

ISO154x 低功耗双向 I²C 隔离器

1 特性

- 兼容 I²C 的隔离式双向通信
- 支持高达 1MHz 的工作频率
- 3V 至 5.5V 电源电压范围
- 开漏输出, 1 侧灌电流为 3.5mA, 而 2 侧灌电流为 35mA
- 40°C 至 +125°C 工作温度
- ±50kV/μs 瞬态抗扰度 (典型值)
- 在所有引脚上的 HBM ESD 保护能力为 4kV; 在总线引脚上为 8kV
- 安全相关认证:
 - 根据 DIN VDE V 0884-11:2017-01 标准, 可实现 4242V_{PK} 隔离
 - 根据 UL 1577 标准, 可实现长达 1 分钟的 2500V_{RMS} 隔离
 - 根据 IEC 60950-1 和 IEC 62368-1 终端设备标准, 获得 CSA 认证
 - 根据 GB4943.1-2011 标准, 实现 CQC 基本绝缘

2 应用

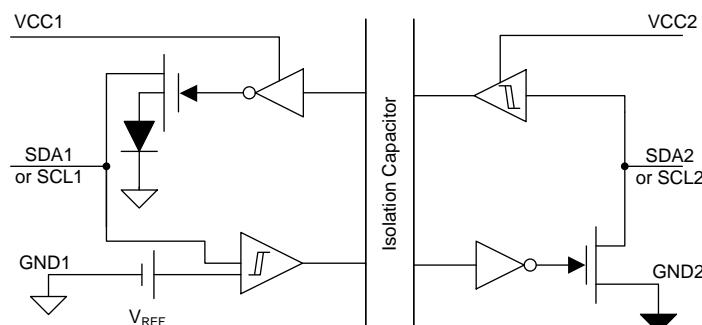
- 隔离式 I²C 总线
- SMBus 和 PMBus 接口
- 开漏网络
- 电机控制系统
- 电池管理
- I²C 电平转换

3 说明

ISO1540 和 ISO1541 器件均为兼容 I²C 接口的低功耗双向隔离器。凭借德州仪器 (TI) 电容隔离技术使用, 这些器件的逻辑输入和输出缓冲器由二氧化硅 (SiO_2) 绝缘栅进行隔离。与隔离式电源搭配使用时, 这些器件可阻断高电压、隔离接地并防止噪声电流进入本地接地端, 以至于干扰或损坏敏感电路。

与光电耦合器相比, 这项隔离技术在功能、性能、尺寸、功耗方面具有一定优势。ISO1540 和 ISO1541 器件支持将一个完全隔离的 I²C 接口融入小型封装中。

ISO1540 具有两条隔离式双向通道, 分别应用于时钟和数据线, 而 ISO1541 具有一条双向数据通道和一条单向时钟通道。ISO1541 适用于采用单一主器件的应用, 而 ISO1540 适用于采用多个主器件的应用中的方向终端。对于需要从器件执行时钟延长的应用, 可使用 ISO1540 器件。


这些器件通过将 1 侧低电平输出电压偏移至高于 1 侧高电平输入电压的方式实现隔离式双向通信, 从而避免标准数字隔离器发生内部逻辑锁存。

器件信息⁽¹⁾

器件型号	封装	封装尺寸 (标称值)
ISO1540		
ISO1541	SOIC (8)	4.90mm × 3.91mm

(1) 如需了解所有可用封装, 请参阅数据表末尾的可订购产品附录。

简化原理图

本文档旨在为方便起见, 提供有关 TI 产品中文版本的信息, 以确认产品的概要。有关适用的官方英文版本的最新信息, 请访问 www.ti.com, 其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前, 请务必参考最新版本的英文版本。

目录

1 特性	1	8.1 Overview	18
2 应用	1	8.2 Functional Block Diagrams	18
3 说明	1	8.3 Feature Description	19
4 修订历史记录	2	8.4 Isolator Functional Principle	19
5 Pin Configuration and Functions	4	8.5 Device Functional Modes	20
6 Specifications	5	9 Application and Implementation	21
6.1 Absolute Maximum Ratings	5	9.1 Application Information	21
6.2 ESD Ratings	6	9.2 Typical Application	23
6.3 Recommended Operating Conditions	6	10 Power Supply Recommendations	25
6.4 Thermal Information	6	11 Layout	25
6.5 Power Ratings	6	11.1 Layout Guidelines	25
6.6 Insulation Specifications	7	11.2 Layout Example	26
6.7 Safety-Related Certifications	8	12 器件和文档支持	27
6.8 Safety Limiting Values	8	12.1 文档支持	27
6.9 Electrical Characteristics	9	12.2 相关链接	27
6.10 Supply Current Characteristics	10	12.3 接收文档更新通知	27
6.11 Timing Requirements	10	12.4 社区资源	27
6.12 Switching Characteristics	11	12.5 商标	27
6.13 Insulation Characteristics Curves	12	12.6 静电放电警告	27
6.14 Typical Characteristics	13	12.7 术语表	27
7 Parameter Measurement Information	16	13 机械、封装和可订购信息	27
8 Detailed Description	18		

4 修订历史记录

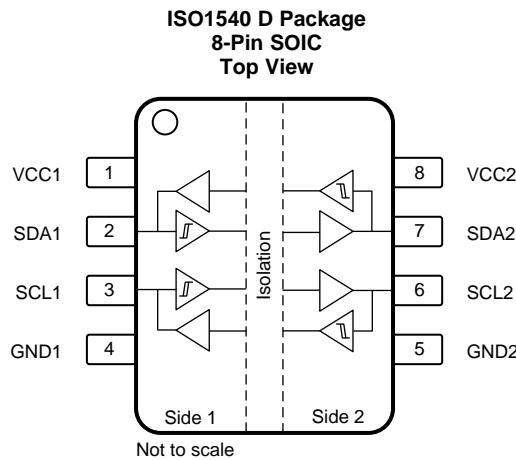
注：之前版本的页码可能与当前版本有所不同。

Changes from Revision D (December 2016) to Revision E	Page
• 在特性中将 VDE 标准名称从“DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12”更改为“DIN VDE V 0884-11:2017-01” ... 1	1
• 将特性列表项“CSA 组件验收通知 5A、IEC 60950-1 和 IEC 61010-1 终端设备标准”更改为“根据 IEC 60950-1 和 IEC 62368-1 终端设备标准，获得 CSA 认证” ... 1	1
• Updated certifications approval status, numbers, standard names, and details according to the latest agency certificates in Safety-Related Certifications table ... 8	8
• Changed both bypass capacitors From: 10 μ F To: 0.1 μ F in Figure 31. Even though larger capacitors can be used, 0.1 μ F is the minimum recommended bypass capacitor size. ... 24	24
• Changed both bypass capacitors From: 10 μ F To: 0.1 μ F in Figure 32. Even though larger capacitors can be used, 0.1 μ F is the minimum recommended bypass capacitor size. ... 24	24

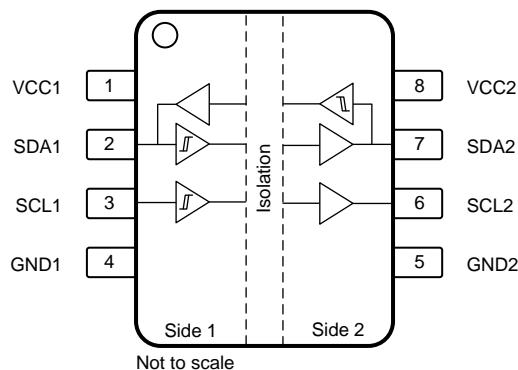
Changes from Revision C (June 2015) to Revision D	Page
• Deleted the Device Comparison Table; see the Features List table for device comparison ... 4	4
• Changed the status of CQC certification from planned to certified ... 8	8
• Changed the Regulatory Information table to Safety-Related Certifications and updated content ... 8	8
• Changed formatting of supply current parameters to combine device and sides. Moved parameters to separate table ... 10	10
• 已添加 接收文档更新通知 部分 ... 27	27

Changes from Revision B (May 2013) to Revision C	Page
• 已添加 引脚配置和功能 部分、ESD 额定值 表、特性 说明 部分、器件功能模式、应用和实施 部分、电源相关建议 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分 ... 1	1
• VDE 标准更改为“DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12” ... 1	1

• Changed minimum air gap (Clearance) parameter, L(I01), to external clearance, CLR, and minimum external tracking (creepage) parameter, L(I02), to external creepage.....	7
• Changed values and test conditions in the <i>Insulation Specifications</i> table	7
• Changed the descriptions of VDE and CSA information	8


Changes from Revision A (October 2012) to Revision B	Page
• 将安全特性从“（VDE 0884 第 2 部分）（待批准）”更改为“（VDE 0884 第 2 部分）（已批准）”.....	1
• Changed, VDE column From: File number: 40016131 (pending) To: File number: 40016131.....	8

Changes from Original (July 2012) to Revision A	Page
• 将“CSA 组件验收通知 5A（待批准）”更改为“CSA 组件验收通知 5A（已批准）”.....	1
• 将“IEC 60950-1 和 IEC 61010-1 终端设备标准（待批准）”更改为“IEC 60950-1 和 IEC 61010-1 终端设备标准（已批准）”	1
• Changed <i>Safety-Related Certifications</i> , CSA column From: File number: 220991 (pending) To: File number: 220991	8


5 Pin Configuration and Functions

Pin Functions—ISO1540

PIN		I/O	DESCRIPTION
NAME	NO.		
GND1	4	—	Ground, side 1
GND2	5	—	Ground, side 2
SCL1	3	I/O	Serial clock input / output, side 1
SCL2	6	I/O	Serial clock input / output, side 2
SDA1	2	I/O	Serial data input / output, side 1
SDA2	7	I/O	Serial data input / output, side 2
VCC1	1	—	Supply voltage, side 1
VCC2	8	—	Supply voltage, side 2

**ISO1541 D Package
8-Pin SOIC
Top View**

Pin Functions—ISO1541

PIN		I/O	DESCRIPTION
NAME	NO.		
GND1	4	—	Ground, side 1
GND2	5	—	Ground, side 2
SCL1	3	I	Serial clock input, side 1
SCL2	6	O	Serial clock output, side 2
SDA1	2	I/O	Serial data input / output, side 1
SDA2	7	I/O	Serial data input / output, side 2
VCC1	1	—	Supply voltage, side 1
VCC2	8	—	Supply voltage, side 2

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
Voltage	VCC1, VCC2	-0.5	6	V
	SDA1, SCL1	-0.5	VCC1 + 0.5 ⁽³⁾	
	SDA2, SCL2	-0.5	VCC2 + 0.5 ⁽³⁾	
I _O	SDA1, SCL1	-20	20	mA
	SDA2, SCL2	-100	100	
T _{J(MAX)}	Maximum junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values here within are with respect to the local ground pin (GND1 or GND2) and are peak voltage values.

(3) Maximum voltage must not exceed 6 V.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	Bus pins	±8000
			All pins	±4000
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾		±1500
		Machine Model JEDEC JESD22-A115-A, all pins		±200

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

		MIN	MAX	UNIT
VCC1, VCC2	Supply voltage	3	5.5	V
V _{SDA1} , V _{SCL1}	Input and output signal voltages, side 1	0	VCC1	V
V _{SDA2} , V _{SCL2}	Input and output signal voltages, side 2	0	VCC2	V
V _{IL1}	Low-level input voltage, side 1	0	0.5	V
V _{IH1}	High-level input voltage, side 1	0.7 × VCC1	VCC1	V
V _{IL2}	Low-level input voltage, side 2	0	0.3 × VCC2	V
V _{IH2}	High-level input voltage, side 2	0.7 × VCC2	VCC2	V
I _{OL1}	Output current, side 1	0.5	3.5	mA
I _{OL2}	Output current, side 2	0.5	35	mA
C1	Capacitive load, side 1		40	pF
C2	Capacitive load, side 2		400	pF
f _{MAX}	Operating frequency ⁽¹⁾		1	MHz
T _A	Ambient temperature	-40	125	°C
T _J	Junction temperature	-40	136	°C
T _{SD}	Thermal shutdown	139	171	°C

(1) This represents the maximum frequency with the maximum bus load (C) and the maximum current sink (I_O). If the system has less bus capacitance, then higher frequencies can be achieved.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		ISO154x	UNIT
		D (SOIC)	
		8 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	114.6	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	69.6	°C/W
R _{θJB}	Junction-to-board thermal resistance	55.3	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	27.2	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	54.7	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report (SPRA953).

