- Multiplexed Inputs/Outputs Provide Improved Bit Density
- Four Modes of Operations:

Hold (Store)

Shift Left

Shift Right Load Data

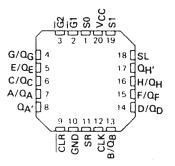
- Operates with Outputs Enabled or at High Z
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for N-Bit Word Lengths
- SN54LS323 and SN74LS323 Are Similar But Have Synchronous Clear
- Applications:

Stacked or Push-Down Registers Buffer Storage, and Accumulator Registers

	GUARANTEED	TYPICAL
TYPE	SHIFT (CLOCK)	POWER
	FREQUENCY	DISSIPATION
'LS299	25 MHz	175 mW
'S299	50 MHz	700 mW

A/QA U7 QA/ U8

CLR 09


GND 110

14 D/QD

13 □ B/QB

12 CLK

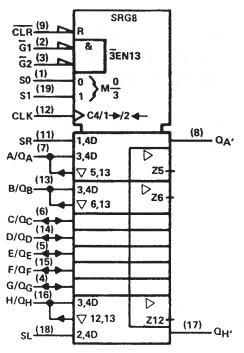
SN54LS299, SN54S299 . . . FK PACKAGE (TOP VIEW)

description

These Schottky TTL eight-bit universal registers feature multiplexed inputs/outputs to achieve full eight-bit data handling in a single 20-pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table.

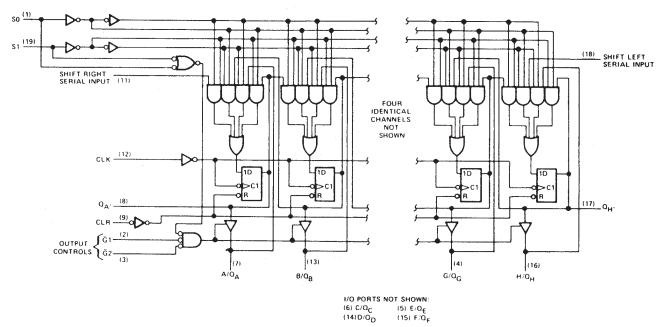
Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off.

FUNCTION TABLE


				INPL	ITS						IN	PUTS/0	DUTPU	TS			OUT	PUTS
MODE	CLR	FUNC	TION	OU1	TPUT TROL	CLK	SEF	RIAL	A/Q _A	B/QB	c/Q _C	D/QD	E/QE	F/Q _F	G/QG	H/QH	Q _A ,	Q _H ,
		S1	S0	Ğ1 [†]	G2†		SL	SR										
	L	Х	L	L	L	×	Х	Х	L	L	L	L	L	L	L	L	L	L
Clear	L	L.	Х	L	L	×	×	X	L	L	L	L	L	L	L	L.	L	L
	L	Н	н	х	х	×	×	X	x	X	X	Х	X	Х	X	×	L	L
Hold	н	L	Ł	L	°L	×	×	×	QAO	Ово	Q _{C0}	Q _{D0}	QE0	Q _{F0}	Q _{G0}	αнο	QAO	Оно
HUIU	н	×	×	L	L	Ł	×	×	QAO	Q _{BO}	σ_{C0}	a_{D0}	QE0	Q_{F0}			QAO	QHO
Shift Right	Н	L	Н	L	L	t	X	Н	Н	QAn	QBn	Q _{Cn}	QDn	QEn	QFn	Q_{Gn}	Н	aGn
Smill right	н	L	н	L	L	1	×	L	L	Q_{An}	Q_{Bn}	a_{Cn}	a_{Dn}	α_{En}	Q_{Fn}	α_{Gn}	L	Q_{Gn}
Shift Left	Н	Н	L	L	L	1	Н	×	QBn	QCn	QDn	QEn	QFn	QGn	QHn	Н	QBn	Н
Shift Left	н	H	L	L	L	t	L	×	QBn	a_{Cn}	Q_{Dn}	Q_{En}	Q_{Fn}	α_{Gn}	Q_{Hn}	L	QBn	L
Load	Н	Н	Н	Х	X	1	Х	X	а	Ь.	С	d	e	f	g	h	а	h

