 | 69
71 | | | 78 | 28.7 | | 66 | | | 33.2 | 73 | 68 | | 80 | 38.3 | 75 | 70 | | 82
84 | 44.2 | 77 | 72
74 | | | 51.1 | 79 | | | 86 | 59.0 | 81 | 76 | | 88 | 68.1 | 83 | 78 | | 90 | 78.7 | 85 | 80 | | 92 | 90.9 | 87 | 82 | | 94 | 105 | 89 | 84 | | 96 | 121 | 91 | 86 | | 98 | 140 | 93 | 88 | | 100 | 162 | 95 | 90 | | 102 | 187 | 97 | 92 | | 104 | 215 | 99 | 94 | | 106 | 249 | 101 | 96 | | 108 | 287 | 103 | 98 | | 110 | 332 | 105 | 100 | | 112 | 383 | 107 | 102 | | 114 | 442 | 109 | 104 | | 116 | 511 | 111 | 106 | | 118 | 590 | 113 | 108 | | 120 | 681 | 115 | 110 | | 122 | 787 | 117 | 112 | # 表 7-1. TMP390 Channel A Threshold Setting (continued) | CHANNEL A (HOT) TRIP TEMPERATURE (°C) | CHANNEL A NOMINAL 1%
RESISTORS (KΩ) | CHANNEL A (HOT) TRIP RESET
TEMPERATURE (°C) FOR
HYSTERESIS = 5°C | CHANNEL A (HOT) TRIP RESET
TEMPERATURE (°C) FOR
HYSTERESIS = 10°C | |---------------------------------------|--|--|---| | 124 | 909 | 119 | 114 | #### Note When the SETA pin is grounded or left floating during the device power up, the OUTA pin always stays low. The Channel B functionality is not affected by the SETA channel. 表 7-2. TMP390 Channel B Threshold and Hysteresis Setting | CHANNEL B (COLD) | CHANNEL B NOMINAL | 1% RESISTORS (KΩ) | CHANNEL B (COLD) TRIP RESET TEMPERATURE (°C) | | | | | |--------------------------|-------------------|-------------------|--|-------------------|--|--|--| | TRIP
TEMPERATURE (°C) | HYSTERESIS = 5°C | HYSTERESIS = 10°C | HYSTERESIS = 5°C | HYSTERESIS = 10°C | | | | | - 50 | 90.9 | 105 | - 45 | - 40 | | | | | - 45 | 78.7 | 121 | - 40 | - 35 | | | | | - 40 | 68.1 | 140 | - 35 | - 30 | | | | | - 35 | 59.0 | 162 | - 30 | - 25
- 20 | | | | | - 30 | 51.1 | 187 | - 25 | | | | | | - 25 | 44.2 | 215 | - 20 | - 15 | | | | | - 20 | - 20 38.3 | | - 15 | - 10 | | | | | - 15 | 33.2 | 287 | - 10 | - 5 | | | | | - 10 | 28.7 | 332 | - 5 | 0 | | | | | - 5 | 24.9 | 383 | 0 | 5 | | | | | 0 | 21.5 | 442 | 5 | 10 | | | | | 5 | 18.7 | 511 | 10 | 15 | | | | | 10 | 16.2 | 590 | 15 | 20 | | | | | 15 | 14.0 | 681 | 20 | 25 | | | | | 20 | 12.1 | 787 | 25 | 30 | | | | | 25 | 10.5 | 909 | 30 | 35 | | | | #### 7.3.2 Trip Test The purpose of the trip test is in system manufacturing test without putting the TMP390 through costly temperature verification of the assembly of TMP390 and pullup resistors. When the SETA or SETB pin is set to a high logic level, the associated output goes low. When the input pin level goes low, the output goes to its previous condition before the trip test. The trip test does not affect the current condition of the device. The trip test signals should stay above $0.8 \times VDD$ for logic high and below $0.2 \times VDD$ for logic low. The trip test operation is shown in 🛭 7-2. The trip test must be performed with a single toggle when the device is operating at a temperature that will not cause the corresponding output to trip. The trip test is intended for production testing after assembly, and must not be used as a functional feature. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 图 7-2. TMP390 Trip Test Operation ### 7.3.3 20°C Hysteresis The 20°C hysteresis feature is only available on Channel A. To activate the feature, the SETB pin must be connected to ground and SETA pin connected to the resistor to set the appropriate trip point on Channel A. #### 7.4 Device Functional Modes The device has one mode of operation, as described above, that applies when operated within the *Recommended Operating Conditions*. # 8 Application and Implementation #### Note 以下应用部分的信息不属于 TI 组件规范, TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 ### 8.1 Applications Information The TMP390 device is part of a family of ultra-low power, dual channel, resistor programmable temperature switches that can enable detection and protection of system thermal events over a wide temperature range. The trip temperatures (T_{TRIP}) and hysteresis options are programmed by two E96-series (1%) standard decade value resistors on the SETA and SETB pins. The thermal hysteresis (T_{HYST}) function is to