6.5 Power Ratings

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
P _D	Maximum power dissipation (both sides)			85	mW
P _{D1}	Maximum power dissipation (side-1)			34	mW
P _{D2}	Maximum power dissipation (side-2)			51	mW

6.6 Insulation Specifications

PARAMETER		TEST CONDITIONS	VALUE	UNIT
GENERAL				
CLR	External clearance ⁽¹⁾	Shortest terminal-to-terminal distance through air	>4	mm
CPG	External creepage ⁽¹⁾	Shortest terminal-to-terminal distance across the package surface	>4	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	0.014	mm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>400	V
	Material group		II	
Overvoltage category		Rated mains voltage $\leq 150 \text{ V}_{\text{RMS}}$	I–IV	
		Rated mains voltage $\leq 300 \text{ V}_{\text{RMS}}$	I–III	
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12⁽²⁾				
V_{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	566	V_{PK}
V_{IOTM}	Maximum transient isolation voltage	$V_{\text{TEST}} = V_{\text{IOTM}}$ $t = 60 \text{ s}$ (qualification) $t = 1 \text{ s}$ (100% production)	4242	V_{PK}
q_{pd}	Apparent charge ⁽³⁾	Method a: After I/O safety test subgroup 2/3, $V_{\text{ini}} = V_{\text{IOTM}}$, $t_{\text{ini}} = 60 \text{ s}$; $V_{\text{pd(m)}} = 1.2 \times V_{\text{IORM}} = 680 \text{ V}_{\text{PK}}$, $t_m = 10 \text{ s}$	<5	pC
		Method a: After environmental tests subgroup 1, $V_{\text{ini}} = V_{\text{IOTM}}$, $t_{\text{ini}} = 60 \text{ s}$; $V_{\text{pd(m)}} = 1.6 \times V_{\text{IORM}} = 906 \text{ V}_{\text{PK}}$, $t_m = 10 \text{ s}$	<5	
		Method b1: At routine test (100% production) and preconditioning (type test) $V_{\text{ini}} = V_{\text{IOTM}}$, $t_{\text{ini}} = 1 \text{ s}$; $V_{\text{pd(m)}} = 1.875 \times V_{\text{IORM}} = 1062 \text{ V}_{\text{PK}}$, $t_m = 1 \text{ s}$	<5	
C_{IO}	Barrier capacitance, input to output ⁽⁴⁾	$V_{\text{IO}} = 0.4 \sin(2\pi ft)$, $f = 1 \text{ MHz}$	~1	pF
R_{IO}	Isolation resistance, input to output ⁽⁴⁾	$V_{\text{IO}} = 500 \text{ V}$, $T_A = 25^\circ\text{C}$	$>10^{12}$	Ω
		$V_{\text{IO}} = 500 \text{ V}$, $100^\circ\text{C} \leq T_A \leq 125^\circ\text{C}$	$>10^{11}$	
		$V_{\text{IO}} = 500 \text{ V}$ at $T_S = 150^\circ\text{C}$	$>10^9$	
	Pollution degree		2	
	Climatic category		40/125/21	
UL 1577				
V_{ISO}	Withstand isolation voltage	$V_{\text{TEST}} = V_{\text{ISO}} = 2500 \text{ V}_{\text{RMS}}$, $t = 60 \text{ s}$ (qualification); $V_{\text{TEST}} = 1.2 \times V_{\text{ISO}} = 3000 \text{ V}_{\text{RMS}}$, $t = 1 \text{ s}$ (100% production)	2500	V_{RMS}

- (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
- (2) This coupler is suitable for *basic electrical insulation* only within the maximum operating ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Apparent charge is electrical discharge caused by a partial discharge (pd).
- (4) All pins on each side of the barrier tied together creating a two-terminal device

6.7 Safety-Related Certifications

VDE	CSA	UL	CQC
Certified according to DIN VDE V 0884-11:2017-01 and DIN EN 61010-1 (VDE 0411-1):2011-07	Certified according to CSA/IEC 60950-1 and CSA/IEC 62368-1	Recognized under UL 1577 Component Recognition Program	Certified according to GB4943.1-2011
Basic Insulation Maximum Transient Overvoltage, 4242 V _{PK} ; Maximum Repetitive Peak Voltage, 566 V _{PK}	2.5-kV _{RMS} Insulation Rating; 400 V _{RMS} Basic Insulation working voltage per CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed.+A1+A2; 300 V _{RMS} Basic Insulation working voltage per CSA 62368-1-14 and IEC 62368-1:2014,	Single protection, 2500 V _{RMS}	Basic Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 V _{RMS} maximum working voltage
Certificate number: 40047657	Master contract number: 220991	File number: E181974	Certificate number: CQC14001109540

6.8 Safety Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _S Safety input, output, or supply current	R _{0JA} = 114.6°C/W, V _I = 5.5 V, T _J = 150°C, T _A = 25°C, see Figure 1			198	mA
	R _{0JA} = 114.6°C/W, V _I = 3.6 V, T _J = 150°C, T _A = 25°C, see Figure 1			303	
T _S Safety temperature				150	°C

The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the [Thermal Information](#) table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

6.9 Electrical Characteristics

over recommended operating conditions, unless otherwise noted

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SIDE 1 (ONLY)					
V_{ILT1}	Voltage input threshold low, SDA1 and SCL1	500	550	660	mV
V_{IHT1}	Voltage input threshold high, SDA1 and SCL1	540	610	700	mV
V_{HYST1}	Voltage input hysteresis	$V_{IHT1} - V_{ILT1}$	40	60	mV
V_{OL1}	Low-level output voltage, SDA1 and SCL1 ⁽¹⁾	0.5 mA $\leq (I_{SDA1} \text{ and } I_{SCL1}) \leq 3.5 \text{ mA}$	650	800	mV
ΔV_{OIT1}	Low-level output voltage to high-level input voltage threshold difference, SDA1 and SCL1 ⁽¹⁾⁽²⁾	0.5 mA $\leq (I_{SDA1} \text{ and } I_{SCL1}) \leq 3.5 \text{ mA}$	50		mV
SIDE 2 (ONLY)					
V_{ILT2}	Voltage input threshold low, SDA2 and SCL2		$0.3 \times VCC2$	$0.4 \times VCC2$	V
V_{IHT2}	Voltage input threshold high, SDA2 and SCL2		$0.4 \times VCC2$	$0.5 \times VCC2$	V
V_{HYST2}	Voltage input hysteresis	$V_{IHT2} - V_{ILT2}$	$0.05 \times VCC2$		V
V_{OL2}	Low-level output voltage, SDA2 and SCL2	0.5 mA $\leq (I_{SDA2} \text{ and } I_{SCL2}) \leq 35 \text{ mA}$		0.4	V
BOTH SIDES					
$ I_{II} $	Input leakage currents, SDA1, SCL1, SDA2, and SCL2	$V_{SDA1}, V_{SCL1} = VCC1; V_{SDA2}, V_{SCL2} = VCC2$	0.01	10	μA
C_I	Input capacitance to local ground, SDA1, SCL1, SDA2, and SCL2	$V_I = 0.4 \times \sin(2E6\pi t) + 2.5 \text{ V}$	7		pF
CMTI	Common-mode transient immunity	See Figure 21	25	50	$kV/\mu s$
V_{CCUV}	VCC undervoltage lockout threshold ⁽³⁾		2.1	2.5	2.8
					V

- (1) This parameter does not apply to the ISO1541 SCL1 line as it is unidirectional.
- (2) $\Delta V_{OIT1} = V_{OL1} - V_{IHT1}$. This represents the minimum difference between a Low-Level Output Voltage and a High-Level Input Voltage Threshold to prevent a permanent latch condition that would otherwise exist with bidirectional communication.
- (3) Any VCC voltages, on either side, less than the minimum will ensure device lockout. Both VCC voltages greater than the maximum will prevent device lockout.

6.10 Supply Current Characteristics

over recommended operating conditions, unless otherwise noted. For more information, see [Figure 19](#).

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
3 V ≤ VCC1, VCC2 ≤ 3.6 V						
I _{CC1} Supply current, side 1	ISO1540	V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2; R1, R2 = Open; C1, C2 = Open	2.4	3.6		mA
		V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2; R1, R2 = Open; C1, C2 = Open	2.5	3.8		
I _{CC2} Supply current, side 2	ISO1540 and ISO1541	V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2; R1, R2 = Open; C1, C2 = Open	2.1	3.3		mA
		V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2; R1, R2 = Open; C1, C2 = Open	2.3	3.6		
4.5 V ≤ VCC1, VCC2 ≤ 5.5 V						
I _{CC1} Supply current, side 1	ISO1540	V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2; R1, R2 = Open; C1, C2 = Open	3.1	4.7		mA
		V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2; R1, R2 = Open; C1, C2 = Open	3.1	4.7		
I _{CC2} Supply current, side 2	ISO1540 and ISO1541	V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2; R1, R2 = Open; C1, C2 = Open	2.8	4.4		mA
		V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2; R1, R2 = Open; C1, C2 = Open	2.9	4.5		

6.11 Timing Requirements

		MIN	NOM	MAX	UNIT
t _{SP}	Input noise filter	5	12		ns
t _{UVLO}	Time to recover from UVLO	2.7 V to 0.9 V; See Figure 22	30	50	110
					μs