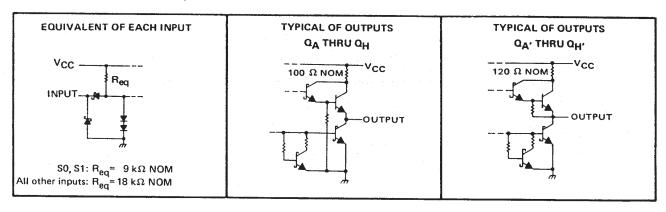
[†]When one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

a...h = the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, N, and W packages.


logic diagram (positive logic)

Pin numbers shown are for DW, J, N, and W packages.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

S	upply voltage, VCC (see Note 1)																					7 V	,
- 1	nput voltage						٠.								٠.							7 V	1
C	ff-state output voltage																				5.	.5 V	,
(perating free-air temperature range:	: S	N5	4L	.S2	99												-5	5°(C to	12	25°C)
_		S	N7	'4L	.S2	99													0	°C 1	o 7	o°C	;
S	torage temperature					٠												-6	5°(Cto	15	o°C	;

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		s	N54LS2	99	s	N74LS2	99	l <u> </u>
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	QA thru QH	1777		-1			-2.6	
output content, TOH	QA' or QH'			-0.4			-0.4	mA
Low-level output current, IOL	Q _A thru Q _H			12			24	
	Q _A ' or Q _H '			4			8	mA
Clock frequency, fclock		0		20	0		20	MHz
Width of clock pulse, tw(clock)	Clock high	30			30			
	Clock low	1.8			10			ns
Width of clear pulse, tw(clear)	Clear low	25			20			ns
	Select	35†			35↑			
Setup time, t _{su}	High-level data [†]	201			20†			
	Low-level data [†]	20↑			201			ns
	Clear inactive-state	241			201			
Hold time, th	Select	10↑			10t			
	Data [†]	3†	1977.4		01			ns
Operating free-air temperature, TA		-55		125	0		70	°c

[†] Data includes the two serial inputs and the eight input/output data lines.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST COND	NITIONS!	S	N54LS2	99	SI	N74LS2	99	
	TANAMETEN		1EST CONE	ATTOMS.	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level input voltage			-	2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.5			-1.5	V
Vou	High-level output voltage	Q _A thru Q _H	V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.2		2.4	3.1		V
VOH	riigii-ievei output voitage	QA' or QH'	VIL = VILmax,	$I_{OH} = MAX$	2.5	3.4		2.7	3.4		\ \
		QA thru QH	V _{CC} = MIN,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
VOL	Low-level output voltage	CA till CH	V _{1H} = 2 V,	I _{OL} = 24 mA					0.35	0.5	V
-02	=511 total output voltage	QA' or QH'	VIL = VILmax	IOL = 4 mA		0.25	0.4		0.25	0.4]
		-A 01 -H	ALE ALFUIDA	IOL = 8 mA					0.35	0.5	
lozh	Off-state output current,	QA thru QH	V _{CC} = MAX,	$V_{IH} = 2 V$,			40			40	μΑ
-0211	high-level voltage applied	-An	V _O = 2.7 V				10				
lozL	Off-state output current,	Q _Δ thru Q _H	$V_{CC} = MAX$,	V _{IH} = 2 V,			-400			-400	μА
	low-level voltage applied		V _O = 0.4 V				100				μ
	Input current at maximum	S0, S1		V1 = 7 V			200			200	
11	input voltage	A thru H	V _{CC} = MAX	V ₁ = 5.5 V			100			100	μΑ
	pot vortago	Any other		V ₁ = 7 V			100			100	
tin	High-level input current	A thru H, SO, S1	V _{CC} = MAX,	V ₁ = 2.7 V			40			40	μА
.111	, ngir lover input current	Any other	VCC - WAX,	V - 2.7 V			20			20	1 40
I _{IL}	Low-level input current	S0, S1	V _{CC} = MAX,	V ₁ = 0.4 V			-0.8			-0.8	mA
'1L	-orr love input current	Any other	VCC = MAX,	V - 0.4 V			-0.4			-0.4] ""^
los	Short-circuit output current§	Q _A thru Q _H	Vcc = MAX	•	-30		130	-30		-130	mA
.08	onort-circuit output current	QA' or QH'	ACC - MAX		-20		-100	-20		-100] mA
Icc	Supply current		V _{CC} = MAX			33	53		33	53	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}			See Note 2	20	35		MHz
[†] PLH	CLV	0.4000.4	B. = 2 kO		22	33	
^t PHL	CLK	Q _A ' or Q _H '	$R_L = 2 k\Omega$, $C_L = 15 pF$		26	39	ns
^t PHL	CLR	QA' or QH'	7		27	40	ns
^t PLH		QA thru QH			17	25	
^t PHL	CLK	da illia dh	$R_1 = 665 \Omega$, $C_1 = 45 pF$		26	39	ns
^t PHL	CLR	QA thru QH	11 - 003 32, GE = 43 pr		26	40	ns
^t PZH	G1, G2	QA thru QH	7		13	21	
^t PZL	01,02	α _A tina α _H			19	30	ns
^t PHZ	G1, G2	QA thru QH	R _L = 665 Ω, C _L = 5 pF		10	20	
^t PLZ] . 31, 32	ZA UNO CH			10	15	ns