prevent undesired digital output switching due to small temperature changes. ### 8.2 Typical Applications #### 8.2.1 Simplified Application Schematic 图 8-1 shows the simplified schematic where R_{SETA} and R_{SETB} are used to set channel A trip point (SETA) and channel B trip point and hysteresis for both channels (SETB). SETA and SETB can be programmed at a variety of temperatures based on the device, as described in 表 7-1 for channel A trip point, and 表 7-2 for channel B trip point and hysteresis for both channels. \overline{OUTA} and \overline{OUTB} outputs correspond to the temperature threshold detection at SETA and SETB, respectively. 图 8-1. Simplified Schematic #### 8.2.1.1 Design Requirements The TMP390 requires two resistors to set the high and low trip points and hysteresis, and two pullup resistors for the open-drain device. TI also highly recommends to place a 0.1- μ F, power-supply bypassing capacitor close to the VDD supply pin. To minimize the internal power dissipation, use two pullup resistors greater than 1 k Ω from the \overline{OUTA} and \overline{OUTB} pins to the VDD pin. A separate supply, VDDIO, may be used for the pullup voltage to set the output voltage level to the level required by the MCU, as shown in 8 8-1. The open-drain output gives flexibility of pulling up to any voltage independent of VDD (VDDIO must be less than or equal to VDD + 0.3 V). This allows for use of longer cables or different power supply options. If a separate voltage level is not required, TI recommends to tie the pullup to the TMP390 VDD. If the SETA or SETB connected resistor value is outside the legal range, the associated output goes to permanent output zero stage and the channel cannot be used. The other channel still will be in operating condition, and device can be used in one channel mode. If the SETB input is grounded or left floating, the Channel B cannot be used and the hysteresis for Channel A will be 20°C. The SETA and SETB connected resistors are measured during POR. If two consecutive measurements are not matching each other, then the device sets the associated channel output to zero and repeats the resistor measurements until the measurements match. When the measurements match, the channel output is released. Note that it is possible to connect some device outputs together by shorting the OUTA or OUTB line. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback #### 8.2.1.2 Detailed Design Procedure The resistor to ground values on the SETA input sets the T_{TRIP} threshold of Channel A. The resistor to ground value on the SETB input sets the T_{TRIP} threshold of Channel B as well as the T_{HYST} 5°C and 10°C options. TI recommends that the resistors at SETA and SETB have a 1% tolerance at room temperature. Each resistor can range from 1.05 K Ω to 909 K Ω , representing one of 48 unique values. The exact temperature thresholds and trip points are shown in $\frac{1}{8}$ 7-1 and $\frac{1}{8}$ 7-2. The pullup resistors should be at least 1 k Ω to minimize internal power dissipation. To get the correct threshold for resistor values, take care to minimize the board level capacitance and leakage at the SETA and SETB pins. The waveform for the TMP390 output under the hot/cold thresholds is shown in 8 8-2. The hysteresis can be set to 5°C, 10°C or 20°C. When the temperature exceeds the hot trip point threshold, OUTA goes low until the temperature drops below the hysteresis threshold. When the temperature drops below the cold trip threshold, OUTB goes low and returns high after the temperature rises above the hysteresis threshold. If the switch has already tripped and the temperature is in the hysteresis band, a POR event will cause the output to go high after the power is restored. #### 8.2.1.3 Application Curves 图 8-2. TMP390 Output With Hot/Cold Thresholds With Hysteresis #### 8.2.2 TMP390 With 10°C Hysteresis 8-3 shows an example circuit for overtemperature and undertemperature protection using the TMP390. In this example, the trip points are set at − 25°C and +90°C with 10°C hysteresis. 