6.12 Switching Characteristics

over recommended operating conditions, unless otherwise noted

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
3 V ≤ VCC1, VCC2 ≤ 3.6 V					
t_{f1} Output Signal Fall Time (SDA1, SCL1)	See Figure 19 R1 = 953 Ω , C1 = 40 pF	0.7 \times VCC1 to 0.3 \times VCC1	8	17	29
		0.9 \times VCC1 to 900 mV	16	29	48
t_{f2} Output Signal Fall Time (SDA2, SCL2)	See Figure 19 R2 = 95.3 Ω , C2 = 400 pF	0.7 \times VCC2 to 0.3 \times VCC2	14	23	47
		0.9 \times VCC2 to 400 mV	35	50	100
t_{pLH1-2} Low-to-High Propagation Delay, Side 1 to Side 2	See Figure 19 R1 = 953 Ω , R2 = 95.3 Ω , C1, C2 = 10 pF	0.55 V to 0.7 \times VCC2	33	65	ns
t_{pHL1-2} High-to-Low Propagation Delay, Side 1 to Side 2		0.7 V to 0.4 V	90	181	ns
PWD_{1-2} Pulse Width Distortion $ t_{pLH1-2} - t_{pLH1-2} $			55	123	ns
$t_{pLH2-1}^{(1)}$ Low-to-High Propagation Delay, Side 2 to Side 1		0.4 \times VCC2 to 0.7 \times VCC1	47	68	ns
$t_{pHL2-1}^{(1)}$ High-to-Low Propagation Delay, Side 2 to Side 1		0.4 \times VCC2 to 0.9 V	67	109	ns
$PWD_{2-1}^{(1)}$ Pulse Width Distortion $ t_{pHL2-1} - t_{pLH2-1} $			20	49	ns
$t_{LOOP1}^{(1)}$ Round-trip propagation delay on Side 1	See Figure 20 ; R1 = 953 Ω , C1 = 40 pF R2 = 95.3 Ω , C2 = 400 pF	0.4 V to 0.3 \times VCC1	100	165	ns
4.5 V ≤ VCC1, VCC2 ≤ 5.5 V					
t_{f1} Output Signal Fall Time (SDA1, SCL1)	See Figure 19 R1 = 1430 Ω , C1 = 40 pF	0.7 \times VCC1 to 0.3 \times VCC1	6	11	20
		0.9 \times VCC1 to 900 mV	13	21	39
t_{f2} Output Signal Fall Time (SDA2, SCL2)	See Figure 19 R2 = 143 Ω , C2 = 400 pF	0.7 \times VCC2 to 0.3 \times VCC2	10	18	35
		0.9 \times VCC2 to 400 mV	28	41	76
t_{pLH1-2} Low-to-High Propagation Delay, Side 1 to Side 2	See Figure 19 R1 = 1430 Ω , R2 = 143 Ω , C1,2 = 10 pF	0.55 V to 0.7 \times VCC2	31	62	ns
t_{pHL1-2} High-to-Low Propagation Delay, Side 1 to Side 2		0.7 V to 0.4 V	70	139	ns
PWD_{1-2} Pulse Width Distortion $ t_{pLH1-2} - t_{pLH1-2} $			38	80	ns
$t_{pLH2-1}^{(1)}$ Low-to-high propagation delay, side 2 to side 1		0.4 \times VCC2 to 0.7 \times VCC1	55	80	ns
$t_{pHL2-1}^{(1)}$ High-to-low propagation delay, Side 2 to side 1		0.4 \times VCC2 to 0.9 V	47	85	ns
$PWD_{2-1}^{(1)}$ Pulse Width Distortion $ t_{pHL2-1} - t_{pLH2-1} $			8	21	ns
$t_{LOOP1}^{(1)}$ Round-trip propagation delay on side 1	See Figure 20 ; R1 = 1430 Ω , C1 = 40 pF R2 = 143 Ω , C2 = 400 pF	0.4 V to 0.3 \times VCC1	110	180	ns

(1) This parameter does not apply to the ISO1541 SCL1 line as it is unidirectional.

6.13 Insulation Characteristics Curves

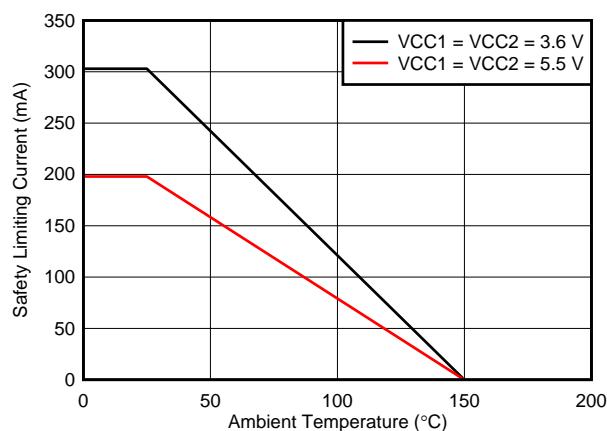
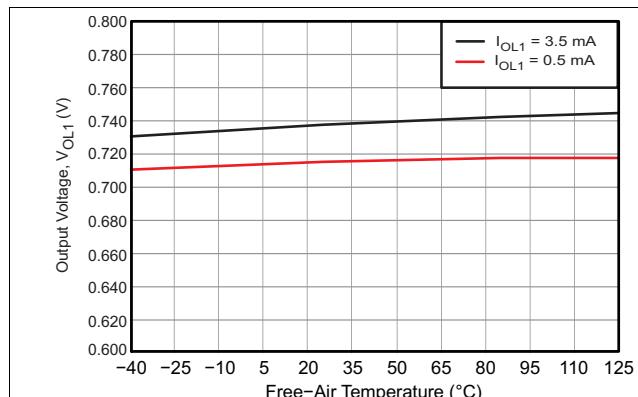
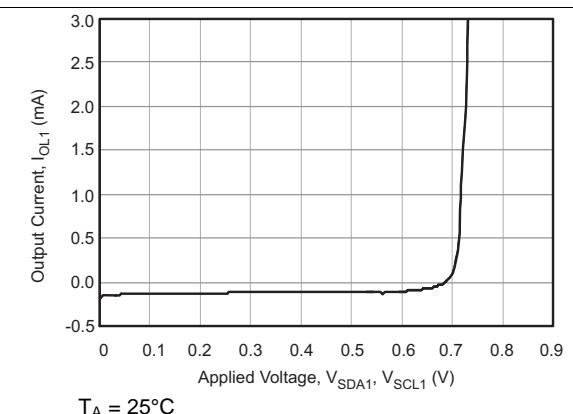
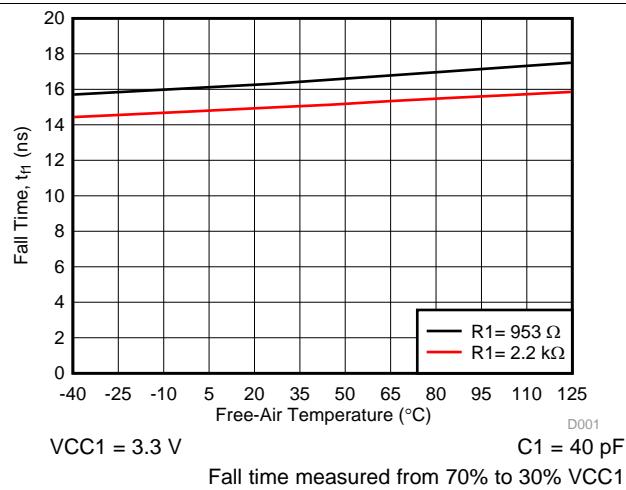




Figure 1. Thermal Derating Curve for Limiting Current per VDE


6.14 Typical Characteristics

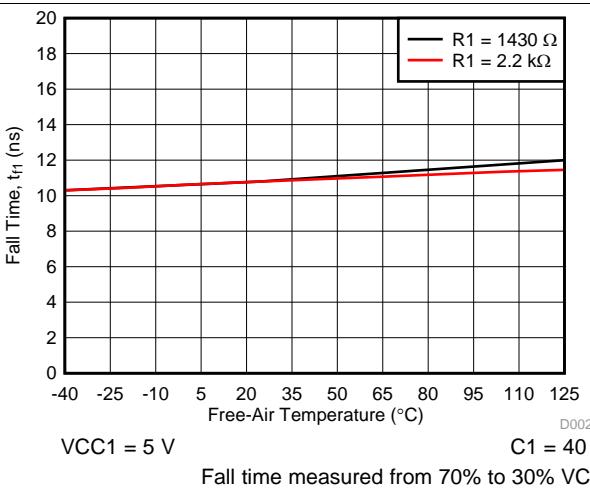

Figure 2. Side 1: Output Low Voltage vs Free-Air Temperature

Figure 3. Side 1: Output Low Current vs S_{DA1} or S_{CL1} Applied Voltage

Figure 4. Side 1: Output Fall Time vs Free-Air Temperature

Figure 5. Side 1: Output Fall Time vs Free-air Temperature

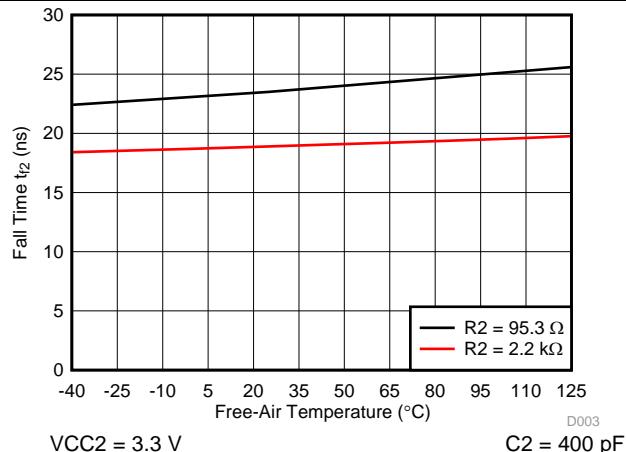


Figure 6. Side 2: Output Fall Time vs Free-Air Temperature

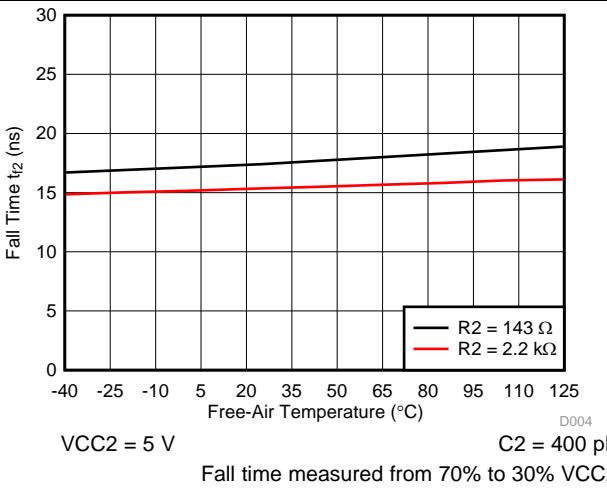
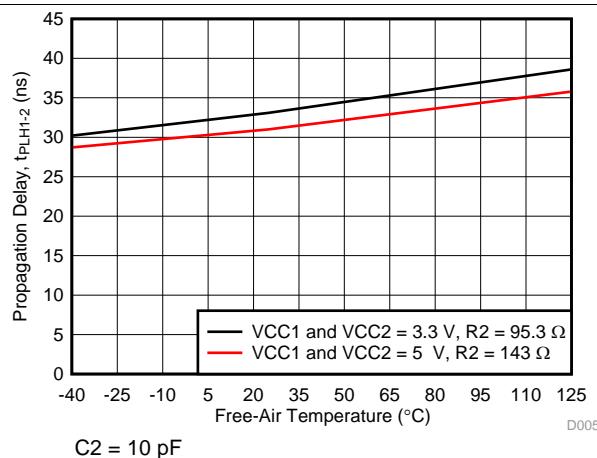
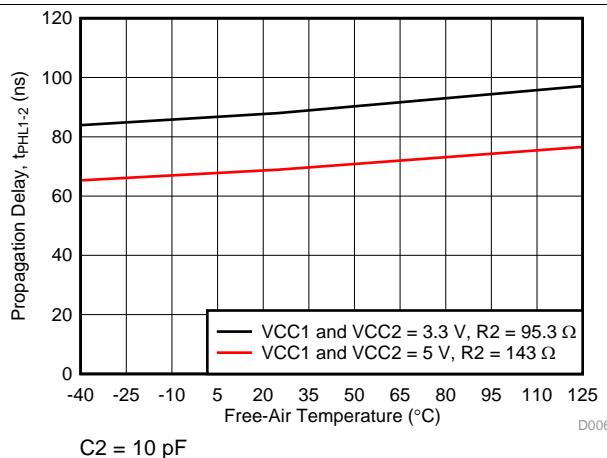
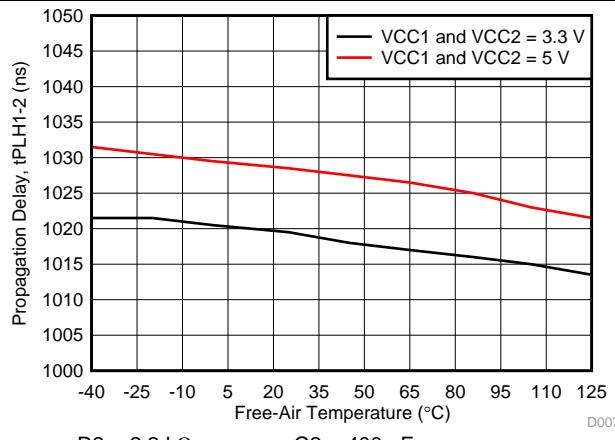
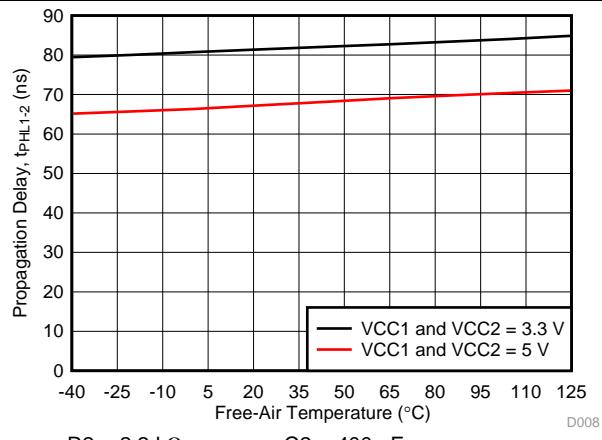
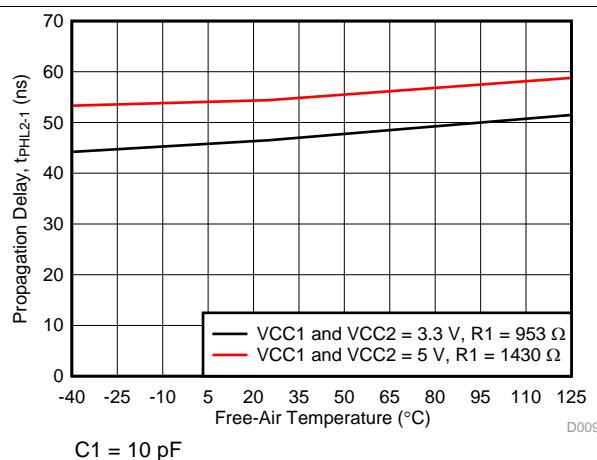




Figure 7. Side 2: Output Fall Time vs Free-Air Temperature


Typical Characteristics (continued)


Figure 8. t_{PLH1-2} Propagation Delay vs Free-Air Temperature


Figure 9. t_{PHL1-2} Propagation Delay vs Free-Air Temperature

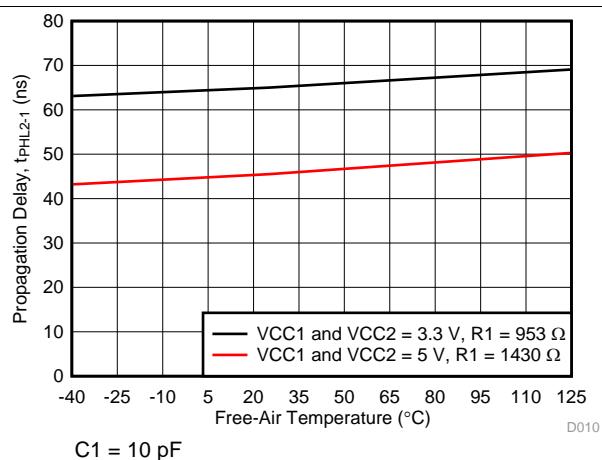

Figure 10. t_{PLH1-2} Propagation Delay vs Free-Air Temperature

Figure 11. t_{PHL1-2} Propagation Delay vs Free-Air Temperature

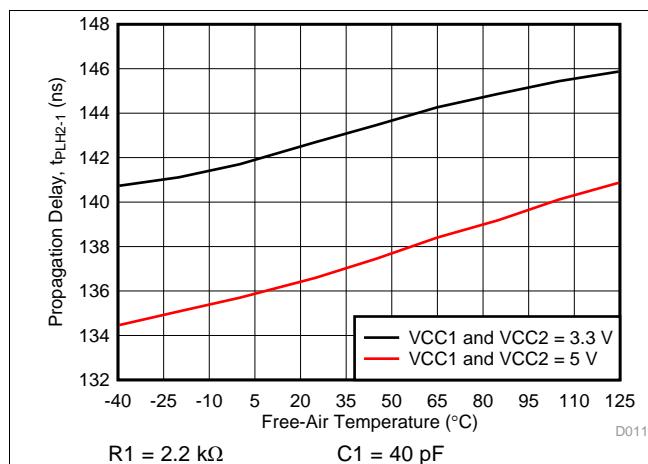


Figure 12. t_{PLH2-1} Propagation Delay vs Free-Air Temperature

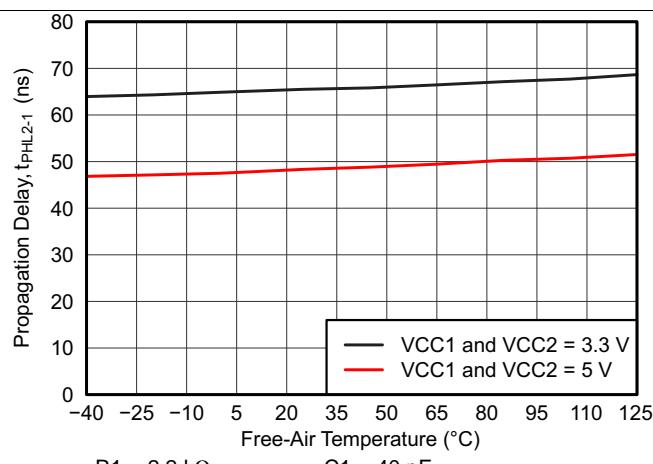
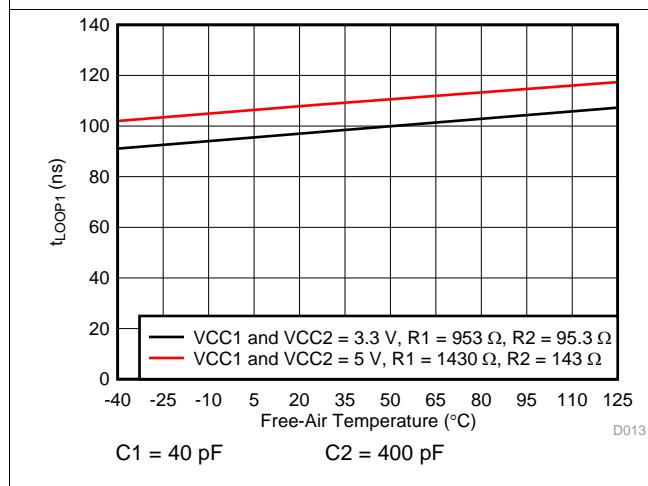
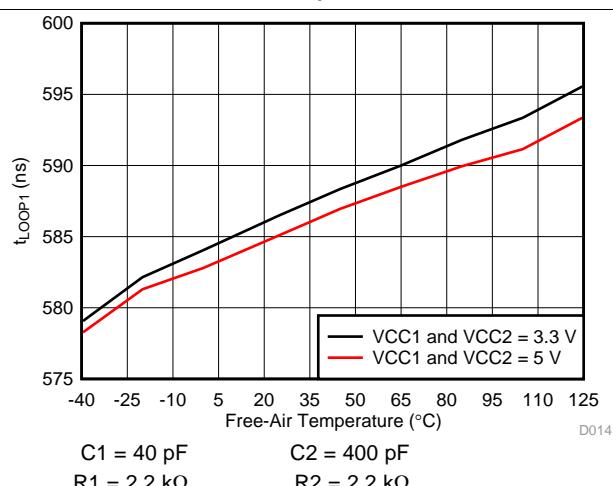


Figure 13. t_{PHL2-1} Propagation Delay vs Free-Air Temperature


Typical Characteristics (continued)


Figure 14. t_{PLH2-1} Propagation Delay vs Free-Air Temperature

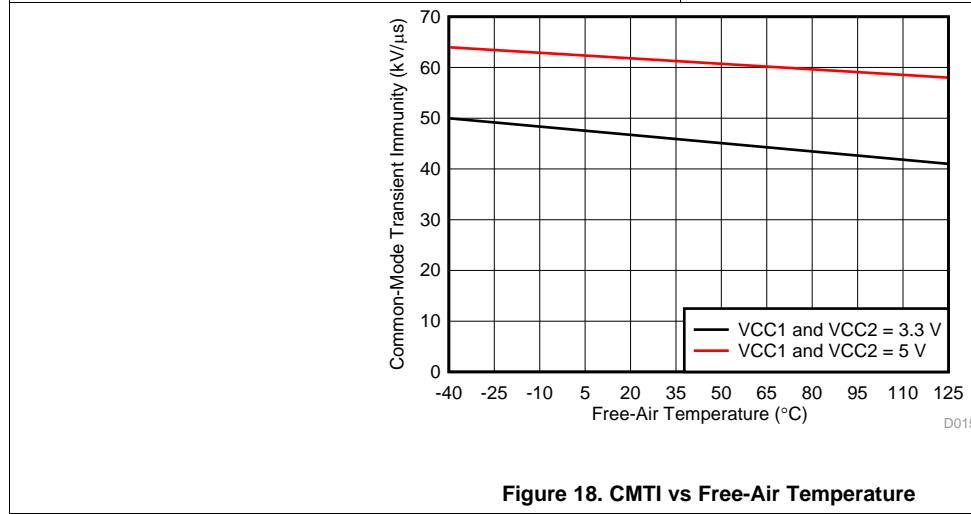

Figure 15. t_{PHL2-1} Propagation Delay vs Free-Air Temperature

Figure 16. t_{Loop1} vs Free-Air Temperature

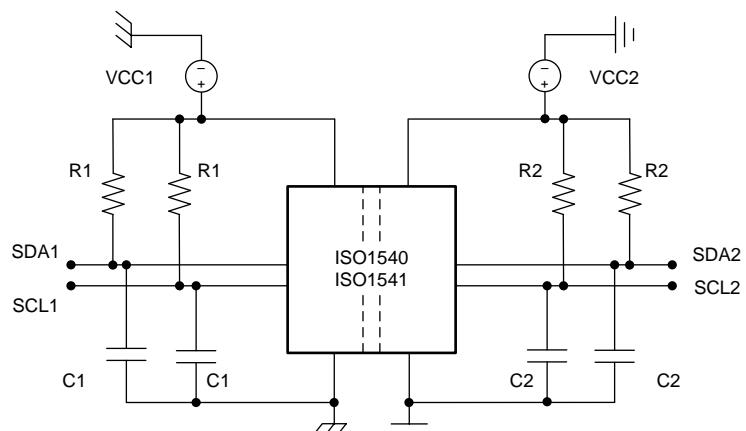
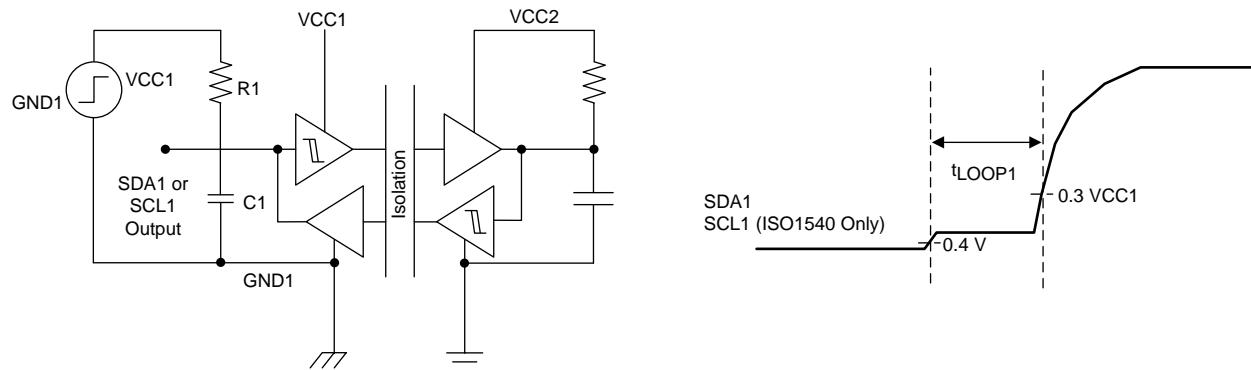