 $[\]P_{\mathsf{fmax}} \equiv \mathsf{maximum} \; \mathsf{clock} \; \mathsf{frequency}$

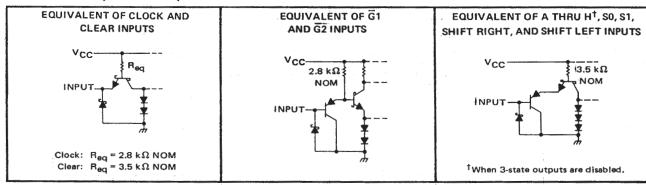
 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

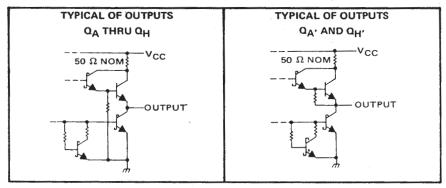
[§]Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

tplH = propagation delay time, low-to-high-level output.

tpHL = propagation delay time, high-to-low-level output

 $t_{PZH} = output$ enable time to high level


 $t_{PZL} \equiv output$ enable time to low level


tpHZ ≡ output disable time from high level

 $t_{PLZ} \equiv output disable time from low level$

NOTE 2: For testing f_{max}, all outputs are loaded simultaneously, each with C_L and R_L as specified for the propagation times, Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage
Off-state output voltage
Operating free-air temperature range: SN54S299 (See Note 1)55°C to 125°C
SN74S299 0 °C to 70 °C
Storage temperature range65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			N54S29	9		N74S29	9	
		MIN	NOM	MAX	MIN	NOM	MAX	TINU
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	Q _A thru Q _H			-2			-6.5	
riigii-lever output current, 10H	QA' or QH'			-0.5			-0.5	mA
Low-level output current, IOL	Q _A thru Q _H			20			20	mA
	QA' or QH'			6			6	I IIIA
Clock frequency, fclock		0		50	0		50	MHz
Width of clock pulse, tw(clock)	Clock high	10			10			
	Clock low	10			10			ns
Width of clear pulse, tw(clear)	Clear low	10			10			ns
	Select	15↑			15↑			
Setup time, t _{SU}	High-level data [‡]	7↑			7↑			
Setup time, tsu	Low-level data [‡]	5↑			5↑			ns
	Clear inactive-state	10↑			101			
Hold time, th	Select	5↑			51			
Tiold time, th	Data [‡]	5↑			5↑			ns
Operating free-air temperature, TA		-55		125	0		70	°C