图 8-3. TMP390 Example Circuit at +90°C and -25°C Thresholds With 10°C Hysteresis #### 8.2.2.1 Design Requirements In this example, VDD can be \geqslant 3 V. The output pins may be tied to a switch to control a fan or other analog circuitry. \boxtimes 8-3 uses 10-k Ω pullup resistors at the $\overline{\text{OUTA}}$ and $\overline{\text{OUTB}}$ outputs. Place a 0.1- μF bypass capacitor close to the TMP390 device to reduce noise coupled from the power supply. If needed, the output of multiple parts can be connected together. ### 8.2.2.2 Detailed Design Procedure SETA sets the +90°C threshold using 78.7 k Ω . SETB sets the - 25°C trip point and 10°C hysteresis using 215 k Ω . These values were determined using \Re 7-1 and \Re 7-2. These resistors should have maximum of 1% tolerance and 100 ppm/°C or less over the desired temperature range. A summary of the resistor settings used in this example is shown in \Re 8-1. See \Re 7-1 and \Re 7-2 for additional trip points and hysteresis configurations. The switching output of the TMP390 can be visualized with the output diagram shown in № 8-4. It is key to notice that hysteresis is subtracted from the Channel A threshold and added to the Channel B threshold values. OUTA remains high until the sensor reaches +90°C where the output goes low, and returns high after the temperature drops back down to +80°C. OUTB trips when the temperature stays below - 25°C and goes low until the temperature rises above - 15°C. CHANNEL RESISTOR SETTING (kΩ) HYSTERESIS (°C) TRIP TEMPERATURE (°C) SETA 78.7 +90 215 表 8-1. Example Resistor Settings and Trip Points 10 Copyright © 2021 Texas Instruments Incorporated SETB - 25 # 8.2.2.3 Application Curve 图 8-4. TMP390 Output Response With Hysteresis ### 8.2.3 One Channel Operation for Hot Trip Point up to 124°C 图 8-5 shows the TMP390 configured for one channel operation, with a single resistor to set the hot trip point and hysteresis. 表 8-2 shows the possible resistor values and hysteresis values that may be used for one channel applications. 图 8-5. TMP390 One Channel (Hot) Operation Example Circuit With 78°C Trip Point and 5°C Hysteresis 表 8-2. Single Resistor One Channel Setting | NOMINAL 1% RESISTOR (KΩ) | CHANNEL A TRIP TEMPERATURE (°C) | HYSTERESIS (°C) | |--------------------------|---------------------------------|-----------------| | 10.5 | 62 | 5 | | 12.1 | 64 | 5 | | 14.0 | 66 | 5 | | 16.2 | 68 | 5 | | 18.7 | 70 | 5 | | 21.5 | 72 | 5 | | 24.9 | 74 | 5 | | 28.7 | 76 | 5 | | 33.2 | 78 | 5 | | 38.3 | 80 | 5 | | 44.2 | 82 | 5 | | 51.1 | 84 | 5 | | 59.0 | 86 | 5 | | 68.1 | 88 | 5 | | 78.7 | 90 | 5 | | 90.0 | 92 | 5 | | 105 | 94 | 10 | | 121 | 96 | 10 | | 140 | 98 | 10 | | 162 | 100 | 10 | | 187 | 102 | 10 | Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 表 8-2. Single Resistor One Channel Setting (continued) | NOMINAL 1% RESISTOR (KΩ) | CHANNEL A TRIP
TEMPERATURE (°C) | HYSTERESIS (°C) | |--------------------------|------------------------------------|-----------------| | 215 | 104 | 10 | | 249 | 106 | 10 | | 287 | 108 | 10 | | 332 | 110 | 10 | | 383 | 112 | 10 | | 442 | 114 | 10 | | 511 | 116 | 10 | | 590 | 118 | 10 | | 681 | 120 | 10 | | 787 | 122 | 10 | | 909 | 124 | 10 | # 8.2.3.1 Application Curve 图 8-6. TMP390 One Channel (Hot) Operation Thresholds and Hysteresis #### 8.2.4 One Channel Operation for Cold Trip Point 图 8-7 shows the TMP390 configured for one channel operation, with a single resistor to set the warm trip point and hysteresis. The resistor values for one channel warm trip point is same as described in 表 7-2. 图 8-7. TMP390 One Channel (Cold) Operation Example Circuit With - 20°C Trip Point and 10°C Hysteresis #### 8.2.4.1 Application Curve 图 8-8. TMP390 One Channel (Cold) Operation Thresholds and Hysteresis ### 9 Power Supply Recommendations The low supply current and wide supply range of the TMP390 allow the device to be powered from many sources. VDDIO must always be lower than or equal to VDD + 0.3 V. Power supply bypassing is strongly recommended by adding a 0.1- μ F capacitor from VDD to GND. In noisy environments, TI recommends to add a filter with 0.1- μ F capacitor and 100- Ω resistor between external supply and VDD to limit the power supply noise. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback # 10 Layout # 10.1 Layout Guidelines The TMP390 is extremely simple to layout. Place the power supply bypass capacitor as close to the device as possible, and connect the capacitor as shown in \boxtimes 10-1. Place the R_{SETA} and R_{SETB} resistors as close to the device as possible. Carefully consider the resistor placement to avoid additional leakage or parasitic capacitance, as this may affect the actual resistor sense value for the trip thresholds and hysteresis. If there is a possibility of moisture condensation on the SETA and SETB circuits, which may lead to additional leakage current, consider adding a conformal coating to the circuits. ### 10.2 Layout Example 图 10-1. TMP390 Recommended Layout Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated # 11 Device and Documentation Support ### 11.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 11.2 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 11.3 Trademarks TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 #### 11.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 11.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2021 Texas Instruments Incorporated www.ti.com 28-Sep-2021 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | TMP390A2DRLR | ACTIVE | SOT-5X3 | DRL | 6 | 4000 | RoHS & Green | NIPDAUAG | Level-2-260C-1 YEAR | -55 to 130 | 1C4 | Samples | | TMP390A2DRLT | ACTIVE | SOT-5X3 | DRL | 6 | 250 | RoHS & Green | NIPDAUAG | Level-2-260C-1 YEAR | -55 to 130 | 1C4 | Samples | | TMP390A3DRLR | ACTIVE | SOT-5X3 | DRL | 6 | 4000 | RoHS & Green | NIPDAUAG | Level-2-260C-1 YEAR | -55 to 130 | 1C6 | Samples | | TMP390A3DRLT | ACTIVE | SOT-5X3 | DRL | 6 | 250 | RoHS & Green | NIPDAUAG | Level-2-260C-1 YEAR | -55 to 130 | 1C6 | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE**: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and # **PACKAGE OPTION ADDENDUM** www.ti.com 28-Sep-2021 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF TMP390: Automotive: TMP390-Q1 NOTE: Qualified Version Definitions: Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects www.ti.com 16-Sep-2021 # TAPE AND REEL INFORMATION | _ | | | |---|----|---| | | | Dimension designed to accommodate the component width | | | | Dimension designed to accommodate the component length | | | | Dimension designed to accommodate the component thickness | | | W | Overall width of the carrier tape | | ſ | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TMP390A2DRLR | SOT-5X3 | DRL | 6 | 4000 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | TMP390A2DRLT | SOT-5X3 | DRL | 6 | 250 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | TMP390A3DRLR | SOT-5X3 | DRL | 6 | 4000 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | TMP390A3DRLT | SOT-5X3 | DRL | 6 | 250 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | www.ti.com 16-Sep-2021 *All dimensions are nominal | Device | Package Type Package Drawii | | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |--------------|-----------------------------|-----|------|------|-------------|------------|-------------|--| | TMP390A2DRLR | SOT-5X3 | DRL | 6 | 4000 | 213.0 | 191.0 | 35.0 | | | TMP390A2DRLT | SOT-5X3 | DRL | 6 | 250 | 213.0 | 191.0 | 35.0 | | | TMP390A3DRLR | SOT-5X3 | DRL | 6 | 4000 | 213.0 | 191.0 | 35.0 | | | TMP390A3DRLT | SOT-5X3 | DRL | 6 | 250 | 213.0 | 191.0 | 35.0 | | PLASTIC SMALL OUTLINE ### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing - per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. Reference JEDEC registration MO-293 Variation UAAD PLASTIC SMALL OUTLINE NOTES: (continued) - 5. Publication IPC-7351 may have alternate designs. - 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria. PLASTIC SMALL OUTLINE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # 重要声明和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司