Figure 17. t_{Loop1} vs Free-Air Temperature


Figure 18. CMTI vs Free-Air Temperature

7 Parameter Measurement Information

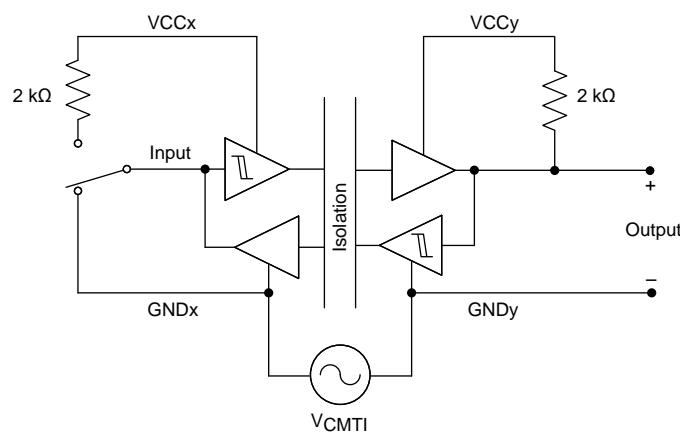

Copyright © 2016, Texas Instruments Incorporated

Figure 19. Test Diagram

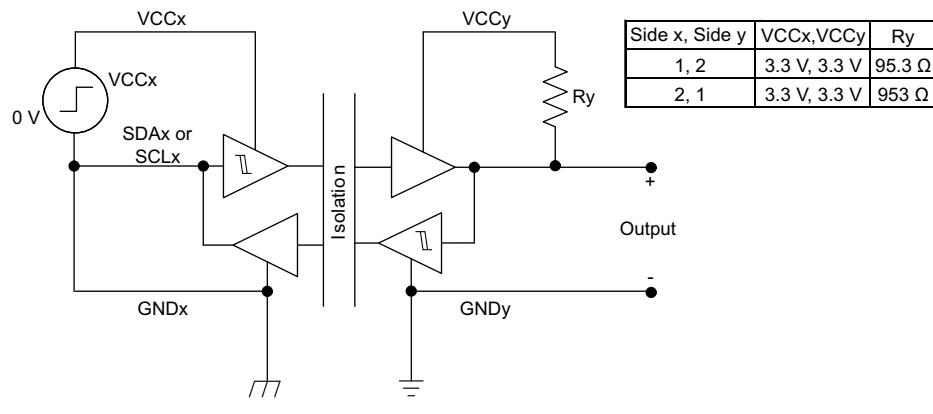

Copyright © 2016, Texas Instruments Incorporated

Figure 20. t_{Loop1} Setup and Timing Diagram

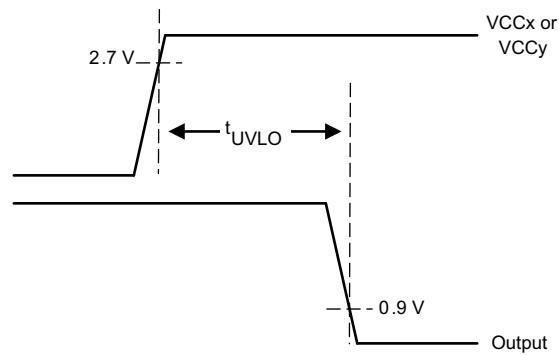
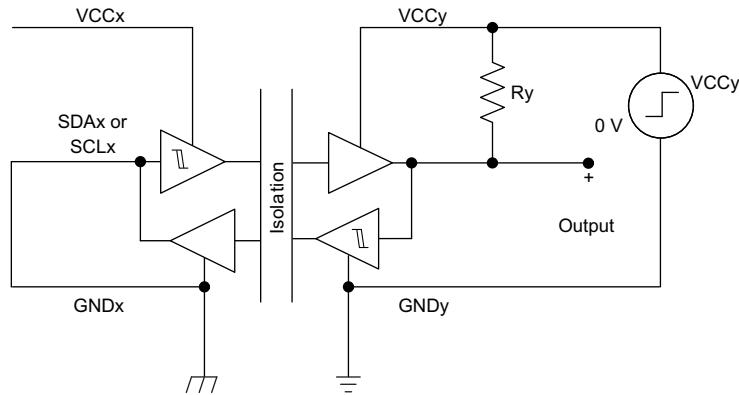



Figure 21. Common-Mode Transient Immunity Test Circuit

Parameter Measurement Information (continued)

or

Figure 22. t_{UVLO} Test Circuit and Timing Diagrams

8 Detailed Description

8.1 Overview

The I²C bus is used in a wide range of applications because it is simple to use. The bus consists of a two-wire communication bus that supports bidirectional data transfer between a master device and several slave devices. The master, or processor, controls the bus, specifically the serial clock (SCL) line. Data is transferred between the master and slave through a serial data (SDA) line. This data can be transferred in four speeds: standard mode (0 to 100 kbps), fast mode (0 to 400 kbps), fast-mode plus (0 to 1 Mbps), and high-speed mode (0 to 3.4 Mbps). The most common speeds are the standard and fast modes.

The I²C bus operates in bidirectional, half-duplex mode, while standard digital isolators are unidirectional devices. To make efficient use of one technology supporting the other, external circuitry is required that separates the bidirectional bus into two unidirectional signal paths without introducing significant propagation delay. These devices have their logic input and output buffers separated by TI's capacitive isolation technology using a silicon dioxide (SiO_2) barrier. When used in conjunction with isolated power supplies, these devices block high voltages, isolate grounds, and prevent noise currents from entering the local ground and interfering with or damaging sensitive circuitry.

8.2 Functional Block Diagrams

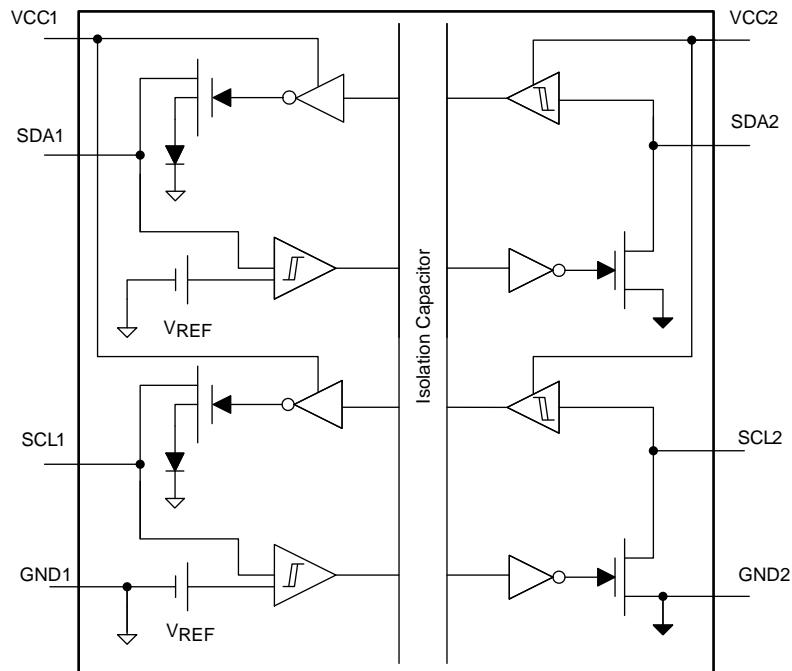
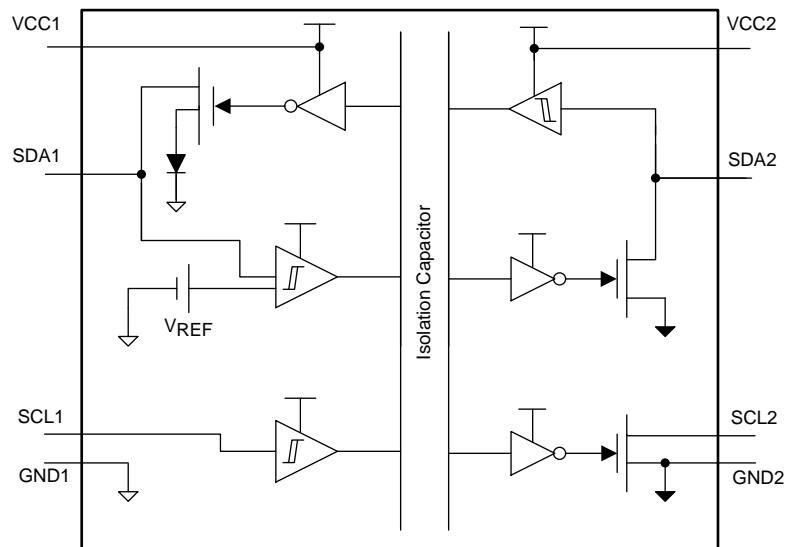



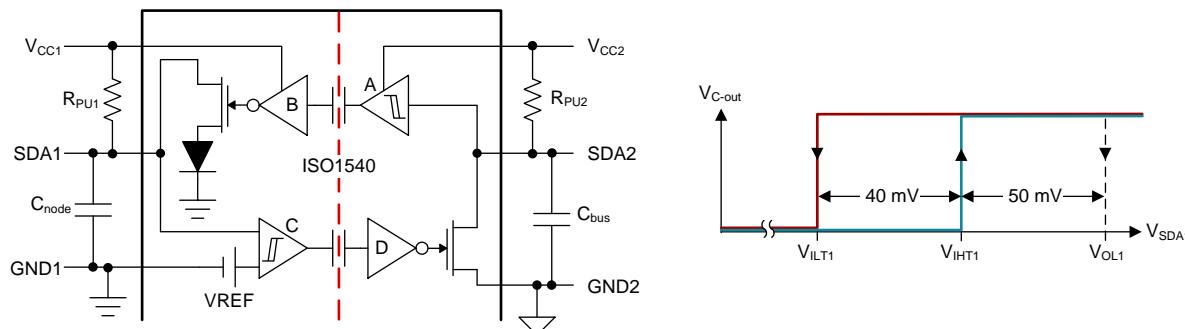
Figure 23. ISO1540 Block Diagram

Functional Block Diagrams (continued)

Figure 24. ISO1541 Block Diagram

8.3 Feature Description

The device enables a complete isolated I²C interface to be implemented within a small form factor having the features listed in [Table 1](#).


Table 1. Features List

PART NUMBER	CHANNEL DIRECTION	RATED ISOLATION ⁽¹⁾	MAXIMUM FREQUENCY
ISO1540	Bidirectional (SCL) Bidirectional (SDA)	2500 V _{RMS} 4242 V _{PK}	1 MHz
ISO1541	Unidirectional (SCL) Bidirectional (SDA)		

(1) See [Safety-Related Certifications](#) for detailed Isolation specifications.

8.4 Isolator Functional Principle

To isolate a bidirectional signal path (SDA or SCL), the ISO1540 internally splits a bidirectional line into two unidirectional signal lines, each of which is isolated through a single-channel digital isolator. Each channel output is made open-drain to comply with the open-drain technology of I²C. Side 1 of the ISO1540 connects to a low-capacitance I²C node, while side 2 is designed for connecting to a fully loaded I²C bus with up to 400 pF of capacitance.

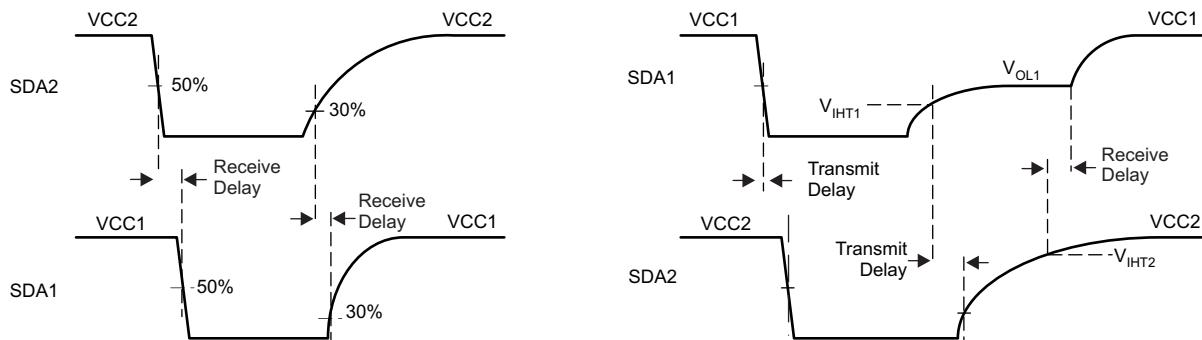


Figure 25. SDA Channel Design and Voltage Levels at SDA1

Isolator Functional Principle (continued)

At first sight, the arrangement of the internal buffers suggests a closed signal loop that is prone to latch-up. However, this loop is broken by implementing an output buffer (B) whose output low-level is raised by a diode drop to approximately 0.75 V, and the input buffer (C) that consists of a comparator with defined hysteresis. The comparator's upper and lower input thresholds then distinguish between the proper low-potential of 0.4 V (maximum) driven directly by SDA1 and the buffered output low-level of B.

Figure 26 demonstrate the switching behavior of the I²C isolator, ISO1540, between a master node at SDA1 and a heavy loaded bus at SDA2.

Figure 26. SDA Channel Timing in Receive and Transmit Directions

8.4.1 Receive Direction (Left Diagram of Figure 26)

When the I²C bus drives SDA2 low, SDA1 follows after a certain delay in the receive path. The output low is the buffered output of $V_{OL1} = 0.75$ V, which is sufficiently low to be detected by Schmitt-trigger inputs with a minimum input-low voltage of $V_{IL} = 0.9$ V at 3 V supply levels.

When SDA2 is released, its voltage potential increases towards VCC2 following the time-constant formed by R_{PU2} and C_{bus} . After the receive delay, SDA1 is released and also rises towards VCC1, following the time-constant $R_{PU1} \times C_{node}$. Because of the significant lower time-constant, SDA1 may reach VCC1 before SDA2 reaches VCC2 potential.

8.4.2 Transmit Direction (Right Diagram of Figure 26)

When a master drives SDA1 low, SDA2 follows after a certain delay in the transmit direction. When SDA2 turns low it also causes the output of buffer B to turn low but at a higher 0.75 V level. This level cannot be observed immediately as it is overwritten by the lower low-level of the master.

However, when the master releases SDA1, the voltage potential increases and first must pass the upper input threshold of the comparator, V_{IHT1} , to release SDA2. SDA1 then increases further until it reaches the buffered output level of $V_{OL1} = 0.75$ V, maintained by the receive path. When comparator C turns high, SDA2 is released after the delay in transmit direction. It takes another receive delay until B's output turns high and fully releases SDA1 to move toward VCC1 potential.

8.5 Device Functional Modes

Table 2 lists the ISO154x functional modes.

Table 2. Function Table⁽¹⁾

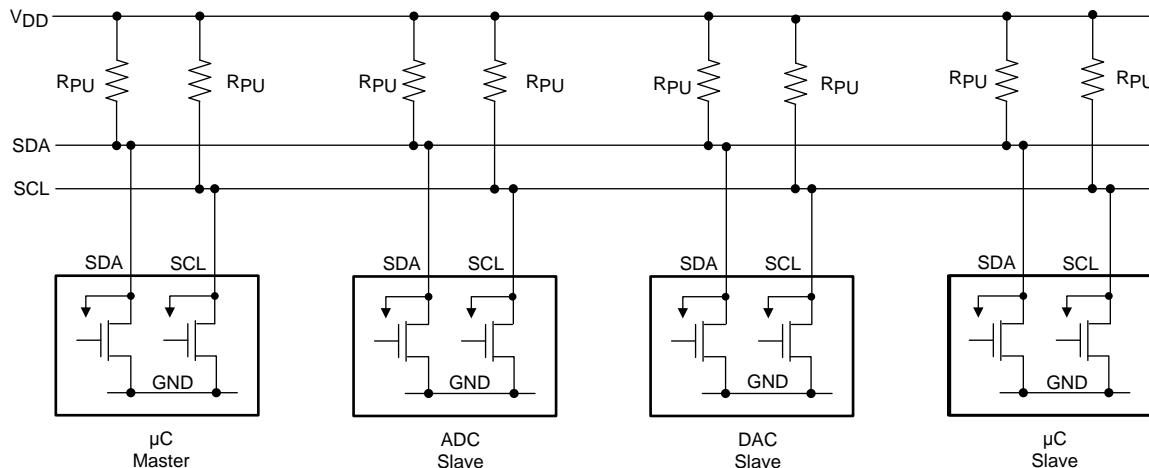
POWER STATE	INPUT	OUTPUT
VCC1 or VCC2 < 2.1 V	X	Z
VCC1 and VCC2 > 2.8 V	L	L
VCC1 and VCC2 > 2.8 V	H	Z
VCC1 and VCC2 > 2.8 V	Z ⁽²⁾	?

(1) H = High Level; L = Low Level; Z = High Impedance or Float; X = Irrelevant; ? = Indeterminate

(2) Invalid input condition as an I²C system requires that a pullup resistor to VCC is connected.

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 I²C Bus Overview

The inter-integrated circuit (I²C) bus is a single-ended, multi-master, 2-wire bus for efficient inter-IC communication in half-duplex mode.

I²C uses open-drain technology, requiring two lines, serial data (SDA) and serial clock (SCL), to be connected to VDD by resistors (see [Figure 27](#)). Pulling the line to ground is considered a logic zero while letting the line float is a logic one. This logic is used as a channel access method. Transitions of logic states must occur while the SCL pin is low. Transitions while the SCL pin is high indicate START and STOP conditions. Typical supply voltages are 3.3 V and 5 V, although systems with higher or lower voltages are allowed.

Figure 27. I²C Bus

I²C communication uses a 7-bit address space with 16 reserved addresses, so a theoretical maximum of 112 nodes can communicate on the same bus. In praxis, however, the number of nodes is limited by the specified, total bus capacitance of 400 pF, which restricts communication distances to a few meters.

The specified signaling rates for the ISO1540 and ISO1541 devices are 100 kbps (standard mode), 400 kbps (fast mode), 1 Mbps (fast mode plus).

The bus has two roles for nodes: master and slave. A master node issues the clock and slave addresses, and also initiates and ends data transactions. A slave node receives the clock and addresses and responds to requests from the master. [Figure 28](#) shows a typical data transfer between master and slave.

Application Information (continued)

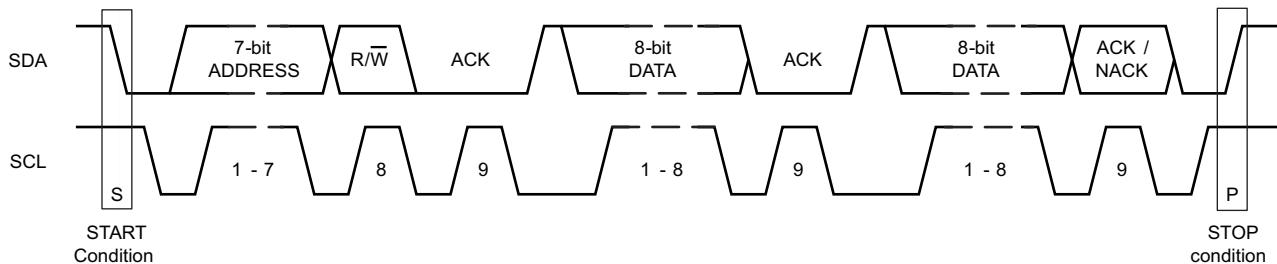


Figure 28. Timing Diagram of a Complete Data Transfer

The master initiates a transaction by creating a START condition, following by the 7-bit address of the slave it wishes to communicate with. This is followed by a single read and write (R/W) bit, representing whether the master wishes to write to 0, or to read from 1 the slave. The master then releases the SDA line to allow the slave to acknowledge the receipt of data.

The slave responds with an acknowledge bit (ACK) by pulling the SDA pin low during the entire high time of the 9th clock pulse on the SCL signal, after which the master continues in either transmit or receive mode (according to the R/W bit sent), while the slave continues in the complementary mode (receive or transmit, respectively).

The address and the 8-bit data bytes are sent most significant bit (MSB) first. The START bit is indicated by a high-to-low transition of SDA while SCL is high. The STOP condition is created by a low-to-high transition of SDA while SCL is high.

If the master writes to a slave, it repeatedly sends a byte with the slave sending an ACK bit. In this case, the master is in master-transmit mode and the slave is in slave-receive mode.

If the master reads from a slave, it repeatedly receives a byte from the slave, while acknowledging (ACK) the receipt of every byte but the last one (see Figure 29). In this situation, the master is in master-receive mode and the slave is in slave-transmit mode.

The master ends the transmission with a STOP bit, or may send another START bit to maintain bus control for further transfers.

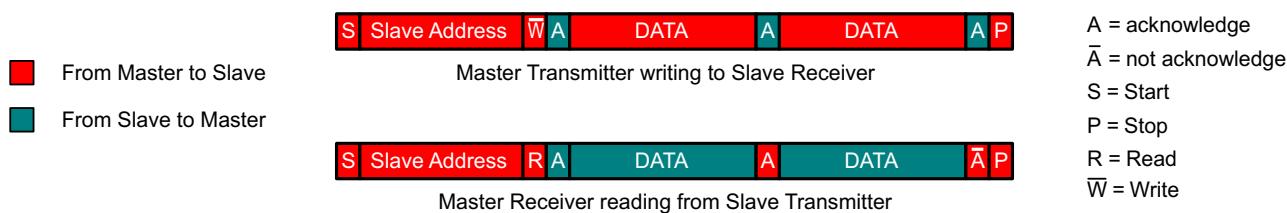
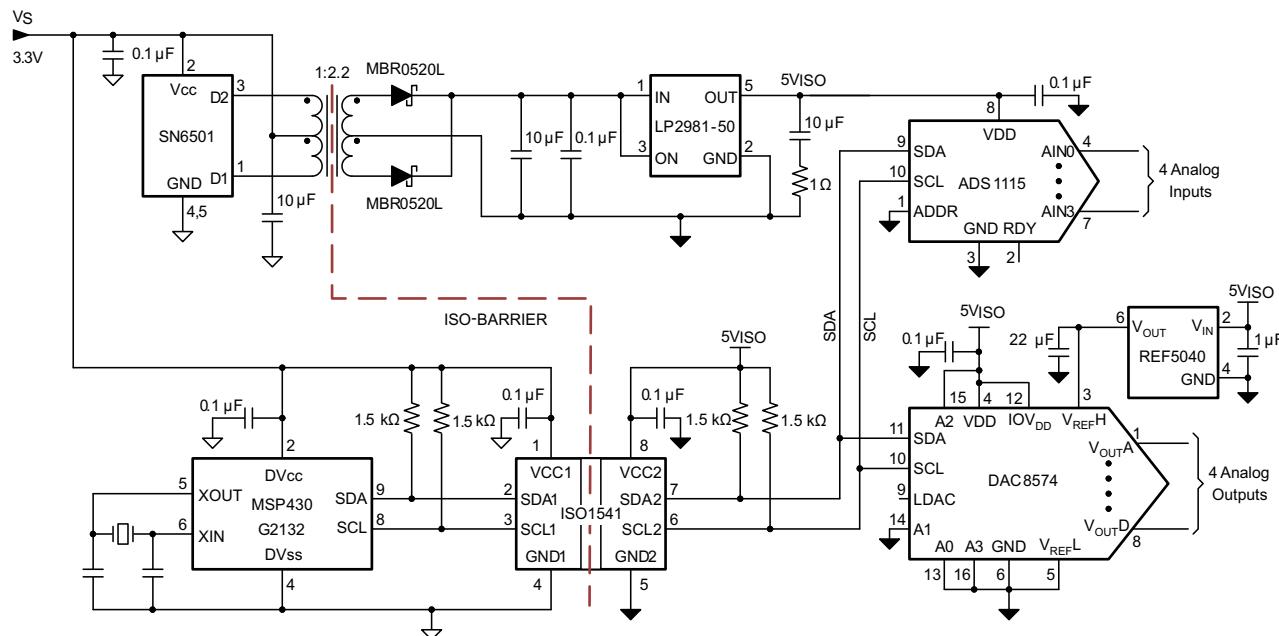


Figure 29. Transmit or Receive Mode Changes During a Data Transfer

When writing to a slave, a master mainly operates in transmit-mode and only changes to receive-mode when receiving acknowledgment from the slave.

When reading from a slave, the master starts in transmit-mode and then changes to receive-mode after sending a READ request (R/W bit = 1) to the slave. The slave continues in the complementary mode until the end of a transaction.


NOTE

The master ends a reading sequence by not acknowledging (NACK) the last byte received. This procedure resets the slave state machine and allows the master to send the STOP command.

9.2 Typical Application

In [Figure 30](#), the ultra low-power microcontroller, MSP430G2132, controls the I²C data traffic of configuration data and conversion results for the analog inputs and outputs. Low-power data converters build the analog interface to sensors and actuators. The ISO1541 device provides the required isolation between different ground potentials of the system controller, remote sensor, and actuator circuitry to prevent ground loop currents that otherwise may falsify the acquired data.

The entire circuit operates from a single 3.3-V supply. A low-power push-pull converter, SN6501, drives a center-tapped transformer with an output that is rectified and linearly regulated to provide a stable 5-V supply for the data converter.

Copyright © 2016, Texas Instruments Incorporated

Figure 30. Isolated I²C Data Acquisition System

9.2.1 Design Requirements

The recommended power supply voltages (VCC1 and VCC2) must be from 3 V to 5.5 V. A recommended decoupling capacitor with a value of 0.1 μ F is required between both the VCC1 and GND1 pins, and the VCC2 and GND2 pins to support of power supply voltages transient and to ensure reliable operation at all data rates.

9.2.2 Detailed Design Procedure

The power-supply capacitor with a value of 0.1- μ F must be placed as close to the power supply pins as possible. The recommended placement of the capacitors must be 2-mm maximum from input and output power supply pins (VCC1 and VCC2).

The maximum load permissible on the input lines, SDA1 and SCL1, is \leq 40 pF and on the output lines, SDA2 and SCL2, is \leq 400 pF.

Typical Application (continued)

The minimum pullup resistors on the input lines, SDA1 and SCL1 to VCC1 must be selected in such a way that input current drawn is ≤ 3.5 mA. The minimum pullup resistors on the input lines, SDA2 and SCL2, to VCC2 must be selected in such a way that output current drawn is ≤ 35 mA. The maximum pullup resistors on the input lines (SDA1 and SCL1) to VCC1 and on output lines (SDA1 and SCL1) to VCC2, depends on the load and rise time requirements on the respective lines.

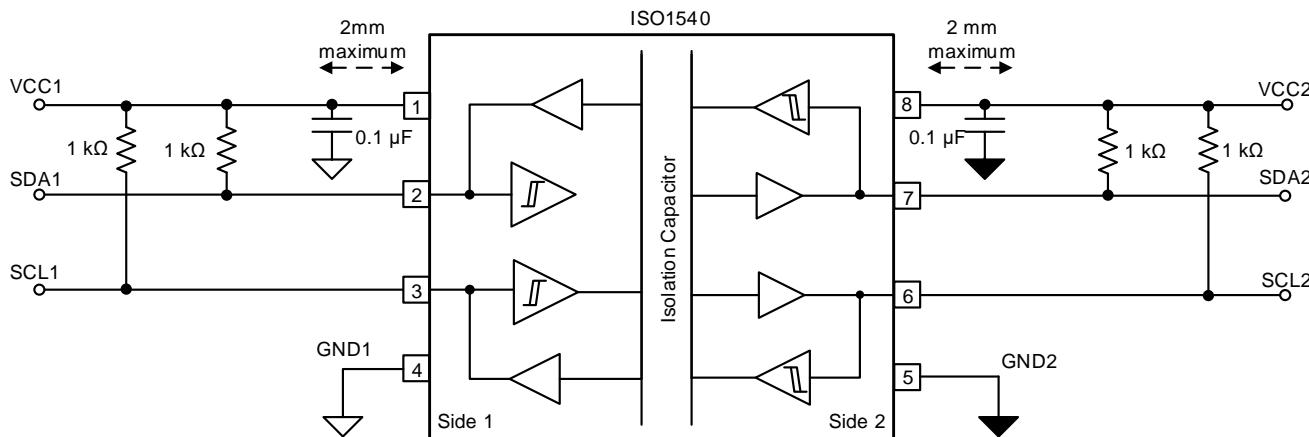


Figure 31. Typical ISO1540 Circuit Hookup

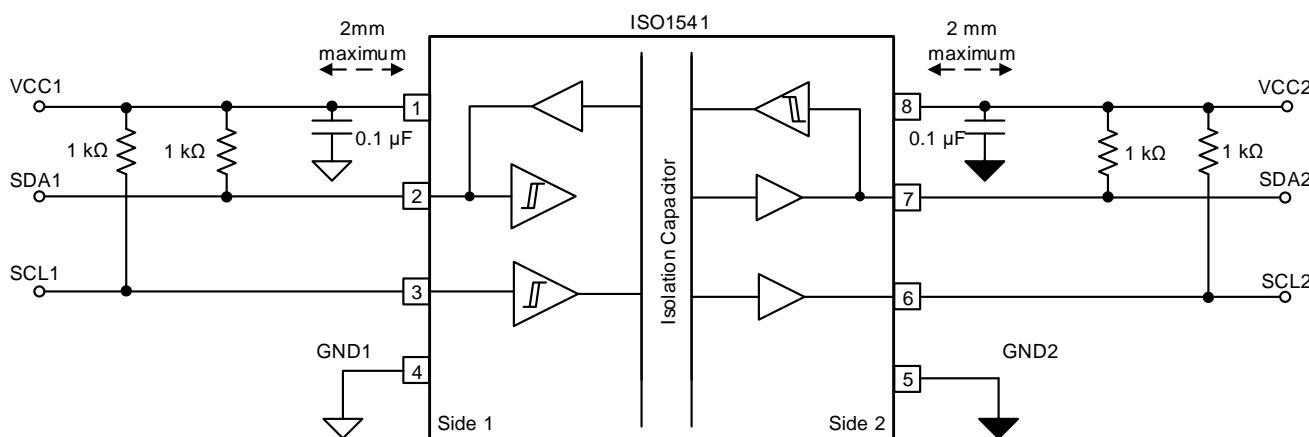
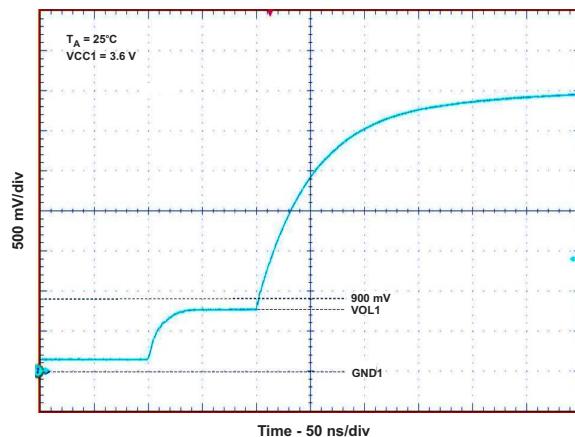



Figure 32. Typical ISO1541 Circuit Hookup

9.2.3 Application Curve

Typical Application (continued)

Figure 33. Side 1: Low-to-High Transition

10 Power Supply Recommendations

To help ensure reliable operation at data rates and supply voltages, TI recommends connecting a 0.1- μ F bypass capacitor at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single, primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as TI's [SN6501](#) device. For such applications, detailed power supply design and transformer selection recommendations are available in [SN6501 Transformer Driver for Isolated Power Supplies](#). (SLLSEA0).

11 Layout

11.1 Layout Guidelines

A minimum of four layers is required to accomplish a low EMI PCB design (see [Figure 34](#)). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.

- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in².
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias.

If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

For detailed layout recommendations, see the [Digital Isolator Design Guide](#) (SLLA284)

11.1.1 PCB Material

For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics.

11.2 Layout Example

Figure 34. Recommended Layer Stack

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

请参阅如下相关文档：

- [《数字隔离器设计指南》](#) (文献编号: SLLA284)
- [《ISO154xEVM 低功耗双向 PC 隔离器评估模块》](#) (文献编号: SLLU166)
- [《TI 隔离相关术语》](#) (文献编号: SLLA353)
- [SN6501 用于隔离电源的变压器驱动器](#). (文献编号: SLLSEA0)

12.2 相关链接

下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件，以及申请样片或购买产品的快速链接。

表 3. 相关链接

器件	产品文件夹	样片与购买	技术文档	工具与软件	支持和社区
ISO1540	请单击此处				
ISO1541	请单击此处				

12.3 接收文档更新通知

要接收文档更新通知，请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的“通知我”进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

12.4 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的 [《使用条款》](#)。

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 静电放电警告

 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序，可能会损坏集成电路。

 ESD 的损坏小至导致微小的性能降级，大至整个器件故障。精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能导致器件与其发布的规格不相符。

12.7 术语表

[SLYZ022 — TI 术语表](#)。

这份术语表列出并解释术语、缩写和定义。

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更，恕不另行通知，且不会对此文档进行修订。如需获取此数据表的浏览器版本，请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ISO1540D	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IS1540	Samples
ISO1540DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IS1540	Samples
ISO1541D	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IS1541	Samples
ISO1541DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	IS1541	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

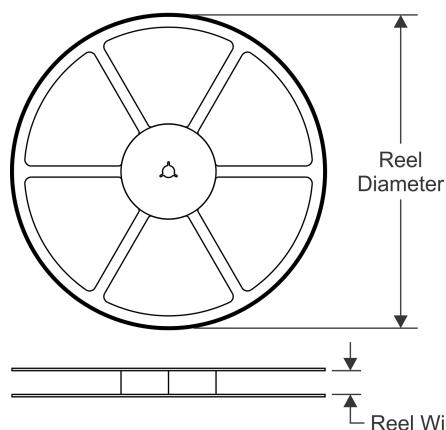
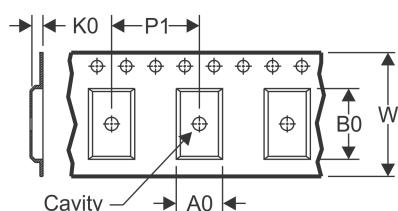
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