[‡] Data includes the two serial inputs and the eight input/output data lines.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.2	V
VOH	High-level output voltage	QA thru QH	VCC = MIN,	V _{IH} = 2 V,	2.4	3.2		
* On		QA' or QH'	V1L = 0.8 V,	IOH = MAX	2.7	3.4		٧
VOL	Low-level output voltage		VCC = MIN,	V _{IH} = 2 V,				
- 01			V _{IL} = 0.8 V,	IOL = MAX			0.5	٧
lozh	Off-state output current,	QA thru QH	V _{CC} = MAX,	V _{IH} = 2 V,				
-0211	high-level voltage applied	ag mru ag	V _O = 2.4 V				100	μА
IOZL	Off-state output current,	0 1 1	VCC = MAX,	V _{IH} = 2 V,			-	
-02L	low-level voltage applied	Q _A thru Q _H	V _O = 0.5 V				-250	μА
4	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 5.5 V			1	mA
Ήн	High-level input current	A thru H, SO, S1					100	IIIA
-111		Any other	V _{CC} = MAX,	V ₁ = 2.7 V			50	μА
		CLK or CLR					-2	mA
HL	Low-level input current	S0, S1	VCC = MAX,	V _I = 0.5 V			-500	μΑ
		Any other		· ·			-250	μА
los	Short-circuit output current§	QA thru QH			-40	1	-100	
-03	Short shi suit output culterity	QA' or QH'	V _{CC} = MAX	l	-20		-100	mA
lcc	Supply current		V _{CC} = MAX			140	225	mA

 $^{^\}dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}			See Note 2	50	70	· · · · · · · · · · · · · · · · · · ·	MHz
^t PLH	CLK	0.405.044	D 110 C - 15 - 5		12	20	
^t PHL		Q _A ' or Q _H '	$R_L = 1 k\Omega$, $C_L = 15 pF$		13	20	ns
^t PHL	CLR	QA' or QH'			14	21	ns
^t PLH	CLK	0.450			15	21	
^t PHL		QA thru QH			15	21	ns
^t PHL	CLR	QA thru QH	$R_{L} = 280 \Omega$, $C_{L} = 45 pF$		16	24	ns
^t PZH	Ğ1, Ğ2	0 11 0	-		10	18	
^t PZL	01,02	QA thru QH			12	18	ns
^t PHZ	G1, G2	0 11 0	$R_1 = 280 \Omega$, $C_1 = 5 pF$	+	7	12	
^t PLZ	01, 02	• QA thru QH			7	12	ns

NOTE 2: For testing f_{max} , all outputs are loaded simultaneously, each with C_L and R_L as specified for the propagation times. Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ} \text{C}$.

[§] Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

[¶]f_{max} = maximum clock frequency t_{PLH} = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

tpzH = output enable time to high level

tpzL = output enable time to low level

tpHZ = output disable time from high level

tpLZ = output disable time from low level

www.ti.com

19-Oct-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
78024012A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	78024012A SNJ54LS 299FK	Samples
7802401RA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7802401RA SNJ54LS299J	Samples
7802401RA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7802401RA SNJ54LS299J	Samples
7802401SA	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7802401SA SNJ54LS299W	Samples
7802401SA	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7802401SA SNJ54LS299W	Samples
SN54LS299J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS299J	Samples
SN54LS299J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS299J	Samples
SN74LS299DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS299	Samples
SN74LS299DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS299	Samples
SN74LS299N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS299N	Samples
SN74LS299N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS299N	Samples
SNJ54LS299FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	78024012A SNJ54LS 299FK	Samples
SNJ54LS299FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	78024012A SNJ54LS 299FK	Samples
SNJ54LS299J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7802401RA SNJ54LS299J	Samples
SNJ54LS299J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7802401RA SNJ54LS299J	Samples
SNJ54LS299W	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7802401SA SNJ54LS299W	Samples

www.ti.com 19-Oct-2021

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54LS299W	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7802401SA SNJ54LS299W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LS299, SN74LS299:

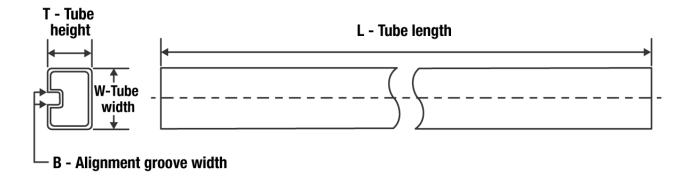
PACKAGE OPTION ADDENDUM

www.ti.com 19-Oct-2021

• Catalog : SN74LS299

Military: SN54LS299

NOTE: Qualified Version Definitions:

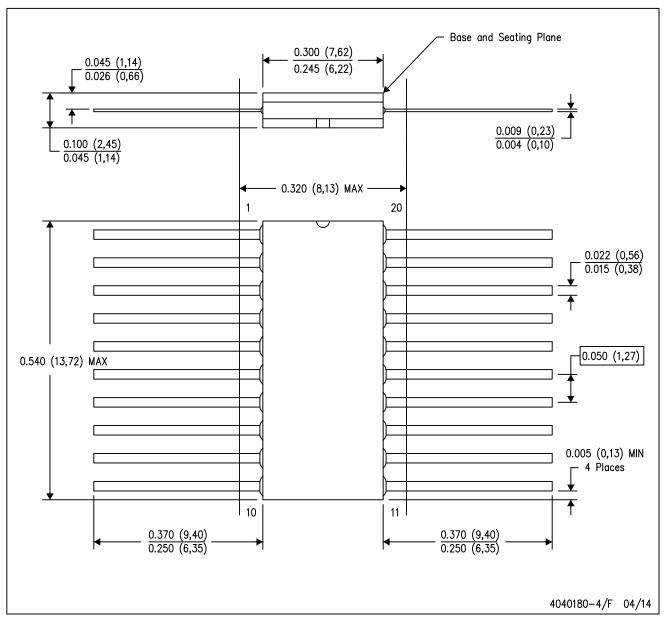

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TUBE



*All dimensions are nominal

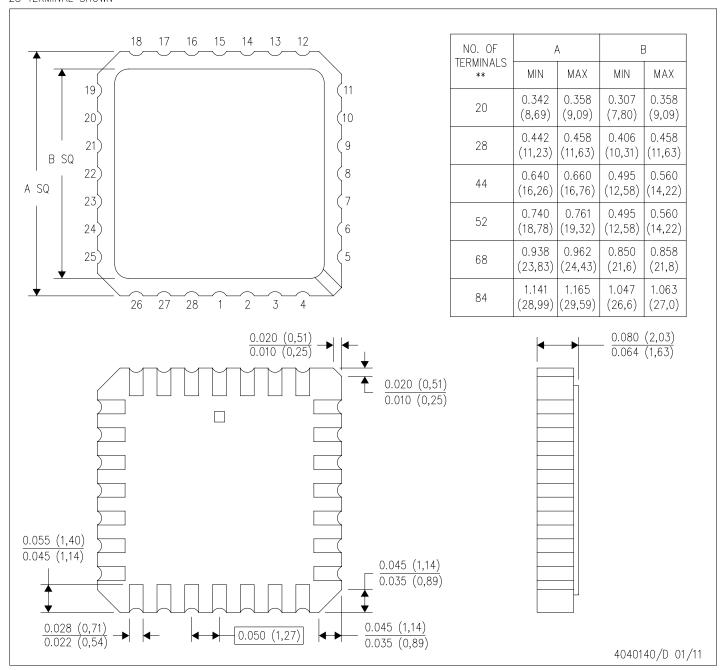
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
78024012A	FK	LCCC	20	1	506.98	12.06	2030	NA
SN74LS299DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74LS299N	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54LS299FK	FK	LCCC	20	1	506.98	12.06	2030	NA