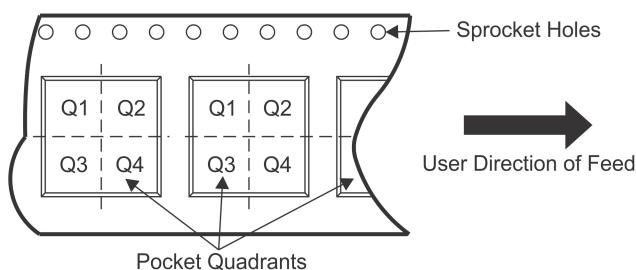
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

www.ti.com

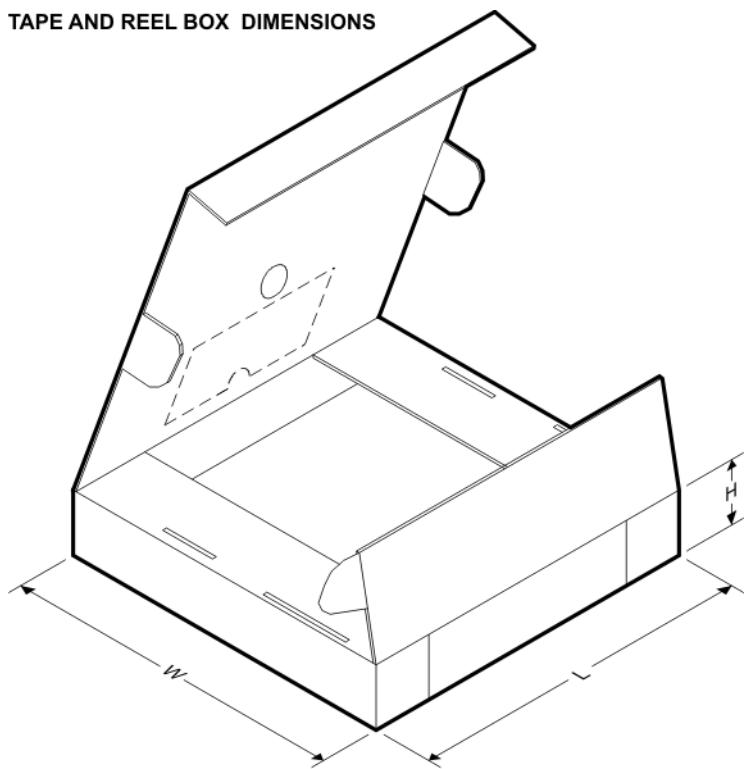


PACKAGE OPTION ADDENDUM

10-Dec-2020



continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

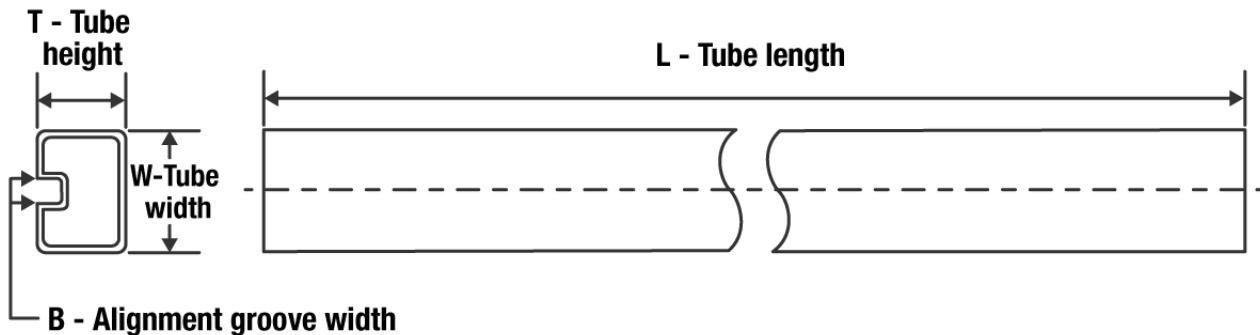
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO1540DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
ISO1541DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

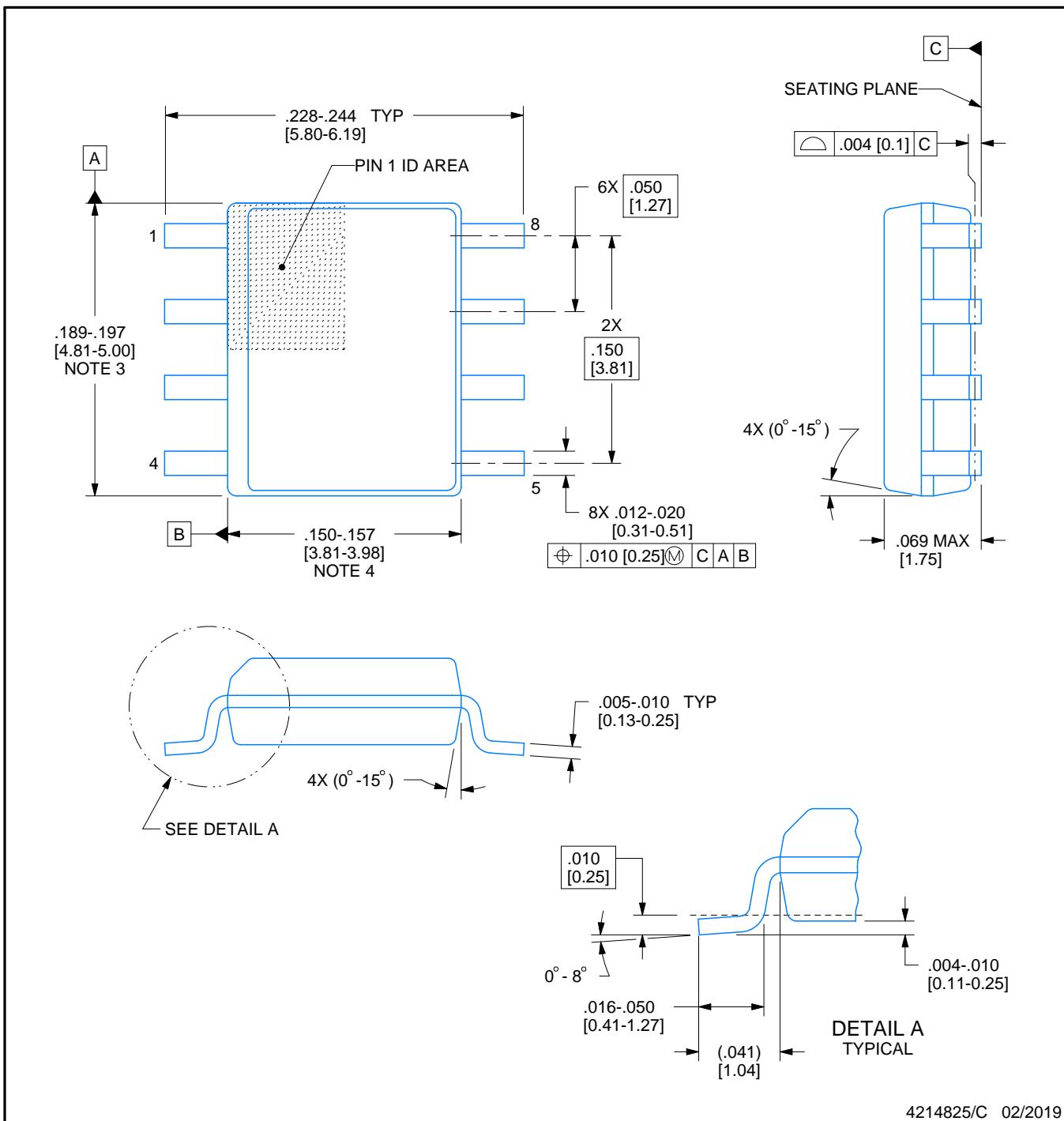
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO1540DR	SOIC	D	8	2500	350.0	350.0	43.0
ISO1541DR	SOIC	D	8	2500	350.0	350.0	43.0

TUBE

*All dimensions are nominal

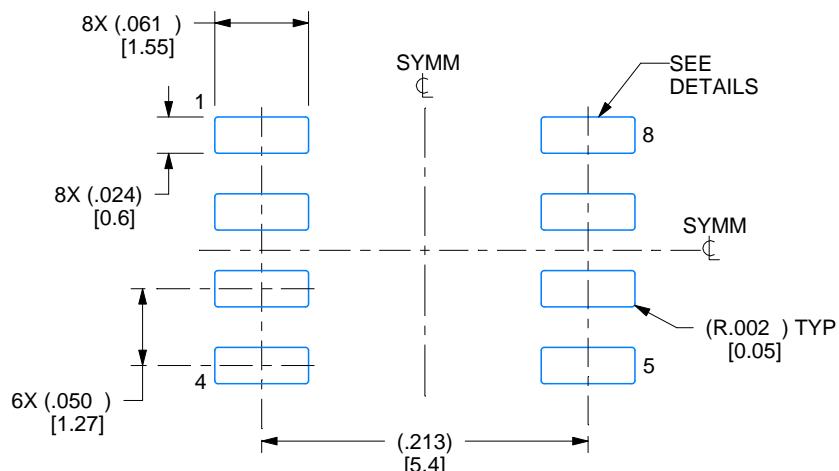

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
ISO1540D	D	SOIC	8	75	505.46	6.76	3810	4
ISO1541D	D	SOIC	8	75	505.46	6.76	3810	4

PACKAGE OUTLINE

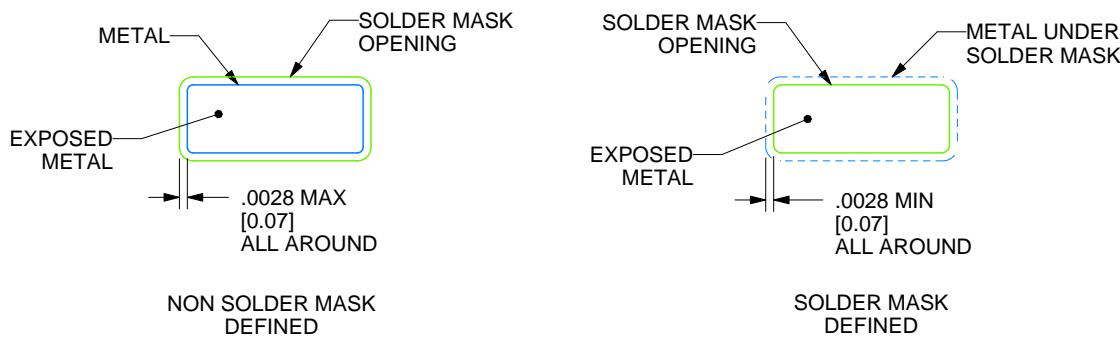
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:


1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

EXAMPLE BOARD LAYOUT


D0008A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

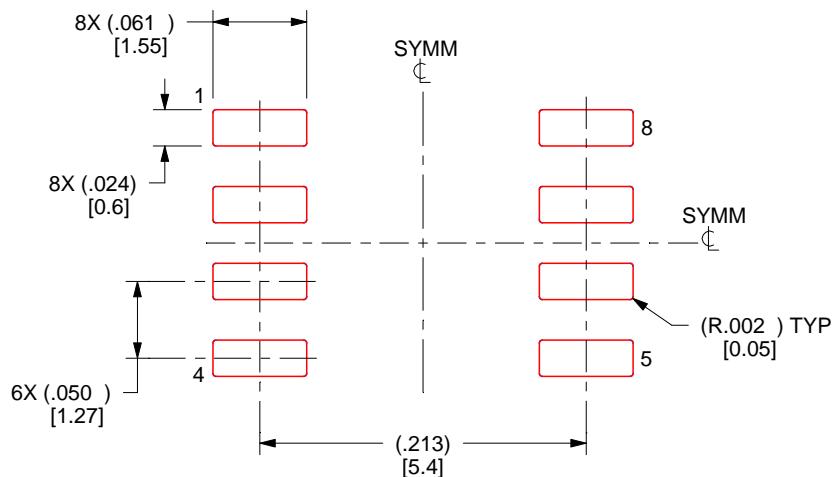
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:8X

SOLDER MASK DETAILS

4214825/C 02/2019

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

D0008A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.125 MM] THICK STENCIL
SCALE:8X

4214825/C 02/2019

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成任何索赔、损害、成本、损失和债务，TI 对此概不负责。

TI 提供的产品受 [TI 的销售条款](#) 或 [ti.com](#) 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址：Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, 德州仪器 (TI) 公司