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

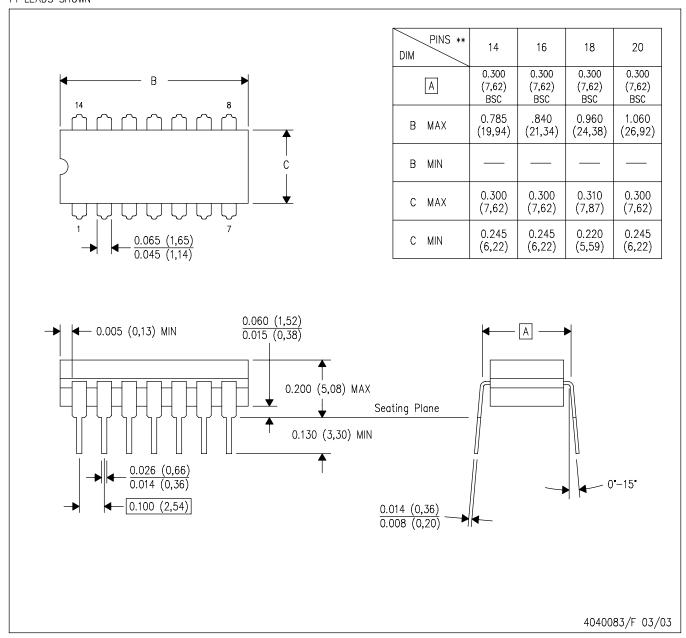
- A. All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.

 D. Index point is provided on cap for terminal identification only.


 E. Falls within Mil—Std 1835 GDFP2—F20

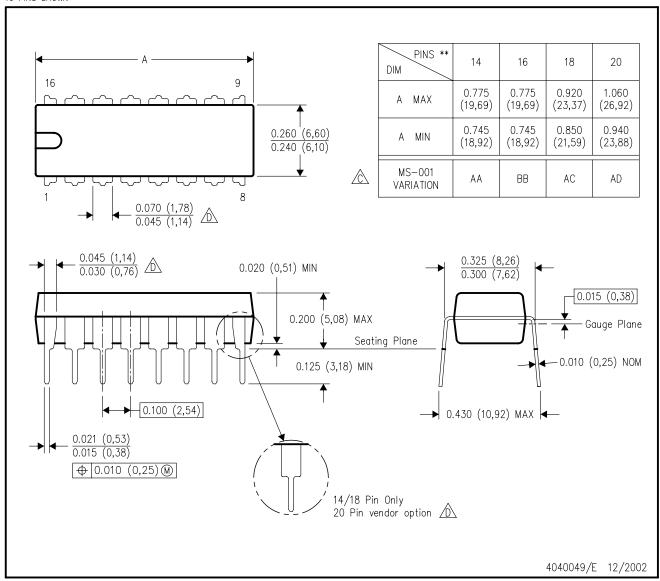
FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER


28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

14 LEADS SHOWN

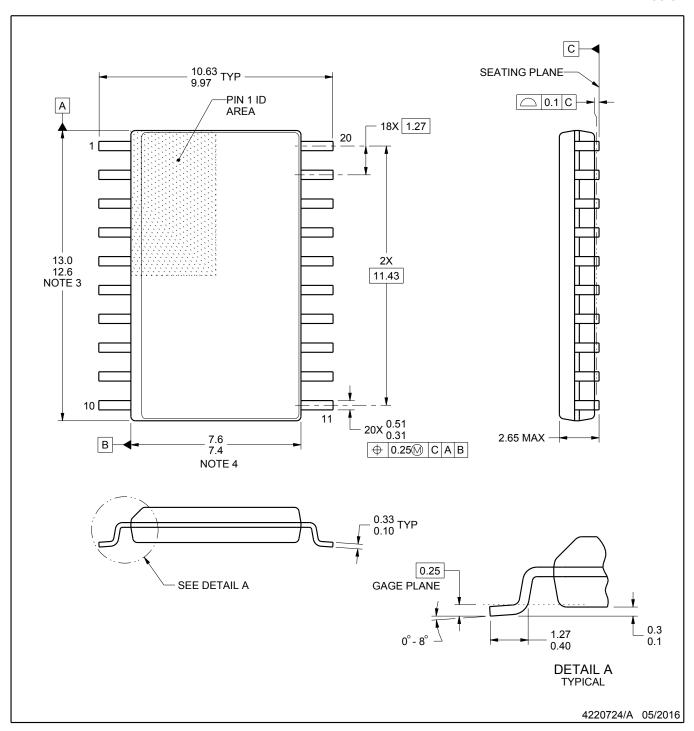


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

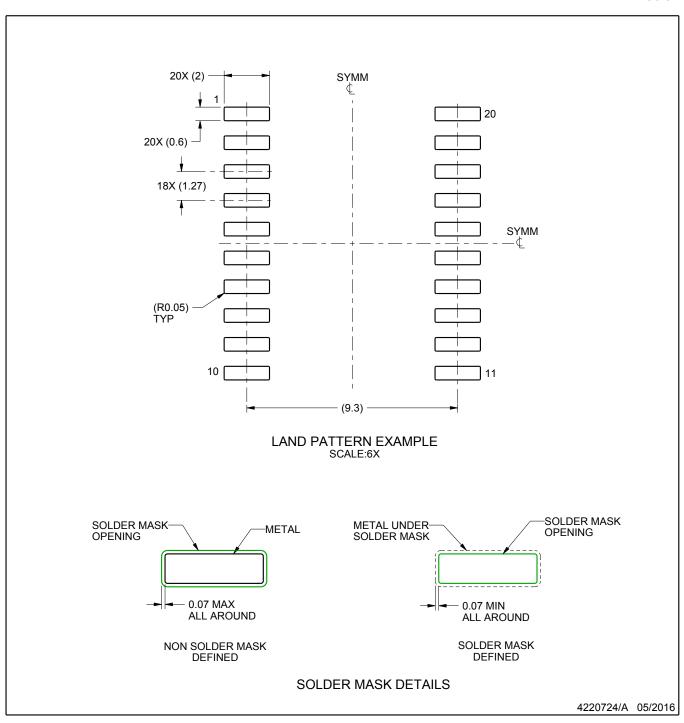
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

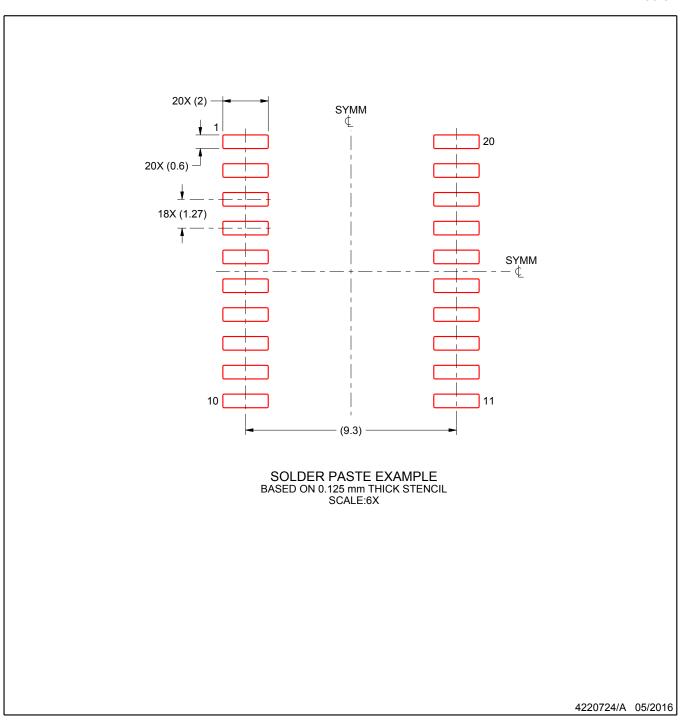
SOIC


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated