

UCC21222 4A、6A、3.0kV_{RMS} 隔离式双通道栅极驱动器（具有死区时间）

1 特性

- 可通过电阻器编程的死区时间
- 通用：双路低侧、双路高侧或半桥驱动器
- 4A 峰值拉电流、6A 峰值灌电流输出
- 3V 至 5.5V 输入 VCCI 范围
- 高达 18V 的 VDD 输出驱动电源
 - 8V VDD UVLO
- 开关参数：
 - 28ns 典型传播延迟
 - 10ns 最小脉冲宽度
 - 5ns 最大延迟匹配度
 - 5.5ns 最大脉宽失真度
- TTL 和 CMOS 兼容输入
- 集成抗尖峰滤波器
- I/O 承受 -2V 电压的时间达 200ns
- 共模瞬态抗扰度 (CMTI) 大于 100V/ns
- 隔离栅寿命大于 40 年
- 浪涌抗扰度高达 7800V_{PK}
- 窄体 SOIC-16 (D) 封装
- 安全相关认证（计划）：
 - 符合 DIN V VDE V 0884-11:2017-01 和 DIN EN 61010-1 标准的 4242V_{PK} 隔离
 - 符合 UL 1577 标准且长达 1 分钟的 3000V_{RMS} 隔离
 - 获得 CSA 认证，符合 IEC 60950-1、IEC 62368-1 和 IEC 61010-1 终端设备标准
 - 符合 GB4943.1-2011 的 CQC 认证
- 使用 UCC21222 并借助 WEBENCH® 电源设计器创建定制设计方案

2 应用

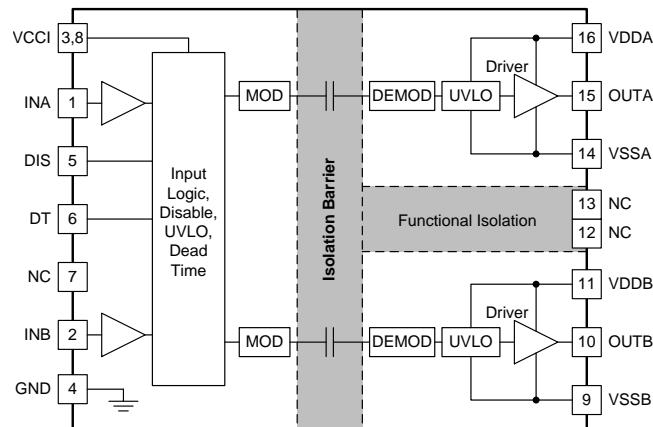
- 交流/直流和直流/直流电源中的隔离转换器
- 服务器、电信、IT 和工业基础设施
- 电机驱动器和光伏逆变器
- HEV 和 EV 电池充电器
- 工业运输
- 不间断电源 (UPS)

3 说明

UCC21222 器件是具有可编程死区时间的隔离式双通道栅极驱动器。该器件采用 4A 峰值拉电流和 6A 峰值灌电流来驱动功率 MOSFET、IGBT 和 GaN 晶体管。

UCC21222 器件可配置为两个低侧驱动器、两个高侧驱动器或一个半桥驱动器。该器件的 5ns 延迟匹配性能允许并联两个输出，能够在重负载条件下将驱动强度提高一倍，而无内部击穿风险。

输入侧通过一个 3.0kV_{RMS} 隔离栅与两个输出驱动器隔离，共模瞬态抗扰度 (CMTI) 的最小值为 100V/ns。


可通过电阻器编程的死区时间可让您调整系统限制的死区时间，从而提高效率并防止输出重叠。其他保护特性包括：当 DIS 设置为高电平时，通过禁用功能同时关闭两路输出；集成的抗尖峰滤波器可抑制短于 5ns 的输入瞬变；以及在输入和输出引脚上对高达 -2V 的尖峰进行 200ns 的负电压处理。所有电源都有 UVLO 保护。

器件信息⁽¹⁾

器件型号	封装	封装尺寸（标称值）
UCC21222	SOIC (16)	9.9mm × 3.91mm

(1) 如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。

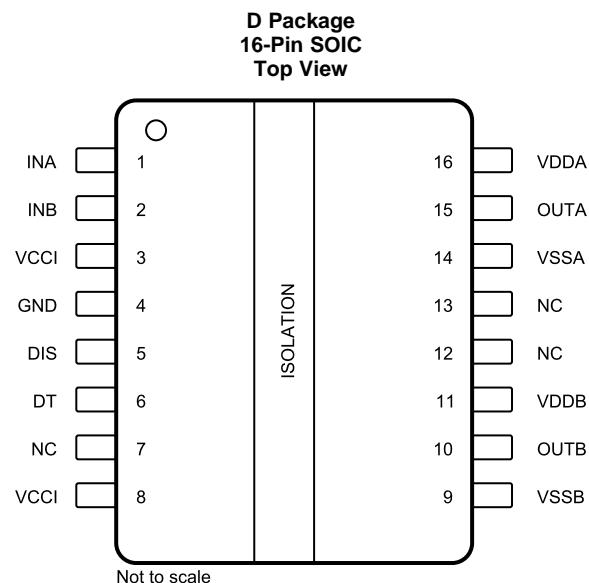
功能方框图

Copyright © 2018, Texas Instruments Incorporated

本文档旨在为方便起见，提供有关 TI 产品中文版本的信息，以确认产品的概要。有关适用的官方英文版本的最新信息，请访问 www.ti.com，其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前，请务必参考最新版本的英文版本。

English Data Sheet: [SLUSC6](http://www.ti.com/lit/ds/symlink/ucc21222.pdf)

目 录


1	特性	1	7.6	Power-up UVLO Delay to OUTPUT	17
2	应用	1	7.7	CMTI Testing	18
3	说明	1	8	Detailed Description	19
4	修订历史记录	2	8.1	Overview	19
5	Pin Configuration and Functions	3	8.2	Functional Block Diagram	19
6	Specifications	4	8.3	Feature Description	20
6.1	Absolute Maximum Ratings	4	8.4	Device Functional Modes	23
6.2	ESD Ratings	4	9	Application and Implementation	25
6.3	Recommended Operating Conditions	4	9.1	Application Information	25
6.4	Thermal Information	5	9.2	Typical Application	25
6.5	Power Ratings	5	10	Power Supply Recommendations	36
6.6	Insulation Specifications	6	11	Layout	37
6.7	Safety-Related Certifications	7	11.1	Layout Guidelines	37
6.8	Safety-Limiting Values	7	11.2	Layout Example	38
6.9	Electrical Characteristics	8	12	器件和文档支持	40
6.10	Switching Characteristics	9	12.1	器件支持	40
6.11	Thermal Derating Curves	10	12.2	文档支持	40
6.12	Typical Characteristics	11	12.3	相关链接	40
7	Parameter Measurement Information	15	12.4	接收文档更新通知	40
7.1	Minimum Pulses	15	12.5	社区资源	40
7.2	Propagation Delay and Pulse Width Distortion	15	12.6	商标	40
7.3	Rising and Falling Time	15	12.7	静电放电警告	41
7.4	Input and Disable Response Time	16	12.8	术语表	41
7.5	Programmable Dead Time	16	13	机械、封装和可订购信息	41

4 修订历史记录

注：之前版本的页码可能与当前版本有所不同。

日期	修订版本	说明
2018 年 4 月	*	初始发行版。

5 Pin Configuration and Functions

Pin Functions

PIN		I/O ⁽¹⁾	Description
NAME	NO.		
DIS	5	I	Disables both driver outputs if asserted high, enables if set low or left open. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity. Bypass using a $\approx 1\text{-nF}$ low ESR/ESL capacitor close to DIS pin when connecting to a μC with distance.
DT	6	I	Programmable dead time function. Tying DT to VCCI or leaving DT open allows the outputs to overlap. Placing a resistor (R_{DT}) between DT and GND adjusts dead time according to the equation: $DT \text{ (in ns)} = 10 \times R_{DT} \text{ (in k}\Omega\text{)}$. TI recommends bypassing this pin with a ceramic capacitor, 2.2 nF or greater, to achieve better noise immunity. Place this capacitor and R_{DT} close to the DT pin.
GND	4	P	Primary-side ground reference. All signals in the primary side are referenced to this ground.
INA	1	I	Input signal for A channel. INA input has a TTL/CMOS compatible input threshold. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity.
INB	2	I	Input signal for B channel. INB input has a TTL/CMOS compatible input threshold. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity.
NC	7	-	No internal connection.
	12		
	13		
OUTA	15	O	Output of driver A. Connect to the gate of the A channel FET or IGBT.
OUTB	10	O	Output of driver B. Connect to the gate of the B channel FET or IGBT.
VCCI	3	P	Primary-side supply voltage. Locally decoupled to GND using a low ESR/ESL capacitor located as close to the device as possible.
VCCI	8	P	This pin is internally shorted to pin 3.
VDDA	16	P	Secondary-side power for driver A. Locally decoupled to VSSA using a low ESR/ESL capacitor located as close to the device as possible.
VDDB	11	P	Secondary-side power for driver B. Locally decoupled to VSSB using a low ESR/ESL capacitor located as close to the device as possible.
VSSA	14	P	Ground for secondary-side driver A. Ground reference for secondary side A channel.
VSSB	9	P	Ground for secondary-side driver B. Ground reference for secondary side B channel.

(1) P = power, I = input, O = output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Input bias pin supply voltage	VCCI to GND	-0.5	6	V
Driver bias supply	VDDA-VSSA, VDDB-VSSB	-0.5	20	V
Output signal voltage	OUTA to VSSA, OUTB to VSSB	-0.5	$V_{VDDA}+0.5$, $V_{VDBB}+0.5$	V
	OUTA to VSSA, OUTB to VSSB, Transient for 200 ns ⁽²⁾	-2	$V_{VDDA}+0.5$, $V_{VDBB}+0.5$	V
Input signal voltage	INA, INB, DIS to GND	-0.5	$V_{VCCI}+0.5$	V
	INA, INB Transient to GND for 200ns ⁽²⁾	-2	$V_{VCCI}+0.5$	V
Junction temperature, T_J ⁽³⁾		-40	150	°C
Storage temperature, T_{stg}		-65	150	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Values are verified by characterization and are not production tested.

(3) To maintain the recommended operating conditions for T_J , see the [Thermal Information](#).

6.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
VCCI	VCCI Input supply voltage	3	5.5	V
VDDA, VDBB	Driver output bias supply	9.2	18	V
T_J	Junction Temperature	-40	130	°C
T_A	Ambient Temperature	-40	125	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		UCC21222	UNIT
		D (SOIC)	
		16 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	68.5	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	30.5	°C/W
R _{θJB}	Junction-to-board thermal resistance	22.8	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	17.1	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	22.5	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953](#).

6.5 Power Ratings

		VALUE	UNIT
P _D	Power dissipation	1825	mW
P _{DI}	Power dissipation by transmitter side	15	mW
P _{DA} , P _{DB}	Power dissipation by each driver side	905	mW

VCCI = 5.5 V, VDDA/B = 12 V, INA/B = 3.3 V, 5.4 MHz 50% duty cycle square wave 1.0-nF load

6.6 Insulation Specifications

PARAMETER	TEST CONDITIONS	VALUE	UNIT	
CLR	External clearance ⁽¹⁾	> 4	mm	
CPG	External creepage ⁽¹⁾	> 4	mm	
DTI	Distance through the insulation	>17	µm	
CTI	Comparative tracking index	> 600	V	
Material group		I		
Overvoltage category per IEC 60664-1	Rated mains voltage $\leq 150 \text{ V}_{\text{RMS}}$	I-IV		
	Rated mains voltage $\leq 300 \text{ V}_{\text{RMS}}$	I-III		
	Rated mains voltage $\leq 600 \text{ V}_{\text{RMS}}$	I-II		
DIN V VDE V 0884-11:2017-01⁽²⁾				
V_{IORM}	Maximum repetitive peak isolation voltage	990	V_{PK}	
V_{IOWM}	AC voltage (sine wave); time dependent dielectric breakdown (TDDB) test;	700	V_{RMS}	
	DC Voltage	990	V_{DC}	
V_{IOTM}	$V_{\text{TEST}} = V_{\text{IOTM}}$, $t = 60 \text{ s}$ (qualification); $V_{\text{TEST}} = 1.2 \times V_{\text{IOTM}}$, $t = 1 \text{ s}$ (100% production)	4242	V_{PK}	
V_{IOSM}	Test method per IEC 62368-1, 1.2/50 μs waveform, $V_{\text{TEST}} = 1.3 \times V_{\text{IOSM}} = 7800 \text{ V}_{\text{PK}}$ (qualification)	6000	V_{PK}	
q_{pd}	Method a, After Input/Output safety test subgroup 2/3, $V_{\text{ini}} = V_{\text{IOTM}}$, $t_{\text{ini}} = 60\text{s}$; $V_{\text{pd(m)}} = 1.2 \times V_{\text{IORM}}$, $t_{\text{m}} = 10\text{s}$	<5	pC	
	Method a, After environmental tests subgroup 1, $V_{\text{ini}} = V_{\text{IOTM}}$, $t_{\text{ini}} = 60\text{s}$; $V_{\text{pd(m)}} = 1.2 \times V_{\text{IORM}}$, $t_{\text{m}} = 10\text{s}$	<5		
	Method b1; At routine test (100% production) and preconditioning (type test) $V_{\text{ini}} = 1.2 \times V_{\text{IOTM}}$; $t_{\text{ini}} = 1 \text{ s}$; $V_{\text{pd(m)}} = 1.5 \times V_{\text{IORM}}$, $t_{\text{m}} = 1\text{s}$	<5		
C_{IO}	$V_{\text{IO}} = 0.4 \sin(2\pi ft)$, $f = 1 \text{ MHz}$	0.5	pF	
R_{IO}	$V_{\text{IO}} = 500 \text{ V}$ at $T_A = 25^\circ\text{C}$	$> 10^{12}$	Ω	
	$V_{\text{IO}} = 500 \text{ V}$ at $100^\circ\text{C} \leq T_A \leq 125^\circ\text{C}$	$> 10^{11}$		
	$V_{\text{IO}} = 500 \text{ V}$ at $T_S = 150^\circ\text{C}$	$> 10^9$		
Pollution degree		2		
Climatic category		40/125/21		
UL 1577				
V_{ISO}	Withstand isolation voltage	$V_{\text{TEST}} = V_{\text{ISO}} = 3000 \text{ V}_{\text{RMS}}$, $t = 60 \text{ sec.}$ (qualification), $V_{\text{TEST}} = 1.2 \times V_{\text{ISO}} = 3600 \text{ V}_{\text{RMS}}$, $t = 1 \text{ sec}$ (100% production)	3000	V_{RMS}

- (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.
- (2) This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- (4) Apparent charge is electrical discharge caused by a partial discharge (pd).
- (5) All pins on each side of the barrier tied together creating a two-pin device.

6.7 Safety-Related Certifications

VDE	CSA	UL	CQC
Plan to certify according to DIN V VDE V 0884-11:2017-01 and DIN EN 61010-1 (VDE 0411-1):2011-07	Plan to certify according to IEC 60950-1, IEC 62368-1 and IEC 61010-1	Plan to be recognized under UL 1577 Component Recognition Program	Plan to certify according to GB 4943.1-2011

6.8 Safety-Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.

PARAMETER	TEST CONDITIONS	SIDE	MIN	TYP	MAX	UNIT
I_S Safety output supply current	$\theta_{JA} = 68.5^\circ\text{C}/\text{W}$, $V_{VDDA/B} = 12 \text{ V}$, $T_J = 150^\circ\text{C}$, $T_A = 25^\circ\text{C}$ See	DRIVER A, DRIVER B			75	mA
P_S Safety supply power	$\theta_{JA} = 68.5^\circ\text{C}/\text{W}$, $V_{VCCI} = 5.5 \text{ V}$, $T_J = 150^\circ\text{C}$, $T_A = 25^\circ\text{C}$ See	INPUT			15	mW
		DRIVER A			905	
		DRIVER B			905	
		TOTAL			1825	
T_S Safety temperature ⁽¹⁾					150	°C

(1) The maximum safety temperature, T_S , has the same value as the maximum junction temperature, T_J , specified for the device. The I_S and P_S parameters represent the safety current and safety power respectively. The maximum limits of I_S and P_S should not be exceeded. These limits vary with the ambient temperature, T_A .

The junction-to-air thermal resistance, $R_{\theta JA}$, in the **Thermal Information** table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter:

$$T_J = T_A + R_{\theta JA} \times P, \text{ where } P \text{ is the power dissipated in the device.}$$

$$T_{J(\max)} = T_S = T_A + R_{\theta JA} \times P_S, \text{ where } T_{J(\max)} \text{ is the maximum allowed junction temperature.}$$

$$P_S = I_S \times V_I, \text{ where } V_I \text{ is the maximum input voltage.}$$

6.9 Electrical Characteristics

$V_{VCCI} = 3.3$ V or 5.0 V, $0.1\text{-}\mu\text{F}$ capacitor from V_{VCCI} to GND and $1\text{-}\mu\text{F}$ capacitor from $V_{VDDA/B}$ to $V_{VSSA/B}$, $V_{VDDA} = V_{VDDB} = 12$ V, $1\text{-}\mu\text{F}$ capacitor from V_{VDDA} and V_{VDB} to V_{VSSA} and V_{VSSB} , DT pin tied to V_{VCCI} , $C_L = 0$ pF, $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$ unless otherwise noted⁽¹⁾⁽²⁾.

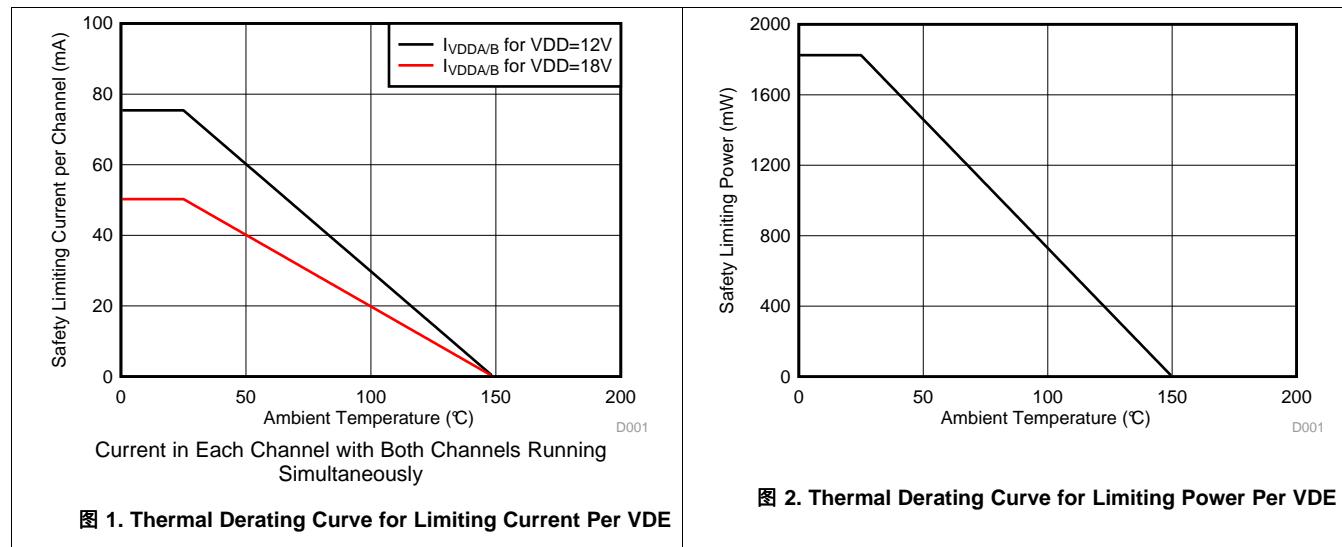
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CURRENTS					
I_{VCCI}	V_{VCCI} quiescent current $V_{INA} = 0$ V, $V_{INB} = 0$ V		1.5	2.0	mA
I_{VDDA}, I_{VDB}	V_{VDDA} and V_{VDB} quiescent current $V_{INA} = 0$ V, $V_{INB} = 0$ V		1.0	1.8	mA
I_{VCCI}	V_{VCCI} operating current ($f = 500$ kHz) current per channel		2.5		mA
I_{VDDA}, I_{VDB}	V_{VDDA} and V_{VDB} operating current ($f = 500$ kHz) current per channel, $C_{OUT} = 100$ pF, $V_{VDDA}, V_{VDB} = 12$ V		2.5		mA
VCC SUPPLY VOLTAGE UNDERVOLTAGE THRESHOLDS					
V_{VCCI_ON}	UVLO Rising threshold	2.55	2.7	2.85	V
V_{VCCI_OFF}	UVLO Falling threshold	2.35	2.5	2.65	V
V_{VCCI_HYS}	UVLO Threshold hysteresis		0.2		V
VDD SUPPLY VOLTAGE UNDERVOLTAGE THRESHOLDS					
V_{VDDA_ON}, V_{VDB_ON}	UVLO Rising threshold	8	8.5	9	V
$V_{VDDA_OFF}, V_{VDB_OFF}$	UVLO Falling threshold	7.5	8	8.5	V
$V_{VDDA_HYS}, V_{VDB_HYS}$	UVLO Threshold hysteresis		0.5		V
INA, INB AND DISABLE					
$V_{INA_H}, V_{INB_H}, V_{DISH}$	Input high threshold voltage	1.6	1.8	2	V
$V_{INAL}, V_{INBL}, V_{DISL}$	Input low threshold voltage	0.8	1	1.25	V
$V_{INA_HYS}, V_{INB_HYS}, V_{DIS_HYS}$	Input threshold hysteresis		0.8		V
OUTPUT					
I_{OA+}, I_{OB+}	Peak output source current $C_{VDD} = 10$ μF , $C_{LOAD} = 0.18$ μF , $f = 1$ kHz, bench measurement		4		A
I_{OA-}, I_{OB-}	Peak output sink current $C_{VDD} = 10$ μF , $C_{LOAD} = 0.18$ μF , $f = 1$ kHz, bench measurement		6		A
R_{OHA}, R_{OHB}	Output resistance at high state $I_{OUT} = -10$ mA, R_{OHA}, R_{OHB} do not represent drive pull-up performance. See t_{RISE} in Switching Characteristics and Output Stage for details.		5		Ω
R_{OLA}, R_{OLB}	Output resistance at low state $I_{OUT} = 10$ mA		0.55		Ω
V_{OHA}, V_{OHB}	Output voltage at high state $V_{VDDA}, V_{VDB} = 12$ V, $I_{OUT} = -10$ mA		11.95		V
V_{OLA}, V_{OLB}	Output voltage at low state $V_{VDDA}, V_{VDB} = 12$ V, $I_{OUT} = 10$ mA		5.5		mV
V_{OAPDA}, V_{OAPDB}	Driver output (V_{OUTA}, V_{OUTB}) active pull down V_{VDDA} and V_{VDB} unpowered, $I_{OUTA}, I_{OUTB} = 200$ mA		1.75	2.1	V

- (1) Current direction in the testing conditions are defined to be positive into the pin and negative out of the specified terminal (unless otherwise noted).
- (2) Parameters with only a typical value are provided for reference only, and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

Electrical Characteristics (continued)

$V_{VCCI} = 3.3$ V or 5.0 V, $0.1\text{-}\mu\text{F}$ capacitor from V_{VCCI} to GND and $1\text{-}\mu\text{F}$ capacitor from $V_{VDDA/B}$ to $V_{VSSA/B}$, $V_{VDDA} = V_{VDBB} = 12$ V, $1\text{-}\mu\text{F}$ capacitor from V_{VDDA} and V_{VDBB} to V_{VSSA} and V_{VSSB} , DT pin tied to V_{VCCI} , $C_L = 0$ pF, $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$ unless otherwise noted⁽¹⁾⁽²⁾.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DEAD TIME AND OVERLAP PROGRAMMING					
Dead time, DT	DT pin open or pull DT pin to V_{VCCI}	Overlap determined by INA, INB			-
	$R_{DT} = 10$ k Ω	80	100	120	ns
	$R_{DT} = 20$ k Ω	160	200	240	
	$R_{DT} = 50$ k Ω	400	500	600	
Dead time matching, $ DT_{AB}-DT_{BA} $	$R_{DT} = 10$ k Ω	-	0	10	ns
	$R_{DT} = 20$ k Ω	-	0	20	
	$R_{DT} = 50$ k Ω	-	0	65	


6.10 Switching Characteristics

$V_{VCCI} = 3.3$ V or 5.0 V, $0.1\text{-}\mu\text{F}$ capacitor from V_{VCCI} to GND, $V_{VDDA} = V_{VDBB} = 12$ V, $1\text{-}\mu\text{F}$ capacitor from V_{VDDA} and V_{VDBB} to V_{VSSA} and V_{VSSB} , load capacitance $C_{OUT} = 0$ pF, $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$ unless otherwise noted⁽¹⁾.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t_{RISE}	Output rise time, see 图 28 $C_{VDD} = 10$ μF , $C_{OUT} = 1.8$ nF, $V_{VDDA}, V_{VDBB} = 12$ V, $f = 1$ kHz		5	16	ns	
t_{FALL}	Output fall time, see 图 28 $C_{VDD} = 10$ μF , $C_{OUT} = 1.8$ nF, $V_{VDDA}, V_{VDBB} = 12$ V, $f = 1$ kHz		6	12	ns	
t_{PWmin}	Minimum input pulse width that passes to output, see 图 25 and 图 26	Output does not change the state if input signal less than t_{PWmin}		10	20	ns
t_{PDHL}	Propagation delay at falling edge, see 图 27	INx high threshold, V_{INH} , to 10% of the output		28	40	ns
t_{PDLH}	Propagation delay at rising edge, see 图 27	INx low threshold, V_{INL} , to 90% of the output		28	40	ns
t_{PWD}	Pulse width distortion in each channel, see 图 27	$ t_{PDLHA} - t_{PDHLA} , t_{PDLHB} - t_{PDHLB} $			5.5	ns
t_{DM}	Propagation delays matching, $ t_{PDLHA} - t_{PDLHB} , t_{PDHLA} - t_{PDHLB} $, see 图 27	$f = 250$ kHz			5	ns
$t_{VCCI+ to OUT}$	VCCI Power-up Delay Time: UVLO Rise to OUTA, OUTB, See 图 31	INA or INB tied to V_{VCCI}		40	μs	
$t_{VDD+ to OUT}$	VDDA, VDBB Power-up Delay Time: UVLO Rise to OUTA, OUTB See 图 32	INA or INB tied to V_{VCCI}		22		
$ CM_H $	High-level common-mode transient immunity (See CMTI Testing)	Slew rate of GND vs. $V_{VSSA/B}$, INA and INB both are tied to GND or V_{VCCI} ; $V_{CM}=1000$ V;	100		V/ns	
$ CM_L $	Low-level common-mode transient immunity (See CMTI Testing)	Slew rate of GND vs. $V_{VSSA/B}$, INA and INB both are tied to GND or V_{VCCI} ; $V_{CM}=1000$ V;	100			

(1) Parameters with only a typical value are provided for reference only, and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

6.11 Thermal Derating Curves

6.12 Typical Characteristics

VDDA = VDBB = 12 V, VCCI = 3.3 V or 5.0 V, DT pin tied to VCCI, $T_A = 25^\circ\text{C}$, $C_L = 0 \text{ pF}$ unless otherwise noted.

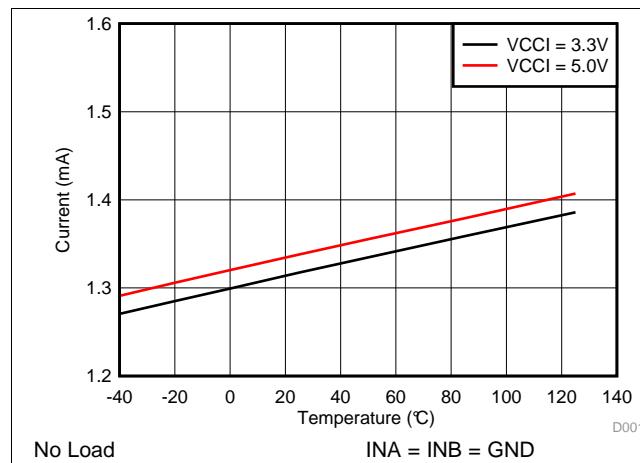


图 3. VCCI Quiescent Current

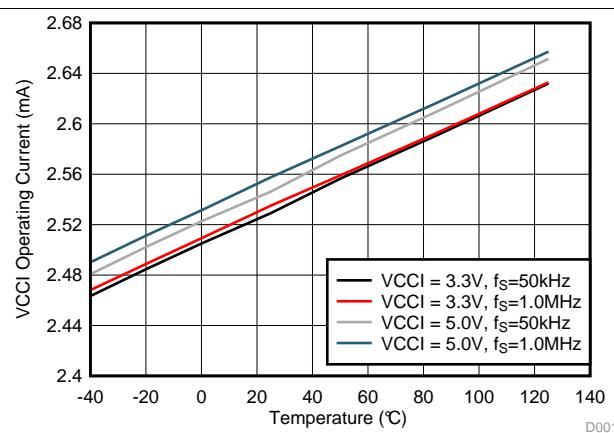


图 4. VCCI Operating Current - I_{VCCI}

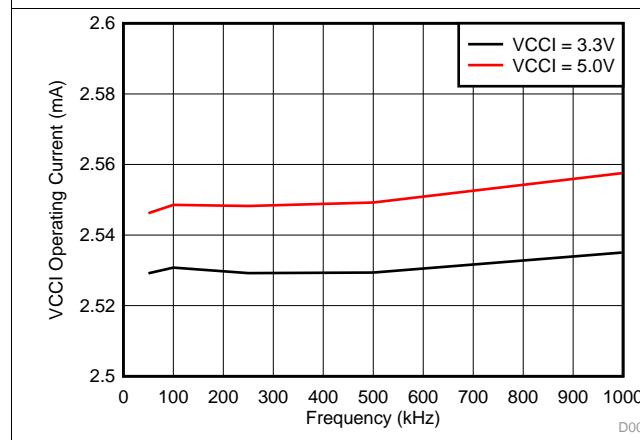


图 5. VCCI Operating Current vs. Frequency

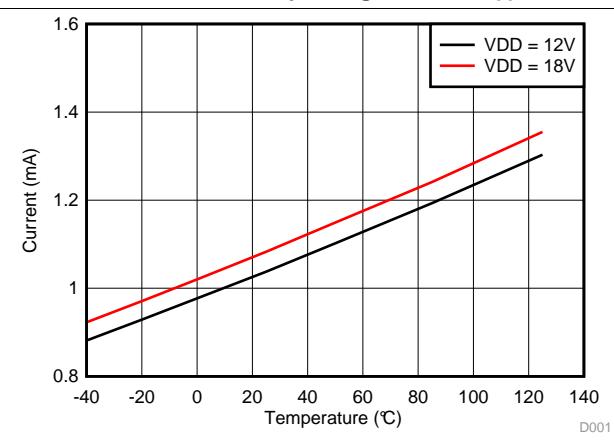


图 6. VDD Per Channel Quiescent Current (I_{VDDA} , I_{VDBB})

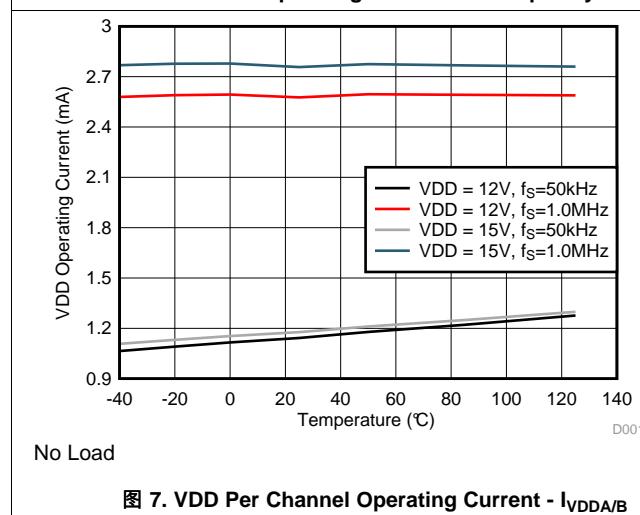


图 7. VDD Per Channel Operating Current - $I_{VDDA/B}$

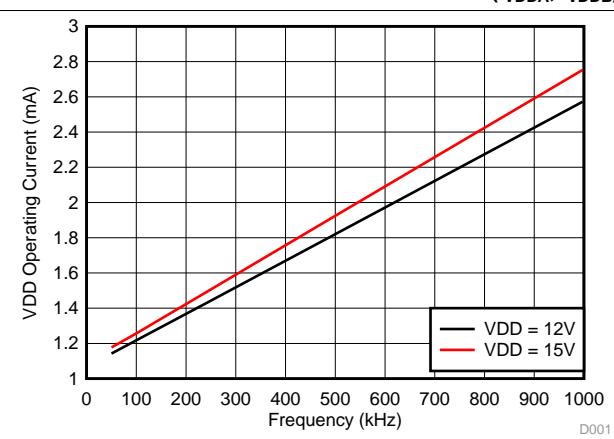


图 8. Per Channel Operating Current ($I_{VDDA/B}$) vs. Frequency

Typical Characteristics (接下页)

VDDA = VDBB = 12 V, VCCI = 3.3 V or 5.0 V, DT pin tied to VCCI, $T_A = 25^\circ\text{C}$, $C_L = 0 \text{ pF}$ unless otherwise noted.

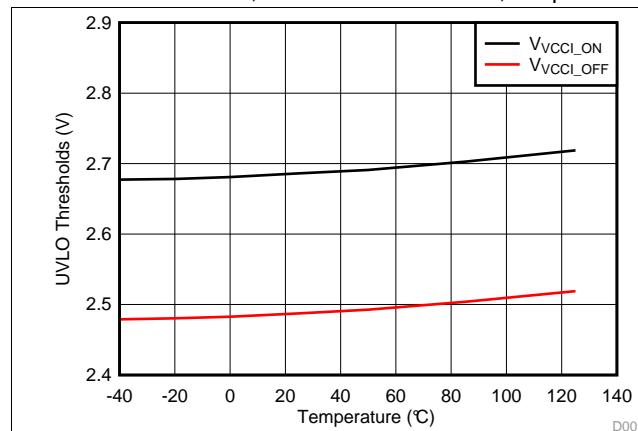


图 9. VCCI UVLO Threshold Voltage

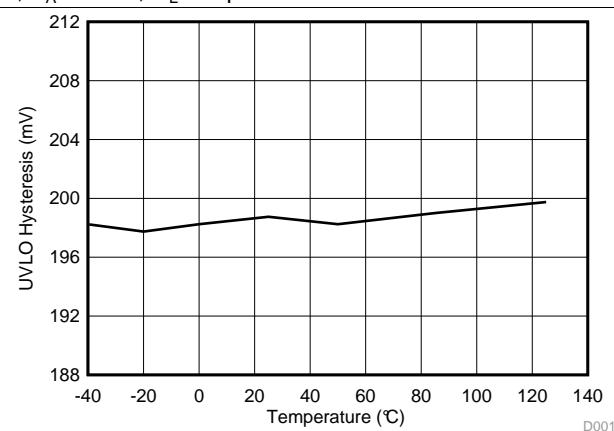


图 10. VCCI UVLO Threshold Hysteresis Voltage

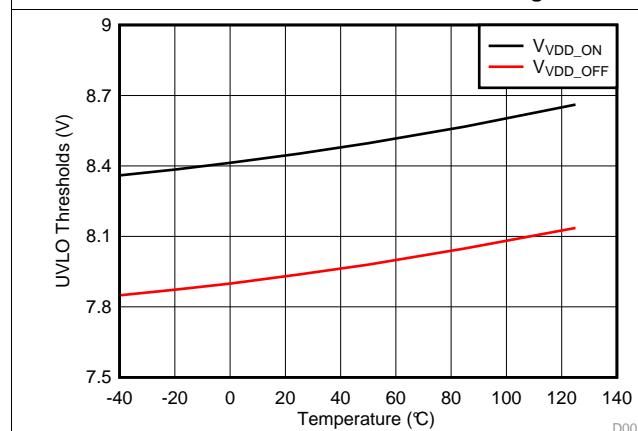


图 11. VDD UVLO Threshold Voltage

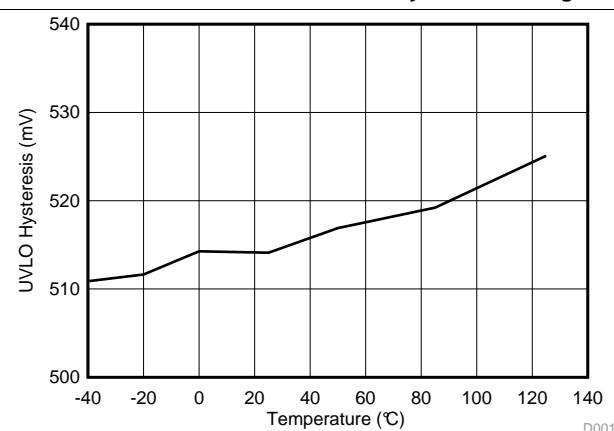


图 12. VDD UVLO Threshold Hysteresis Voltage

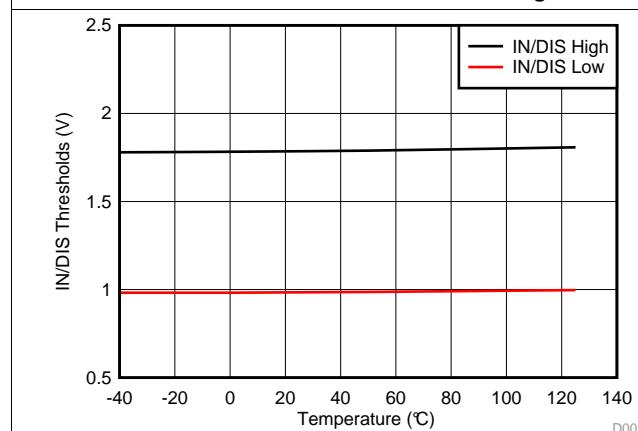


图 13. INA/INB/DIS High and Low Threshold Voltage

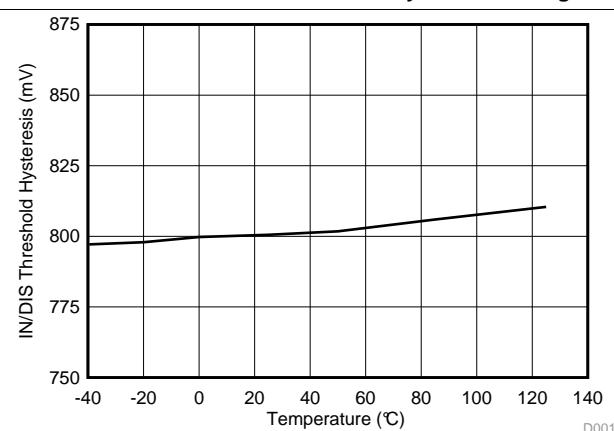


图 14. INA/INB/DIS High and Low Threshold Hysteresis

Typical Characteristics (接下页)

VDDA = VDBB = 12 V, VCCI = 3.3 V or 5.0 V, DT pin tied to VCCI, $T_A = 25^\circ\text{C}$, $C_L = 0 \text{ pF}$ unless otherwise noted.

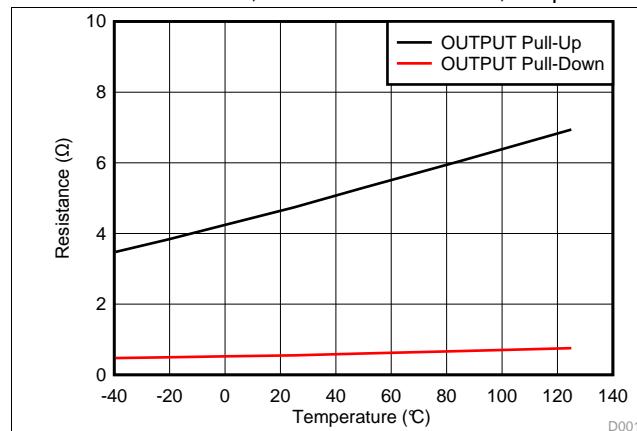


图 15. OUT Pullup and Pulldown Resistance

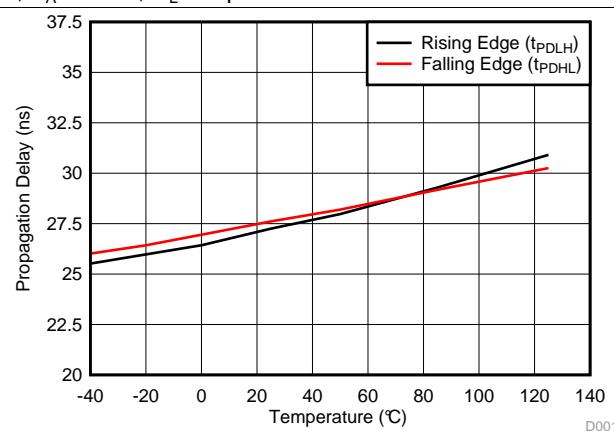


图 16. Propagation Delay, Rising and Falling Edge

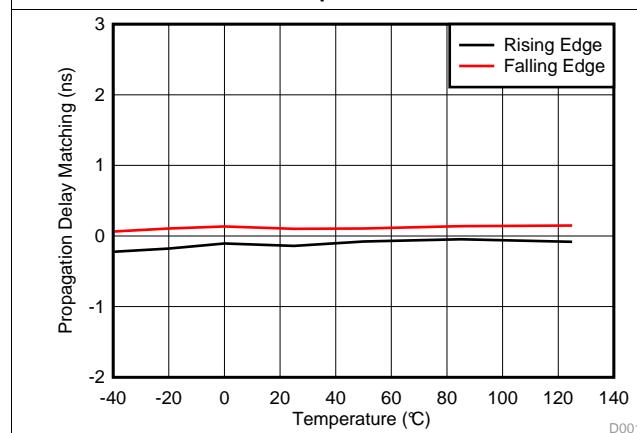
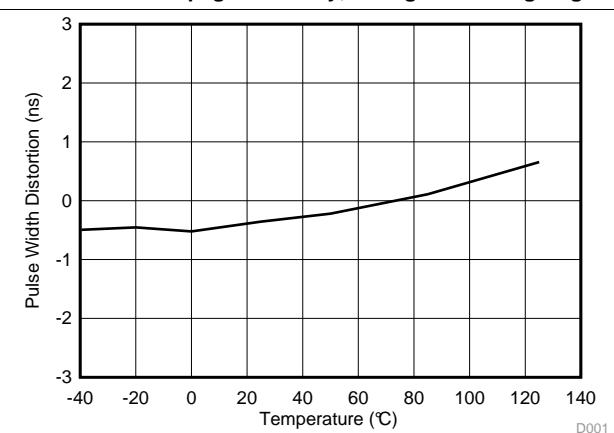
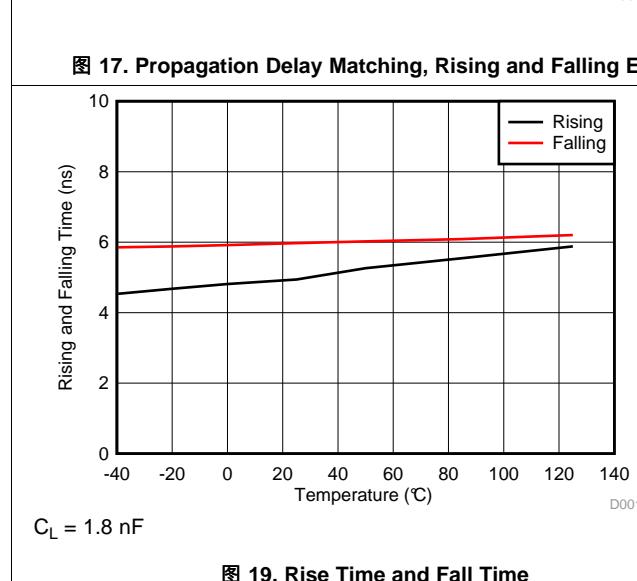




图 17. Propagation Delay Matching, Rising and Falling Edge

$t_{PDLH} - t_{PDHL}$

图 18. Pulse Width Distortion

$C_L = 1.8 \text{ nF}$

图 19. Rise Time and Fall Time

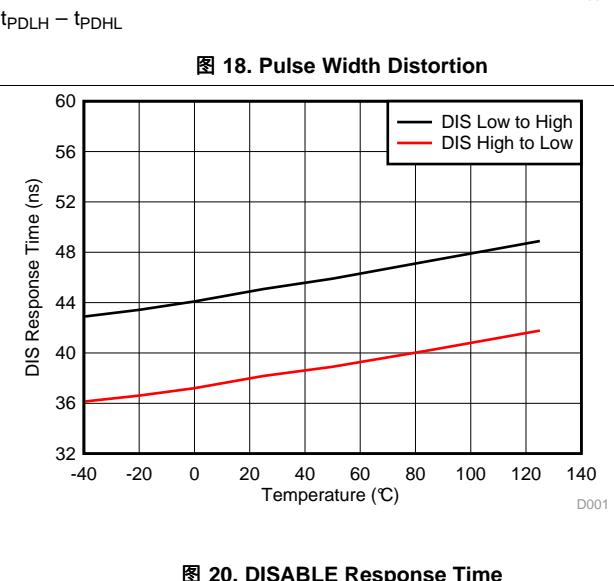
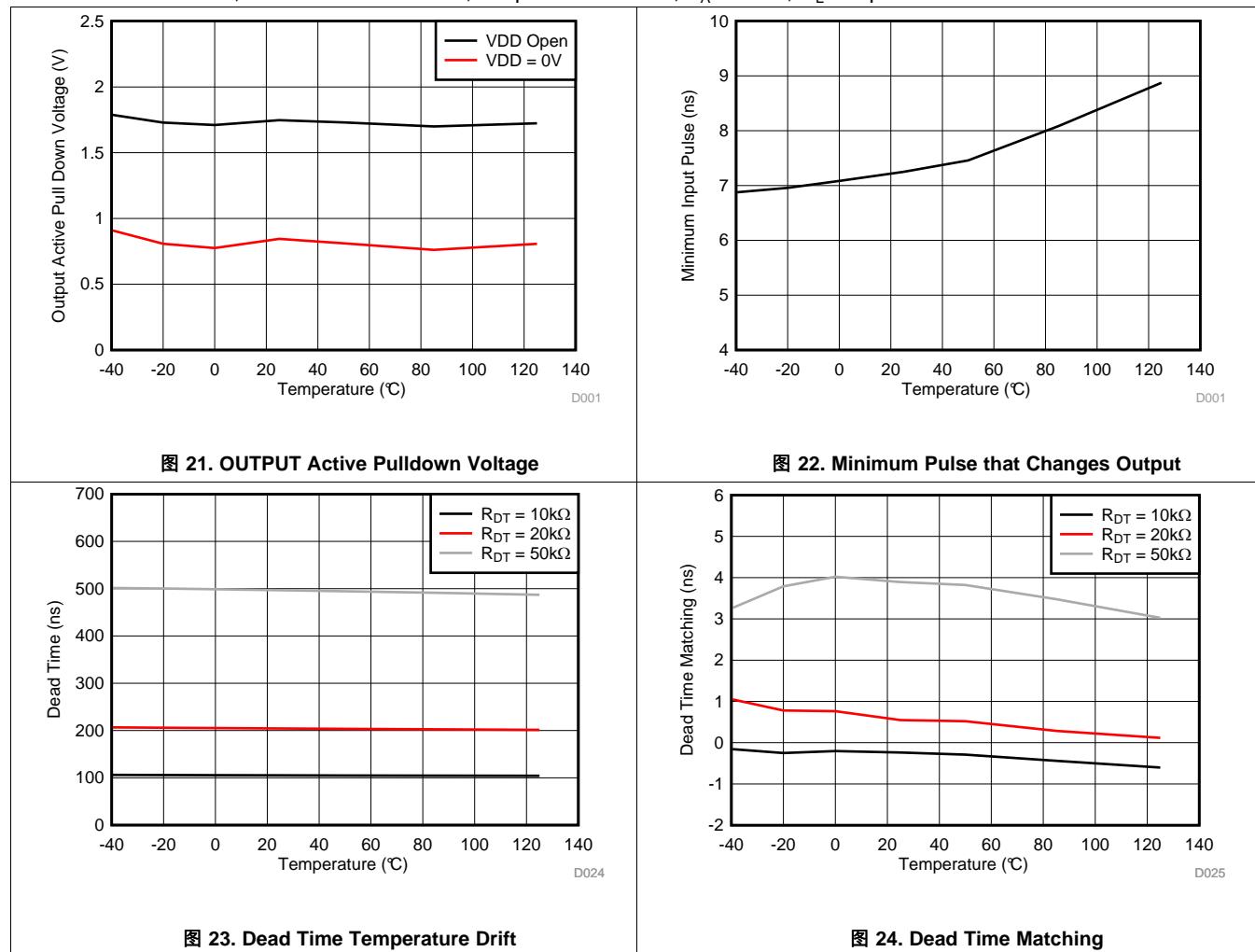
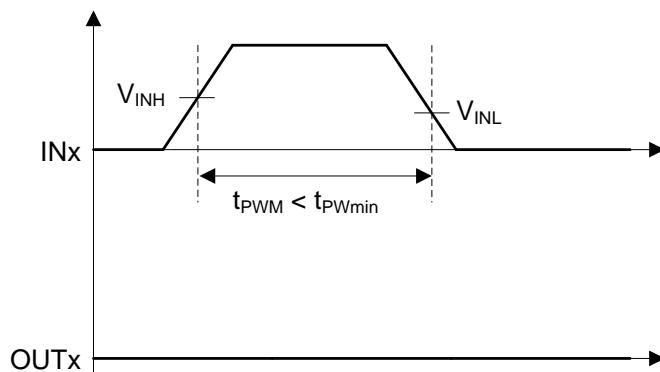
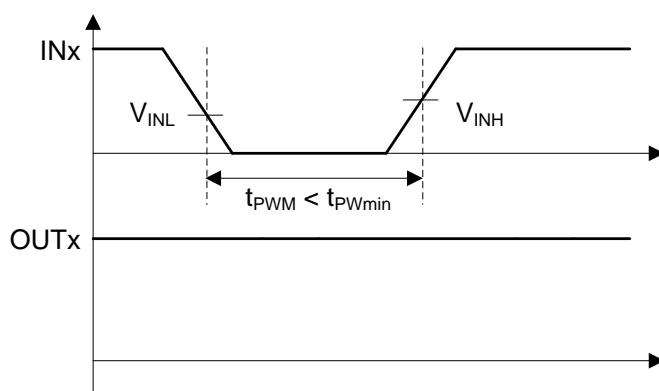



图 20. DISABLE Response Time

Typical Characteristics (接下页)


VDDA = VDBB = 12 V, VCCI = 3.3 V or 5.0 V, DT pin tied to VCCI, $T_A = 25^\circ\text{C}$, $C_L = 0 \text{ pF}$ unless otherwise noted.


7 Parameter Measurement Information

7.1 Minimum Pulses

A typical 5-ns deglitch filter removes small input pulses introduced by ground bounce or switching transients. An input pulse with duration longer than t_{PWmin} , typically 10 ns, must be asserted on INA or INB to guarantee an output state change at OUTA or OUTB. See [图 25](#) and [图 26](#) for detailed information of the operation of deglitch filter.

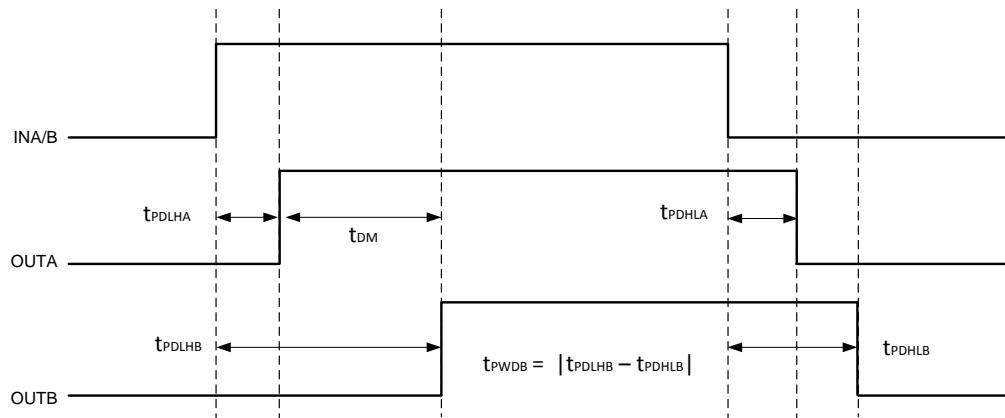

图 25. Deglitch Filter – Turn ON

图 26. Deglitch Filter – Turn OFF

7.2 Propagation Delay and Pulse Width Distortion

[图 27](#) shows calculation of pulse width distortion (t_{PWD}) and delay matching (t_{DM}) from the propagation delays of channels A and B. To measure delay matching, both inputs must be in phase, and the DT pin must be shorted to VCCI to enable output overlap.

图 27. Delay Matching and Pulse Width Distortion

7.3 Rising and Falling Time

[图 28](#) shows the criteria for measuring rising (t_{RISE}) and falling (t_{FALL}) times. For more information on how short rising and falling times are achieved see [Output Stage](#).

Rising and Falling Time (接下页)

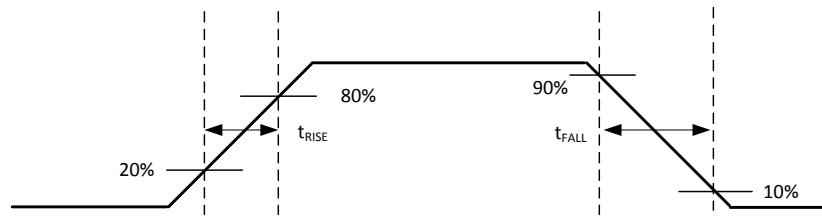


图 28. Rising and Falling Time Criteria

7.4 Input and Disable Response Time

图 29 shows the response time of the disable function. For more information, see [Disable Pin](#).

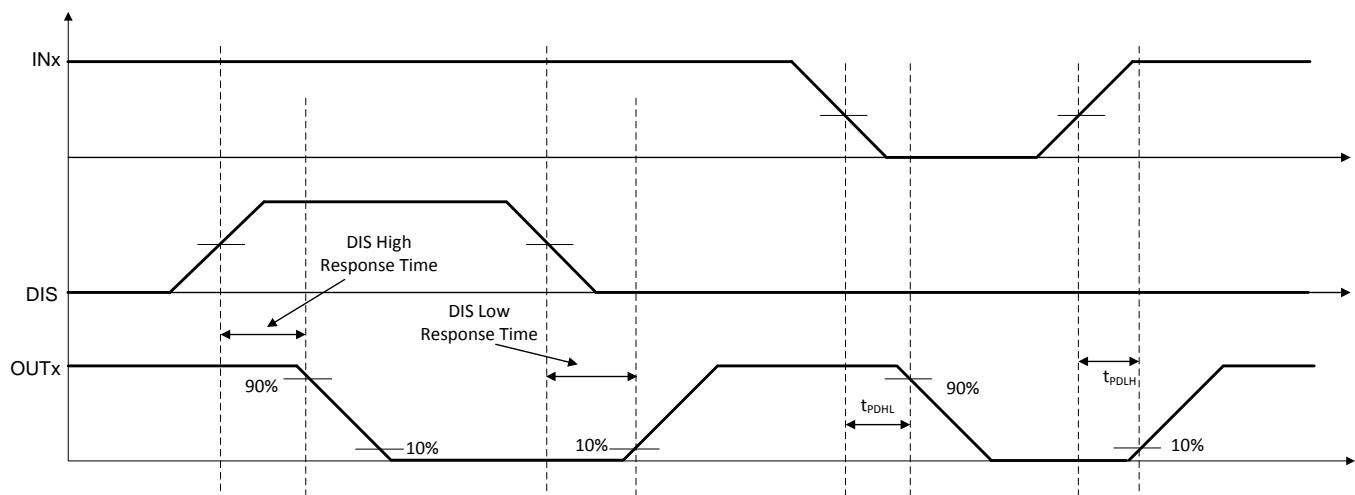


图 29. Disable Pin Timing

7.5 Programmable Dead Time

Tying DT to VCCI or leaving DT open allows the outputs to overlap. Placing a resistor (R_{DT}) between DT and GND adjusts dead time according to the equation: $DT \text{ (in ns)} = 10 \times R_{DT} \text{ (in k}\Omega\text{)}$. TI recommends bypassing this pin with a ceramic capacitor, 2.2 nF or greater, to achieve better noise immunity. Place this capacitor and R_{DT} close to the DT pin.. For more details on dead time, refer to [Programmable Dead Time \(DT\) Pin](#).

Programmable Dead Time (接下页)

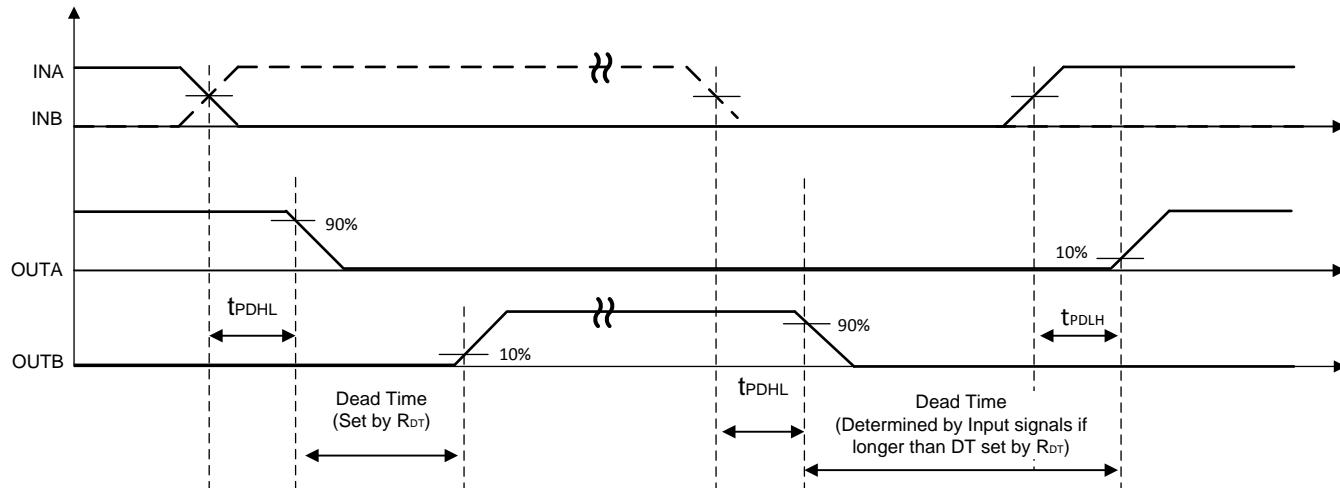


图 30. Dead Time Switching Parameters

7.6 Power-up UVLO Delay to OUTPUT

Whenever the supply voltage VCCI crosses from below the falling threshold V_{VCCI_OFF} to above the rising threshold V_{VCCI_ON} , and whenever the supply voltage VDDx crosses from below the falling threshold V_{VDDx_OFF} to above the rising threshold V_{VDDx_ON} , there is a delay before the outputs begin responding to the inputs. For VCCI UVLO this delay is defined as t_{VCCI+} to OUT, and is typically 40 μ s. For VDDx UVLO this delay is defined as t_{VDD+} to OUT, and is typically 22 μ s. TI recommends allowing some margin before driving input signals, to ensure the driver VCCI and VDD bias supplies are fully activated. 图 31 and 图 32 show the power-up UVLO delay timing diagram for VCCI and VDD.

Whenever the supply voltage VCCI crosses below the falling threshold V_{VCCI_OFF} , or VDDx crosses below the falling threshold V_{VDDx_OFF} , the outputs stop responding to the inputs and are held low within 1 μ s. This asymmetric delay is designed to ensure safe operation during VCCI or VDDx brownouts.

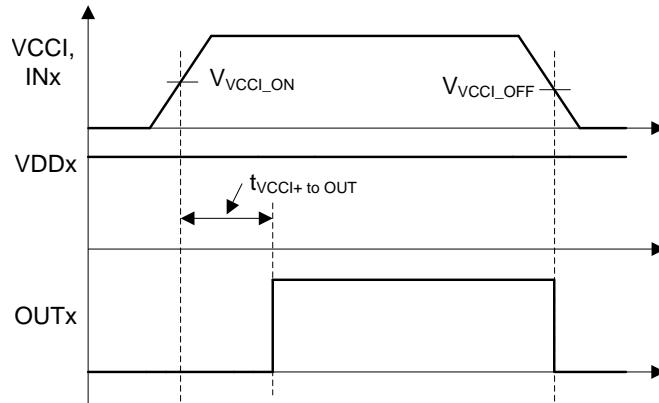


图 31. VCCI Power-up UVLO Delay

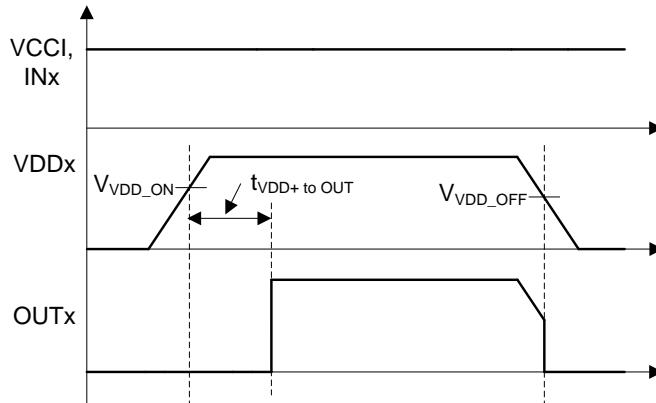
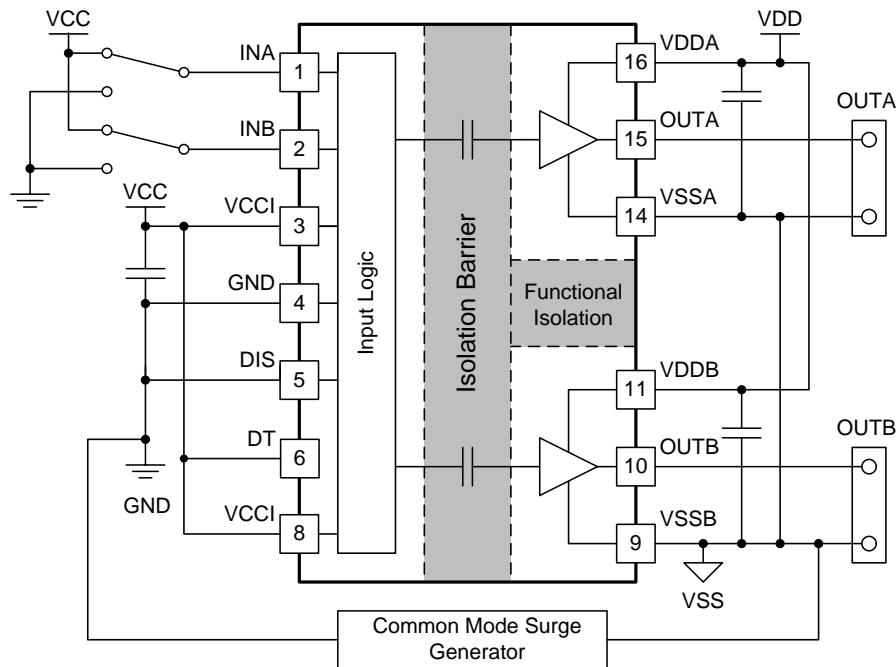



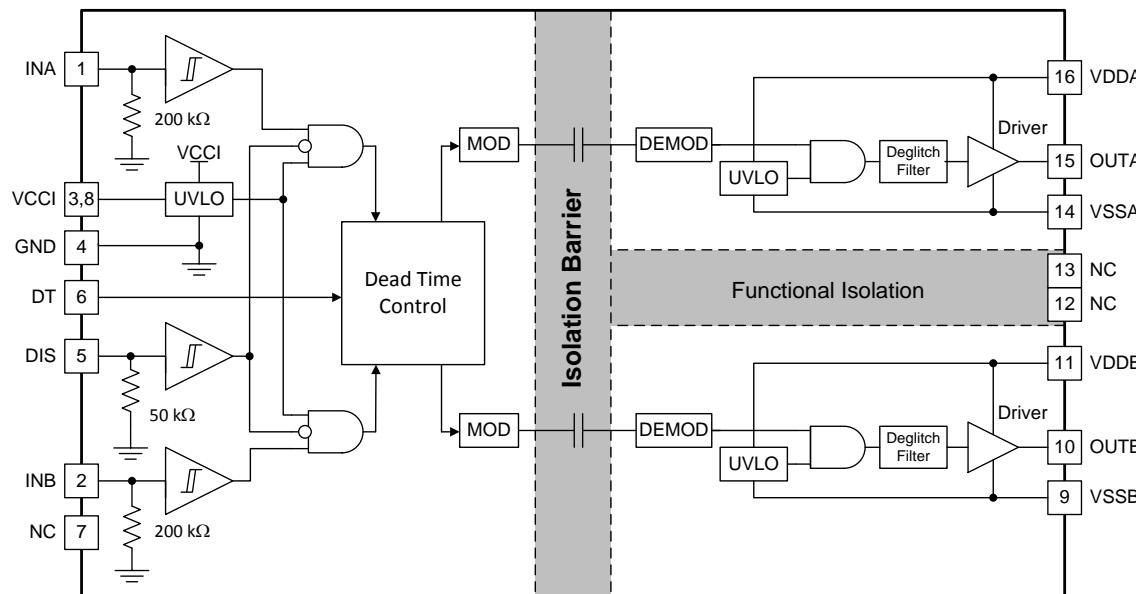
图 32. VDDA/B Power-up UVLO Delay

7.7 CMTI Testing

图 33 是一个简化了的 CMTI 测试配置图。

Copyright © 2018, Texas Instruments Incorporated

图 33. Simplified CMTI Testing Setup

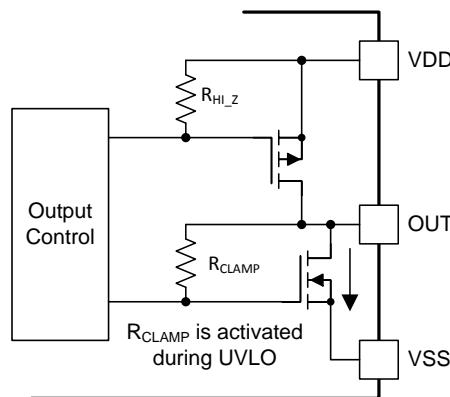

8 Detailed Description

8.1 Overview

In order to switch power transistors rapidly and reduce switching power losses, high-current gate drivers are often placed between the output of control devices and the gates of power transistors. There are several instances where controllers are not capable of delivering sufficient current to drive the gates of power transistors. This is especially the case with digital controllers, since the input signal from the digital controller is often a 3.3-V logic signal capable of only delivering a few mA.

The UCC21222 is a flexible dual gate driver which can be configured to fit a variety of power supply and motor drive topologies, as well as drive several types of transistors. The UCC21222 has many features that allow it to integrate well with control circuitry and protect the gates it drives such as: resistor-programmable dead time (DT) control, disable pin, and under voltage lock out (UVLO) for both input and output supplies. The UCC21222 also holds its outputs low when the inputs are left open or when the input pulse duration is too short. The driver inputs are CMOS and TTL compatible for interfacing with digital and analog power controllers alike. Each channel is controlled by its respective input pins (INA and INB), allowing full and independent control of each of the outputs.

8.2 Functional Block Diagram


Copyright © 2018, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 VDD, VCCI, and Under Voltage Lock Out (UVLO)

The UCC21222 has an internal under voltage lock out (UVLO) protection feature on each supply voltage between the VDD and VSS pins for both outputs. When the VDD bias voltage is lower than V_{VDD_ON} at device start-up or lower than V_{VDD_OFF} after start-up, the VDD UVLO feature holds the channel output low, regardless of the status of the input pins.

When the output stages of the driver are in an unbiased or UVLO condition, the driver outputs are held low by an active clamp circuit that limits the voltage rise on the driver outputs (illustrated in [图 34](#)). In this condition, the upper PMOS is resistively held off by R_{Hi-Z} while the lower NMOS gate is tied to the driver output through R_{CLAMP} . In this configuration, the output is effectively clamped to the threshold voltage of the lower NMOS device, typically around 1.5V, regardless of whether bias power is available.

图 34. Simplified Representation of Active Pull Down Feature

The VDD UVLO protection has a hysteresis feature (V_{VDD_HYS}). This hysteresis prevents chatter when there is ground noise from the power supply. This also allows the device to accept small drops in bias voltage, which commonly occurs when the device starts switching and operating current consumption increases suddenly.

The inputs of the UCC21222 also have an internal under voltage lock out (UVLO) protection feature. The inputs cannot affect the outputs unless the supply voltage VCCI exceeds V_{VCCI_ON} on start-up. The outputs are held low and cannot respond to inputs when the supply voltage VCCI drops below V_{VCCI_OFF} after start-up. Like the UVLO for VDD, there is hysteresis (V_{VCCI_HYS}) to ensure stable operation.

表 1. VCCI UVLO Feature Logic

CONDITION	INPUTS		OUTPUTS	
	INA	INB	OUTA	OUTB
VCCI-GND < V_{VCCI_ON} during device start up	H	L	L	L
VCCI-GND < V_{VCCI_ON} during device start up	L	H	L	L
VCCI-GND < V_{VCCI_ON} during device start up	H	H	L	L
VCCI-GND < V_{VCCI_ON} during device start up	L	L	L	L
VCCI-GND < V_{VCCI_OFF} after device start up	H	L	L	L
VCCI-GND < V_{VCCI_OFF} after device start up	L	H	L	L
VCCI-GND < V_{VCCI_OFF} after device start up	H	H	L	L
VCCI-GND < V_{VCCI_OFF} after device start up	L	L	L	L

表 2. VDD UVLO Feature Logic

CONDITION	INPUTS		OUTPUTS	
	INA	INB	OUTA	OUTB
VDD-VSS < V_{VDD_ON} during device start up	H	L	L	L
VDD-VSS < V_{VDD_ON} during device start up	L	H	L	L
VDD-VSS < V_{VDD_ON} during device start up	H	H	L	L
VDD-VSS < V_{VDD_ON} during device start up	L	L	L	L
VDD-VSS < V_{VDD_OFF} after device start up	H	L	L	L
VDD-VSS < V_{VDD_OFF} after device start up	L	H	L	L
VDD-VSS < V_{VDD_OFF} after device start up	H	H	L	L
VDD-VSS < V_{VDD_OFF} after device start up	L	L	L	L

8.3.2 Input and Output Logic Table

Assume VCCI, VDDA, VDDB are powered up (see [VDD, VCCI, and Under Voltage Lock Out \(UVLO\)](#) for more information on UVLO operation modes). 表 3 shows the operation with INA, INB and DIS and the corresponding output state.

表 3. INPUT/OUTPUT Logic Table⁽¹⁾

INPUTS		DIS	OUTPUTS		NOTE
INA	INB		OUTA	OUTB	
L	L	L or Left Open	L	L	If the dead time function is used, output transitions occur after the dead time expires. See Programmable Dead Time (DT) Pin .
L	H	L or Left Open	L	H	
H	L	L or Left Open	H	L	
H	H	L or Left Open	L	L	DT is programmed with R_{DT} .
H	H	L or Left Open	H	H	DT pin is left open or pulled to VCCI.
Left Open	Left Open	L or Left Open	L	L	
X	X	H	L	L	

(1) "X" means L, H or left open. For improved noise immunity, TI recommends connecting INA, INB, and DIS to GND, and DT to VCCI, when these pins are not used.

8.3.3 Input Stage

The input pins (INA, INB, and DIS) of the UCC21222 are based on a TTL and CMOS compatible input-threshold logic that is totally isolated from the VDD supply voltage of the output channels. The input pins are easy to drive with logic-level control signals (such as those from 3.3-V microcontrollers), since the UCC21222 has a typical high threshold (V_{INAH}) of 1.8 V and a typical low threshold of 1 V, which vary little with temperature (see [图 11](#) and [图 13](#)). A wide hysteresis (V_{INA_HYS}) of 0.8 V makes for good noise immunity and stable operation. If any of the inputs are ever left open, internal pull-down resistors force the pin low. These resistors are typically 200 k Ω for INA/B and 50 k Ω for DIS (see [Functional Block Diagram](#)). TI recommends grounding any unused inputs.

The amplitude of any signal applied to the inputs must *never* be at a voltage higher than VCCI.

8.3.4 Output Stage

The UCC21222 output stage features a pull-up structure which delivers the highest peak-source current when it is most needed: during the Miller plateau region of the power-switch turn on transition (when the power switch drain or collector voltage experiences dV/dt). The output stage pull-up structure features a P-channel MOSFET and an additional *pull-up* N-channel MOSFET in parallel. The function of the N-channel MOSFET is to provide a boost in the peak-sourcing current, enabling fast turn on. This is accomplished by briefly turning on the N-channel MOSFET during a narrow instant when the output is changing states from low to high. The on-resistance of this N-channel MOSFET (R_{NMOS}) is approximately $1.47\ \Omega$ when activated.

The R_{OH} parameter is a DC measurement and it is representative of the on-resistance of the P-channel device only. This is because the *pull-up* N-channel device is held in the off state in DC condition and is turned on only for a brief instant when the output is changing states from low to high. Therefore the effective resistance of the UCC21222 pull-up stage during this brief turn-on phase is much lower than what is represented by the R_{OH} parameter.

The pull-down structure of the UCC21222 is composed of an N-channel MOSFET. The R_{OL} parameter, which is also a DC measurement, is representative of the impedance of the pull-down state in the device. Both outputs of the UCC21222 are capable of delivering 4-A peak source and 6-A peak sink current pulses. The output voltage swings between VDD and VSS for rail-to-rail operation.

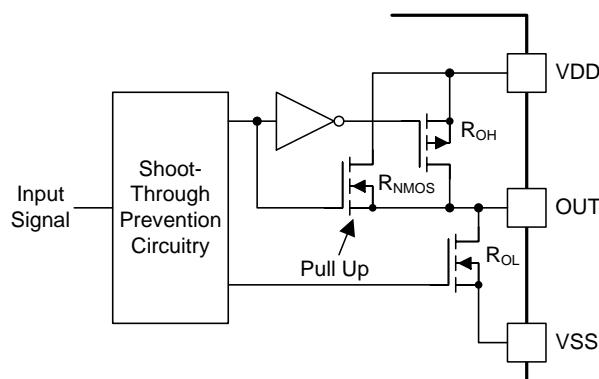


图 35. Output Stage

8.3.5 Diode Structure in the UCC21222

图 36 illustrates the multiple diodes involved in the ESD protection components. This provides a pictorial representation of the absolute maximum rating for the device.

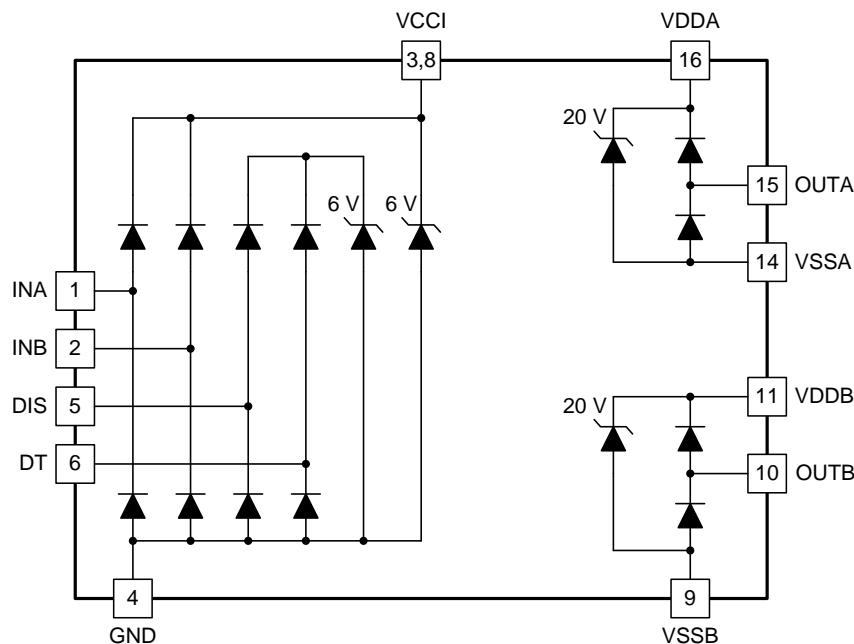


图 36. ESD Structure

8.4 Device Functional Modes

8.4.1 Disable Pin

When the DIS pin is set high, both outputs are shut down simultaneously. When the DIS pin is set low or left open, the UCC21222 operates normally. The DIS circuit logic structure is nearly identical compared to INA or INB, and the propagation delay is similar (see 图 20). The DIS pin is only functional (and necessary) when VCCI stays above the UVLO threshold. It is recommended to tie this pin to GND if the DIS pin is not used to achieve better noise immunity.

8.4.2 Programmable Dead Time (DT) Pin

The UCC21222 allows the user to adjust dead time (DT) in the following ways:

8.4.2.1 DT Pin Tied to VCCI or DT Pin Left Open

Outputs completely match inputs, so no minimum dead time is asserted. This allows the outputs to overlap. TI recommends connecting this pin directly to VCCI if it is not used to achieve better noise immunity.

8.4.2.2 Connecting a Programming Resistor between DT and GND Pins

Program t_{DT} by placing a resistor, R_{DT} , between the DT pin and GND. The appropriate R_{DT} value can be determined from:

$$t_{DT} \approx 10 \times R_{DT}$$

where

- t_{DT} is the programmed dead time, in nanoseconds.
- R_{DT} is the value of resistance between DT pin and GND, in kilo-ohms.

(1)

Device Functional Modes (接下页)

The steady state voltage at the DT pin is about 0.8 V. R_{DT} programs a small current at this pin, which sets the dead time. As the value of R_{DT} increases, the current sourced by the DT pin decreases. The DT pin current will be less than 10 μ A when $R_{DT} = 100$ k Ω . For larger values of R_{DT} , TI recommends placing R_{DT} and a ceramic capacitor, 2.2 nF or greater, as close to the DT pin as possible to achieve greater noise immunity and better dead time matching between both channels.

The falling edge of an input signal initiates the programmed dead time for the other signal. The programmed dead time is the minimum enforced duration in which both outputs are held low by the driver. The outputs may also be held low for a duration greater than the programmed dead time, if the INA and INB signals include a dead time duration greater than the programmed minimum. If both inputs are high simultaneously, both outputs will immediately be set low. This feature is used to prevent shoot-through in half-bridge applications, and it does not affect the programmed dead time setting for normal operation. Various driver dead time logic operating conditions are illustrated and explained in [图 37](#).

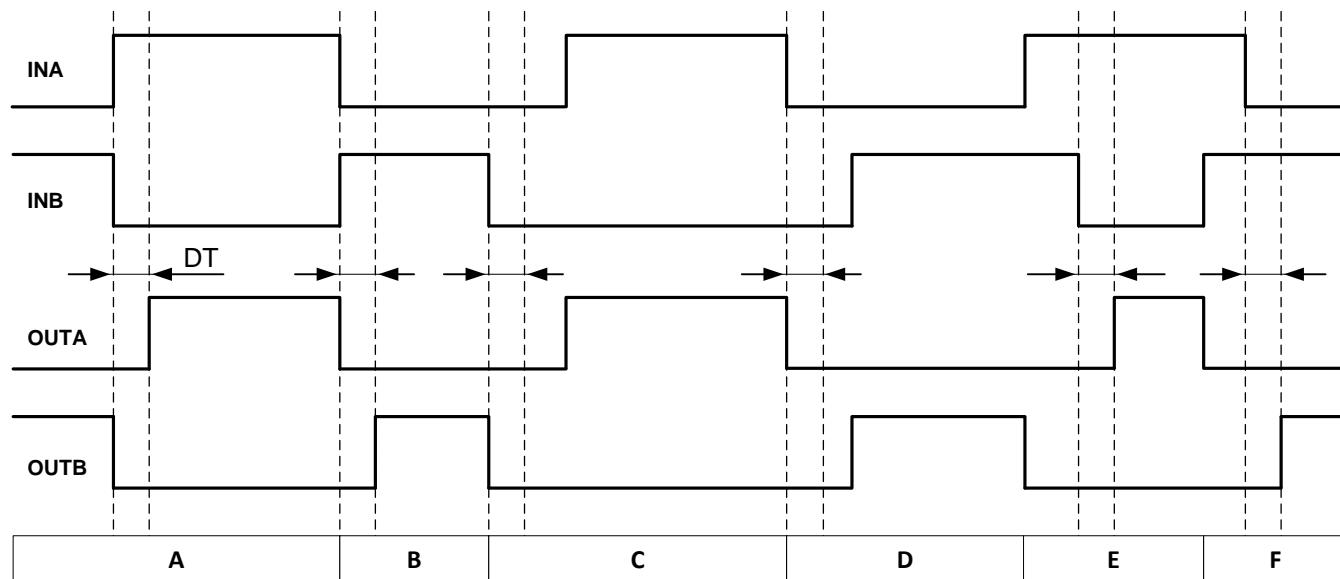


图 37. Input and Output Logic Relationship with Input Signals

Condition A: INB goes low, INA goes high. INB sets OUTB low immediately and assigns the programmed dead time to OUTA. OUTA is allowed to go high after the programmed dead time.

Condition B: INB goes high, INA goes low. Now INA sets OUTA low immediately and assigns the programmed dead time to OUTB. OUTB is allowed to go high after the programmed dead time.

Condition C: INB goes low, INA is still low. INB sets OUTB low immediately and assigns the programmed dead time for OUTA. In this case, the input signal dead time is longer than the programmed dead time. When INA goes high after the duration of the input signal dead time, it immediately sets OUTA high.

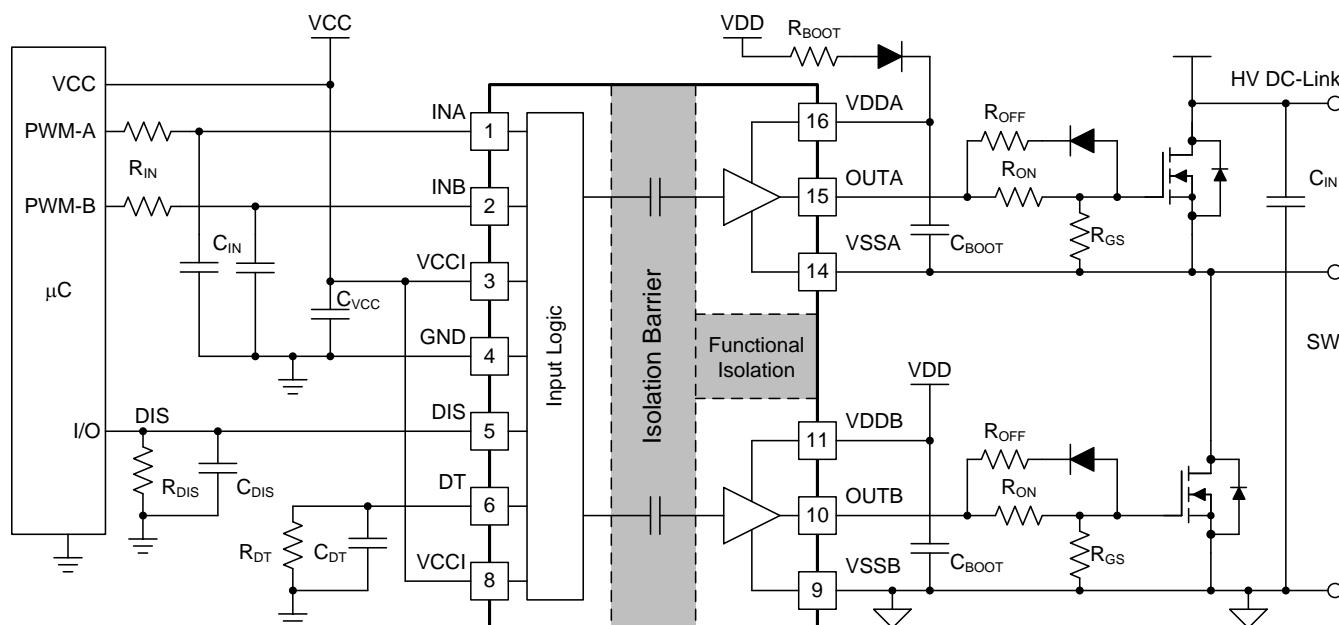
Condition D: INA goes low, INB is still low. INA sets OUTA low immediately and assigns the programmed dead time to OUTB. In this case, the input signal dead time is longer than the programmed dead time. When INB goes high after the duration of the input signal dead time, it immediately sets OUTB high.

Condition E: INA goes high, while INB and OUTB are still high. To avoid overshoot, OUTB is immediately pulled low. After some time OUTB goes low and assigns the programmed dead time to OUTA. OUTB is already low. After the programmed dead time, OUTA is allowed to go high.

Condition F: INB goes high, while INA and OUTA are still high. To avoid overshoot, OUTA is immediately pulled low. After some time OUTA goes low and assigns the programmed dead time to OUTB. OUTA is already low. After the programmed dead time, OUTB is allowed to go high.

9 Application and Implementation

注


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The UCC21222 effectively combines both isolation and buffer-drive functions. The flexible, universal capability of the UCC21222 (with up to 5.5-V VCCI and 18-V VDDA/VDBB) allows the device to be used as a low-side, high-side, high-side/low-side or half-bridge driver for MOSFETs, IGBTs or GaN transistor. With integrated components, advanced protection features (UVLO, dead time, and disable) and optimized switching performance, the UCC21222 enables designers to build smaller, more robust designs for enterprise, telecom, automotive, and industrial applications with a faster time to market.

9.2 Typical Application

The circuit in [图 38](#) shows a reference design with the UCC21222 driving a typical half-bridge configuration which could be used in several popular power converter topologies such as synchronous buck, synchronous boost, half-bridge/full bridge isolated topologies, and 3-phase motor drive applications.

Copyright © 2018, Texas Instruments Incorporated

图 38. Typical Application Schematic

Typical Application (接下页)

9.2.1 Design Requirements

表 4 lists reference design parameters for the example application: UCC21222 driving 650-V MOSFETs in a high side-low side configuration.

表 4. UCC21222 Design Requirements

PARAMETER	VALUE	UNITS
Power transistor	650-V, 150-mΩ R_{DS_ON} with 12-V V_{GS}	-
VCC	5.0	V
VDD	12	V
Input signal amplitude	3.3	V
Switching frequency (f_s)	100	kHz
Dead Time	200	ns
DC link voltage	400	V

9.2.2 Detailed Design Procedure

9.2.2.1 Custom Design With WEBENCH® Tools

[Click here](#) to create a custom design using the UCC21222 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

9.2.2.2 Designing INA/INB Input Filter

It is recommended that users avoid shaping the signals to the gate driver in an attempt to slow down (or delay) the signal at the output. However, a small input R_{IN} - C_{IN} filter can be used to filter out the ringing introduced by non-ideal layout or long PCB traces.

Such a filter should use an R_{IN} in the range of 0 Ω to 100 Ω and a C_{IN} between 10 pF and 100 pF. In the example, an $R_{IN} = 51 \Omega$ and a $C_{IN} = 33 \text{ pF}$ are selected, with a corner frequency of approximately 100 MHz.

When selecting these components, it is important to pay attention to the trade-off between good noise immunity and propagation delay.

9.2.2.3 Select Dead Time Resistor and Capacitor

From [公式 1](#), a 20-kΩ resistor is selected to set the dead time to 200 ns. A 2.2-nF capacitor is placed in parallel close to the DT pin to improve noise immunity.

9.2.2.4 Select External Bootstrap Diode and its Series Resistor

The bootstrap capacitor is charged by VDD through an external bootstrap diode every cycle when the low side transistor turns on. Charging the capacitor involves high-peak currents, and therefore transient power dissipation in the bootstrap diode may be significant. Conduction loss also depends on the diode's forward voltage drop. Both the diode conduction losses and reverse recovery losses contribute to the total losses in the gate driver circuit.

When selecting external bootstrap diodes, it is recommended that one chose high voltage, fast recovery diodes or SiC Schottky diodes with a low forward voltage drop and low junction capacitance in order to minimize the loss introduced by reverse recovery and related grounding noise bouncing. In the example, the DC-link voltage is 400 V_{DC}. The voltage rating of the bootstrap diode should be higher than the DC-link voltage with a good margin. Therefore, a 600-V ultrafast diode, MURA160T3G, is chosen in this example.

A bootstrap resistor, R_{BOOT}, is used to reduce the inrush current in D_{BOOT} and limit the ramp up slew rate of voltage of VDDA-VSSA during each switching cycle, especially when the VSSA(SW) pin has an excessive negative transient voltage. The recommended value for R_{BOOT} is between 1 Ω and 20 Ω depending on the diode used. In the example, a current limiting resistor of 2.2 Ω is selected to limit the inrush current of bootstrap diode. The estimated worst case peak current through D_{Boot} is,

$$I_{D\text{Boot}(\text{pk})} = \frac{V_{DD} - V_{BDF}}{R_{\text{Boot}}} = \frac{12V - 1.5V}{2.7\Omega} \approx 4A$$

where

- V_{BDF} is the estimated bootstrap diode forward voltage drop around 4 A. (2)

9.2.2.5 Gate Driver Output Resistor

The external gate driver resistors, R_{ON}/R_{OFF} , are used to:

1. Limit ringing caused by parasitic inductances/capacitances.
2. Limit ringing caused by high voltage/current switching dv/dt , di/dt , and body-diode reverse recovery.
3. Fine-tune gate drive strength, i.e. peak sink and source current to optimize the switching loss.
4. Reduce electromagnetic interference (EMI).

As mentioned in [Output Stage](#), the UCC21222 has a pull-up structure with a P-channel MOSFET and an additional *pull-up* N-channel MOSFET in parallel. The combined peak source current is 4 A. Therefore, the peak source current can be predicted with:

$$I_{OA+} = \min \left(4A, \frac{V_{DD} - V_{BDF}}{R_{NMOS} \parallel R_{OH} + R_{ON} + R_{GFET_Int}} \right) \quad (3)$$

$$I_{OB+} = \min \left(4A, \frac{V_{DD}}{R_{NMOS} \parallel R_{OH} + R_{ON} + R_{GFET_Int}} \right)$$

where

- R_{ON} : External turn-on resistance.
- R_{GFET_INT} : Power transistor internal gate resistance, found in the power transistor datasheet.
- I_{O+} = Peak source current – The minimum value between 4 A, the gate driver peak source current, and the calculated value based on the gate drive loop resistance. (4)

In this example:

$$I_{OA+} = \frac{V_{DD} - V_{BDF}}{R_{NMOS} \parallel R_{OH} + R_{ON} + R_{GFET_Int}} = \frac{12V - 0.8V}{1.47\Omega \parallel 5\Omega + 2.2\Omega + 1.5\Omega} \approx 2.3A \quad (5)$$

$$I_{OB+} = \frac{V_{DD}}{R_{NMOS} \parallel R_{OH} + R_{ON} + R_{GFET_Int}} = \frac{12V}{1.47\Omega \parallel 5\Omega + 2.2\Omega + 1.5\Omega} \approx 2.5A \quad (6)$$

Therefore, the high-side and low-side peak source current is 2.3 A and 2.5 A respectively. Similarly, the peak sink current can be calculated with:

$$I_{OA-} = \min \left(6A, \frac{V_{DD} - V_{BDF} - V_{GDF}}{R_{OL} + R_{OFF} \parallel R_{ON} + R_{GFET_Int}} \right) \quad (7)$$

$$I_{OB-} = \min \left(6A, \frac{V_{DD} - V_{GDF}}{R_{OL} + R_{OFF} \parallel R_{ON} + R_{GFET_Int}} \right)$$

where

- R_{OFF} : External turn-off resistance, $R_{OFF}=0$ in this example;
- V_{GDF} : The anti-parallel diode forward voltage drop which is in series with R_{OFF} . The diode in this example is an MSS1P4.
- I_{O-} : Peak sink current – the minimum value between 6 A, the gate driver peak sink current, and the calculated value based on the gate drive loop resistance. (8)

In this example,

$$I_{OA-} = \frac{V_{DD} - V_{BDF} - V_{GDF}}{R_{OL} + R_{OFF} \parallel R_{ON} + R_{GFET_Int}} = \frac{12V - 0.8V - 0.85V}{0.55\Omega + 0\Omega + 1.5\Omega} \approx 5.0A \quad (9)$$

$$I_{OB-} = \frac{V_{DD} - V_{GDF}}{R_{OL} + R_{OFF} \parallel R_{ON} + R_{GFET_Int}} = \frac{12V - 0.85V}{0.55\Omega + 0\Omega + 1.5\Omega} \approx 5.4A \quad (10)$$

Therefore, the high-side and low-side peak sink current is 5.0 A and 5.4A respectively.

Importantly, the estimated peak current is also influenced by PCB layout and load capacitance. Parasitic inductance in the gate driver loop can slow down the peak gate drive current and introduce overshoot and undershoot. Therefore, it is strongly recommended that the gate driver loop should be minimized. On the other hand, the peak source/sink current is dominated by loop parasitics when the load capacitance (C_{ISS}) of the power transistor is very small (typically less than 1 nF), because the rising and falling time is too small and close to the parasitic ringing period.

9.2.2.6 Estimating Gate Driver Power Loss

The total loss, P_G , in the gate driver subsystem includes the power losses of the UCC21222 (P_{GD}) and the power losses in the peripheral circuitry, such as the external gate drive resistor. Bootstrap diode loss is not included in P_G and not discussed in this section.

P_{GD} is the key power loss which determines the thermal safety-related limits of the UCC21222, and it can be estimated by calculating losses from several components.

The first component is the static power loss, P_{GDQ} , which includes quiescent power loss on the driver as well as driver self-power consumption when operating with a certain switching frequency. P_{GDQ} is measured on the bench with no load connected to OUTA and OUTB at a given V_{CCI}, V_{VDDA}/V_{VDB}, switching frequency and ambient temperature. [图 5](#) and [图 8](#) show the operating current consumption vs. operating frequency with no load. In this example, $V_{VCCI} = 5$ V and $V_{VDD} = 12$ V. The current on each power supply, with INA/INB switching from 0 V to 3.3 V at 100 kHz is measured to be $I_{VCCI} \approx 2.5$ mA, and $I_{VDDA} = I_{VDB} \approx 1.5$ mA. Therefore, the P_{GDQ} can be calculated with

$$P_{GDQ} = V_{VCCI} \times I_{VCCI} + V_{VDDA} \times I_{DDA} + V_{VDB} \times I_{DB} = 50mW \quad (11)$$

The second component is switching operation loss, P_{GDO} , with a given load capacitance which the driver charges and discharges the load during each switching cycle. Total dynamic loss due to load switching, P_{GSW} , can be estimated with

$$P_{GSW} = 2 \times V_{DD} \times Q_G \times f_{SW}$$

where

- Q_G is the gate charge of the power transistor. (12)

If a split rail is used to turn on and turn off, then VDD is going to be equal to difference between the positive rail to the negative rail.

So, for this example application:

$$P_{GSW} = 2 \times 12V \times 100nC \times 100kHz = 240mW \quad (13)$$

Q_G represents the total gate charge of the power transistor switching 480 V at 14 A provided by the datasheet, and is subject to change with different testing conditions. The UCC21222 gate driver loss on the output stage, P_{GDO} , is part of P_{GSW} . P_{GDO} will be equal to P_{GSW} if the external gate driver resistances are zero, and all the gate driver loss is dissipated inside the UCC21222. If there are external turn-on and turn-off resistances, the total loss will be distributed between the gate driver pull-up/down resistances and external gate resistances. Importantly, the pull-up/down resistance is a linear and fixed resistance if the source/sink current is not saturated to 4 A/6 A, however, it will be non-linear if the source/sink current is saturated. Therefore, P_{GDO} is different in these two scenarios.

Case 1 - Linear Pull-Up/Down Resistor:

$$P_{GDO} = \frac{P_{GSW}}{2} \times \left(\frac{R_{OH} \parallel R_{NMOS}}{R_{OH} \parallel R_{NMOS} + R_{ON} + R_{GFET_Int}} + \frac{R_{OL}}{R_{OL} + R_{OFF} \parallel R_{ON} + R_{GFET_Int}} \right) \quad (14)$$

In this design example, all the predicted source/sink currents are less than 4 A/6 A, therefore, the the UCC21222 gate driver loss can be estimated with:

$$P_{GDO} = \frac{240\text{mW}}{2} \times \left(\frac{5\Omega \parallel 1.47\Omega}{5\Omega \parallel 1.47\Omega + 2.2\Omega + 1.5\Omega} + \frac{0.55\Omega}{0.55\Omega + 0\Omega + 1.5\Omega} \right) \approx 60\text{mW} \quad (15)$$

Case 2 - Nonlinear Pull-Up/Down Resistor:

$$P_{GDO} = 2 \times f_{SW} \times \left[4A \times \int_0^{T_{R_Sys}} (V_{DD} - V_{OUTA/B}(t)) dt + 6A \times \int_0^{T_{F_Sys}} V_{OUTA/B}(t) dt \right]$$

where

- $V_{OUTA/B}(t)$ is the gate driver OUTA and OUTB pin voltage during the turn on and off transient, and it can be simplified that a constant current source (4 A at turn-on and 6 A at turn-off) is charging/discharging a load capacitor. Then, the $V_{OUTA/B}(t)$ waveform will be linear and the T_{R_Sys} and T_{F_Sys} can be easily predicted. (16)

For some scenarios, if only one of the pull-up or pull-down circuits is saturated and another one is not, the P_{GDO} will be a combination of Case 1 and Case 2, and the equations can be easily identified for the pull-up and pull-down based on the above discussion. Therefore, total gate driver loss dissipated in the gate driver UCC21222 P_{GD} , is:

$$P_{GD} = P_{GDQ} + P_{GDO} \quad (17)$$

which is equal to 127 mW in the design example.

9.2.2.7 Estimating Junction Temperature

The junction temperature of the UCC21222 can be estimated with:

$$T_J = T_C + \Psi_{JT} \times P_{GD}$$

where

- T_J is the junction temperature.
- T_C is the UCC21222 case-top temperature measured with a thermocouple or some other instrument.
- Ψ_{JT} is the junction-to-top characterization parameter from the [Thermal Information](#) table. (18)

Using the junction-to-top characterization parameter (Ψ_{JT}) instead of the junction-to-case thermal resistance ($R_{\Theta JC}$) can greatly improve the accuracy of the junction temperature estimation. The majority of the thermal energy of most ICs is released into the PCB through the package leads, whereas only a small percentage of the total energy is released through the top of the case (where thermocouple measurements are usually conducted). $R_{\Theta JC}$ can only be used effectively when most of the thermal energy is released through the case, such as with metal packages or when a heatsink is applied to an IC package. In all other cases, use of $R_{\Theta JC}$ will inaccurately

estimate the true junction temperature. Ψ_{JT} is experimentally derived by assuming that the amount of energy leaving through the top of the IC will be similar in both the testing environment and the application environment. As long as the recommended layout guidelines are observed, junction temperature estimates can be made accurately to within a few degrees Celsius. For more information, see the [Layout Guidelines](#) and [Semiconductor and IC Package Thermal Metrics application report](#).

9.2.2.8 Selecting VCCI, VDDA/B Capacitor

Bypass capacitors for VCCI, VDDA, and VDBB are essential for achieving reliable performance. It is recommended that one choose low ESR and low ESL surface-mount multi-layer ceramic capacitors (MLCC) with sufficient voltage ratings, temperature coefficients and capacitance tolerances. Importantly, DC bias on an MLCC will impact the actual capacitance value. For example, a 25-V, 1- μ F X7R capacitor is measured to be only 500 nF when a DC bias of 15 V_{DC} is applied.

9.2.2.8.1 Selecting a VCCI Capacitor

A bypass capacitor connected to VCCI supports the transient current needed for the primary logic and the total current consumption, which is only a few mA. Therefore, a 25-V MLCC with over 100 nF is recommended for this application. If the bias power supply output is a relatively long distance from the VCCI pin, a tantalum or electrolytic capacitor, with a value over 1 μ F, should be placed in parallel with the MLCC.

9.2.2.8.2 Selecting a VDDA (Bootstrap) Capacitor

A VDDA capacitor, also referred to as a *bootstrap capacitor* in bootstrap power supply configurations, allows for gate drive current transients up to 6 A, and needs to maintain a stable gate drive voltage for the power transistor.

The total charge needed per switching cycle can be estimated with

$$Q_{\text{Total}} = Q_G + \frac{I_{VDD} @ 100\text{kHz} (\text{No Load})}{f_{\text{SW}}} = 100\text{nC} + \frac{1.5\text{mA}}{100\text{kHz}} = 115\text{nC}$$

where

- Q_G : Gate charge of the power transistor.
- I_{VDD} : The channel self-current consumption with no load at 100kHz.
-

(19)

Therefore, the absolute minimum C_{Boot} requirement is:

$$C_{\text{Boot}} = \frac{Q_{\text{Total}}}{\Delta V_{\text{VDDA}}} = \frac{115\text{nC}}{0.5\text{V}} = 230\text{nF}$$

where

- ΔV_{VDDA} is the voltage ripple at VDDA, which is 0.5 V in this example.

(20)

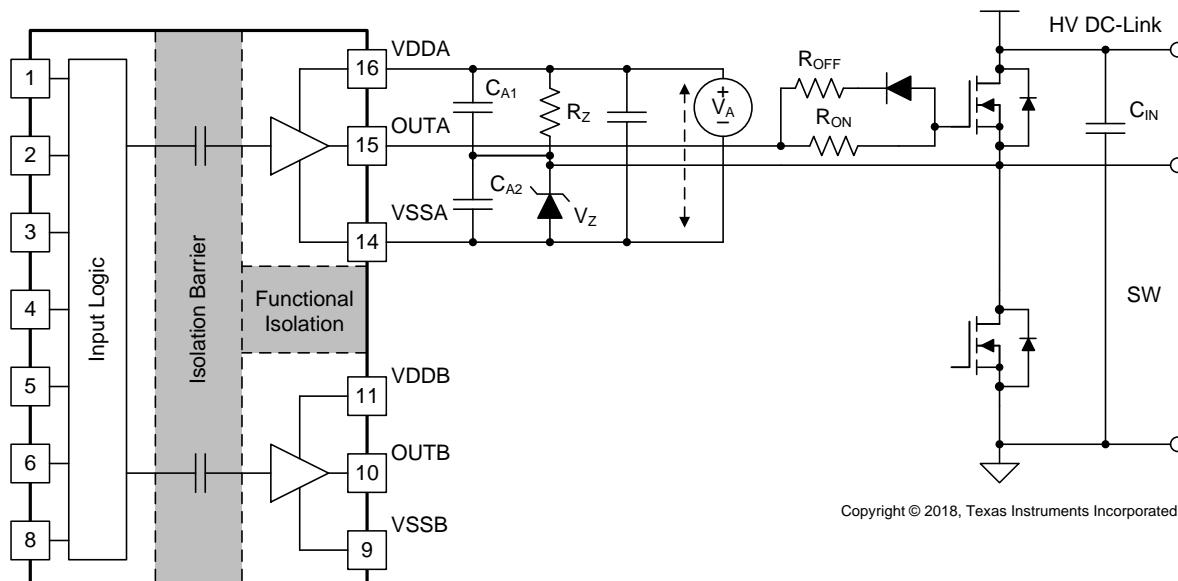
In practice, the value of C_{Boot} is greater than the calculated value. This allows for the capacitance shift caused by the DC bias voltage and for situations where the power stage would otherwise skip pulses due to load transients. Therefore, it is recommended to include a safety-related margin in the C_{Boot} value and place it as close to the VDD and VSS pins as possible. A 50-V 1- μ F capacitor is chosen in this example.

$$C_{\text{Boot}} = 1\text{ }\mu\text{F} \quad (21)$$

To further lower the AC impedance for a wide frequency range, it is recommended to have bypass capacitor with a low capacitance value, in this example a 100 nF, in parallel with C_{Boot} to optimize the transient performance.

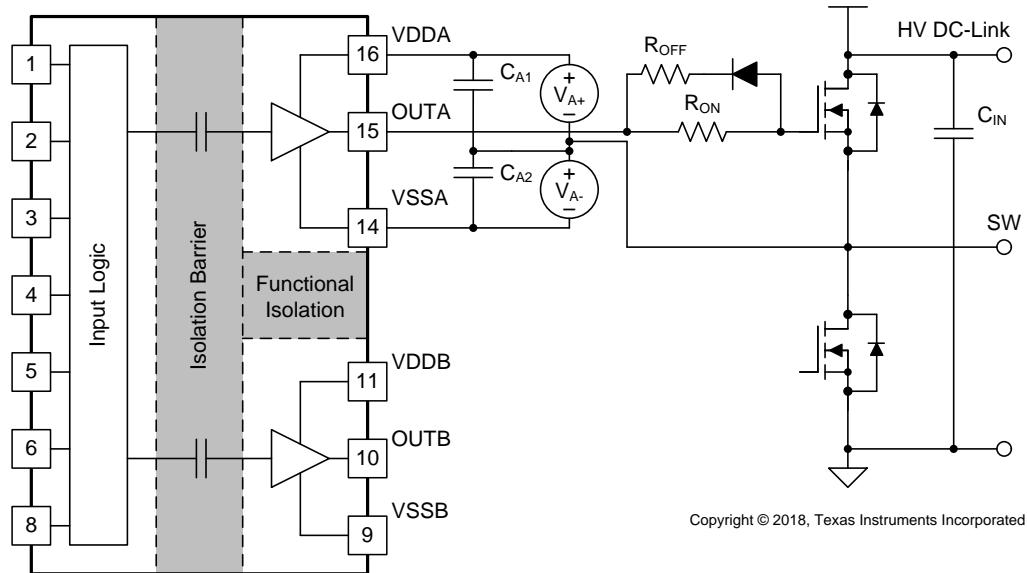
注

Too large C_{BOOT} is not good. C_{BOOT} may not be charged within the first few cycles and V_{BOOT} could stay below UVLO. As a result, the high-side FET does not follow input signal command. Also during initial C_{BOOT} charging cycles, the bootstrap diode has highest reverse recovery current and losses.


9.2.2.8.3 Select a VDDC Capacitor

Channel B has the same current requirements as Channel A. Therefore, a VDDC capacitor (Shown as C_{VDD} in [图 38](#)) is needed. In this example with a bootstrap configuration, the VDDC capacitor will also supply current for VDDA through the bootstrap diode. A 50-V, 10- μ F MLCC and a 50-V, 220-nF MLCC are chosen for C_{VDD} . If the bias power supply output is a relatively long distance from the VDDC pin, a tantalum or electrolytic capacitor with a value over 10 μ F, should be used in parallel with C_{VDD} .

9.2.2.9 Application Circuits with Output Stage Negative Bias


When parasitic inductances are introduced by non-ideal PCB layout and long package leads (e.g. TO-220 and TO-247 type packages), there could be ringing in the gate-source drive voltage of the power transistor during high di/dt and dv/dt switching. If the ringing is over the threshold voltage, there is the risk of unintended turn-on and even shoot-through. Applying a negative bias on the gate drive is a popular way to keep such ringing below the threshold. Below are a few examples of implementing negative gate drive bias.

[图 39](#) shows the first example with negative bias turn-off on the channel-A driver using a Zener diode on the isolated power supply output stage. The negative bias is set by the Zener diode voltage. If the isolated power supply, V_A , is equal to 17 V, the turn-off voltage will be -5.1 V and turn-on voltage will be 17 V $- 5.1$ V ≈ 12 V. The channel-B driver circuit is the same as channel-A, therefore, this configuration needs two power supplies for a half-bridge configuration, and there will be steady state power consumption from R_Z .

图 39. Negative Bias with Zener Diode on Iso-Bias Power Supply Output

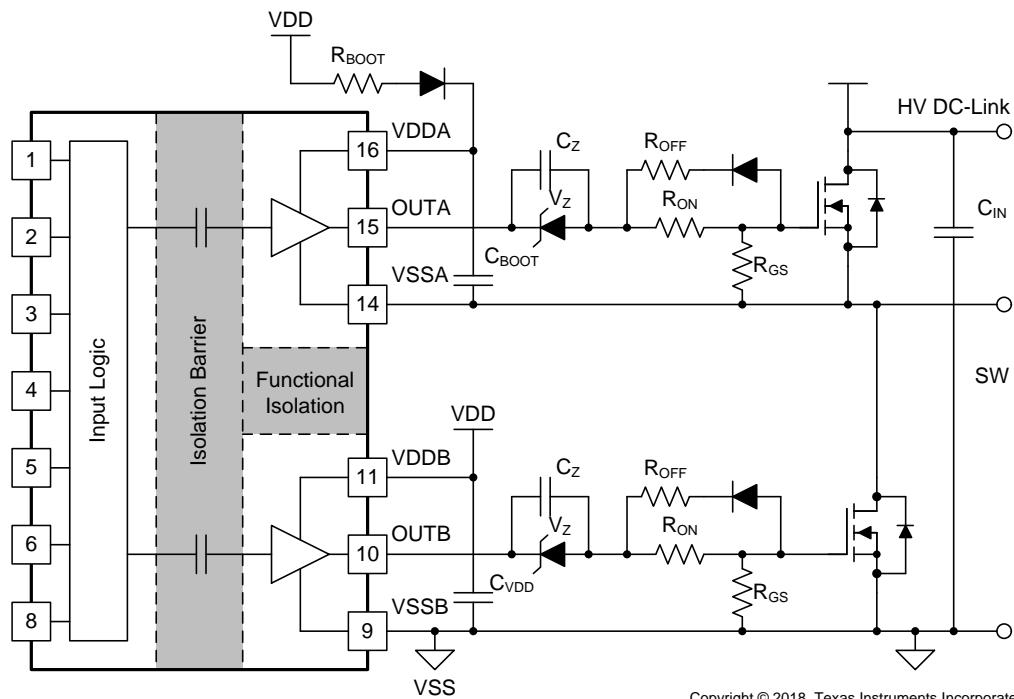

图 40 shows another example which uses two supplies (or single-input-double-output power supply). Power supply V_{A+} determines the positive drive output voltage and V_{A-} determines the negative turn-off voltage. The configuration for channel B is the same as channel A. This solution requires more power supplies than the first example, however, it provides more flexibility when setting the positive and negative rail voltages.

图 40. Negative Bias with Two Iso-Bias Power Supplies

The last example, shown in [图 41](#), is a single power supply configuration and generates negative bias through a Zener diode in the gate drive loop. The benefit of this solution is that it only uses one power supply and the bootstrap power supply can be used for the high side drive. This design requires the least cost and design effort among the three solutions. However, this solution has limitations:

1. The negative gate drive bias is not only determined by the Zener diode, but also by the duty cycle, which means the negative bias voltage will change when the duty cycle changes. Therefore, converters with a fixed duty cycle (~50%) such as variable frequency resonant convertors or phase shift convertors which favor this solution.
2. The high side VDDA-VSSA must maintain enough voltage to stay in the recommended power supply range, which means the low side switch must turn-on or have free-wheeling current on the body (or anti-parallel) diode for a certain period during each switching cycle to refresh the bootstrap capacitor. Therefore, a 100% duty cycle for the high side is not possible unless there is a dedicated power supply for the high side, like in the other two example circuits.

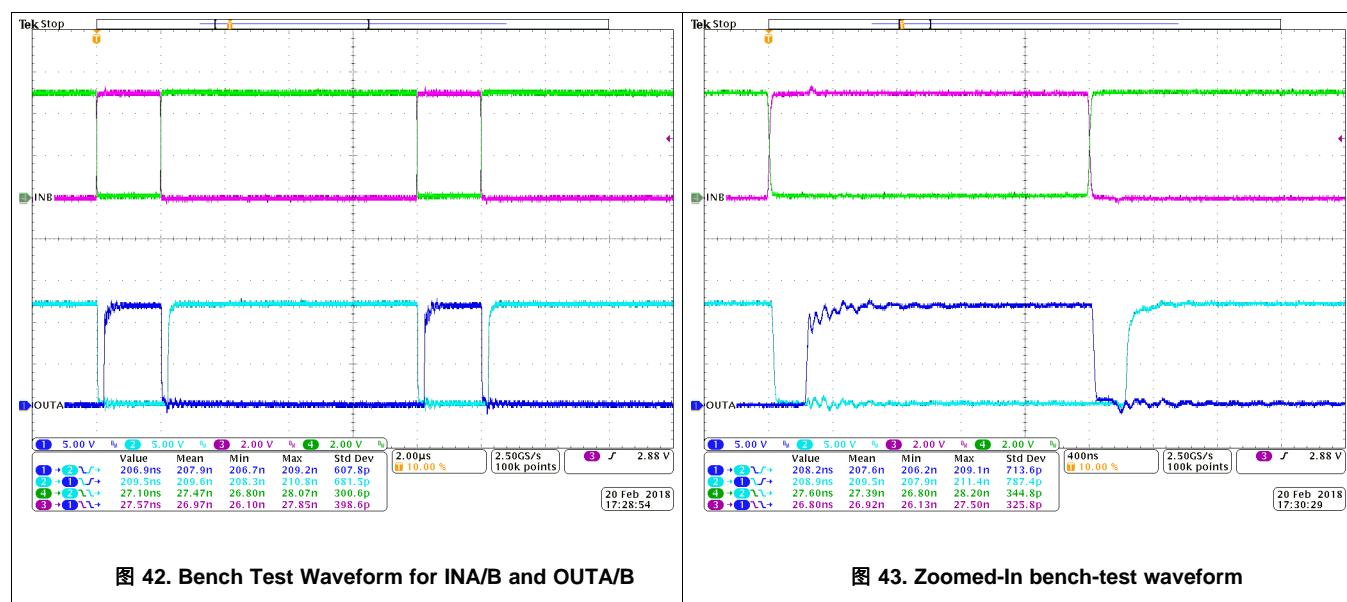
Copyright © 2018, Texas Instruments Incorporated

图 41. Negative Bias with Single Power Supply and Zener Diode in Gate Drive Path

9.2.3 Application Curves

图 42 和 图 43 显示了设计示例的台架测试波形，如 图 38 所示，在以下条件下：VCC = 5.0 V, VDD = 12 V, f_{SW} = 100 kHz, V_{DC-Link} = 400 V。

Channel 1 (Blue): Gate-source signal on the high side power transistor.


Channel 2 (Cyan): Gate-source signal on the low side power transistor.

Channel 3 (Pink): INA pin signal.

Channel 4 (Green): INB pin signal.

在 图 42 中，INA 和 INB 以 3.3-V, 20%/80% 的占空比发送互补信号。功率晶体管的驱动信号具有 200-ns 死区时间，且 DC-Link 上有 400V 高电压，如 图 42 测量部分所示。请注意，由于存在高电压，需要较低带宽的差分探头，这限制了可实现的测量精度。

图 43 显示了图 42 中波形的放大版本，包含传播延迟和死区时间的测量。重要的是，输出波形在功率晶体管的栅极和源极之间测量，而不是直接从驱动器 OUTA 和 OUTB 引脚测量。

10 Power Supply Recommendations

The recommended input supply voltage (VCCI) for the UCC21222 is between 3 V and 5.5 V. The output bias supply voltage (VDDA/VDDB) ranges from 9.2 V to 18 V. The lower end of this bias supply range is governed by the internal under voltage lockout (UVLO) protection feature of each device. VDD and VCCI must not fall below their respective UVLO thresholds during normal operation. (For more information on UVLO see [VDD, VCCI, and Under Voltage Lock Out \(UVLO\)](#)). The upper end of the VDDA/VDDB range depends on the maximum gate voltage of the power device being driven by the UCC21222. The recommended maximum VDDA/VDDB is 18 V.

A local bypass capacitor should be placed between the VDD and VSS pins, to supply current when the output goes high into a capacitive load. This capacitor should be positioned as close to the device as possible to minimize parasitic impedance. A low ESR, ceramic surface mount capacitor is recommended. If the bypass capacitor impedance is too large, resistive and inductive parasitics could cause the supply voltage seen at the IC pins to dip below the UVLO threshold unexpectedly. To filter high frequency noise between VDD and VSS, it can be helpful to place a second capacitor with lower impedance at higher frequency. As an example, the primary bypass capacitor could be 1 μ F, with a secondary high frequency bypass capacitor of 100 pF.

Similarly, a bypass capacitor should also be placed between the VCCI and GND pins. Given the small amount of current drawn by the logic circuitry within the input side of the UCC21222, this bypass capacitor has a minimum recommended value of 100 nF.

11 Layout

11.1 Layout Guidelines

Consider these PCB layout guidelines for in order to achieve optimum performance for the UCC21222.

11.1.1 Component Placement Considerations

- Low-ESR and low-ESL capacitors must be connected close to the device between the VCCI and GND pins and between the VDD and VSS pins to support high peak currents when turning on the external power transistor.
- To avoid large negative transients on the switch node VSSA (HS) pin in bridge configurations, the parasitic inductances between the source of the top transistor and the source of the bottom transistor must be minimized.
- To improve noise immunity when driving the DIS pin from a distant microcontroller, TI recommends adding a small bypass capacitor, $\geq 1000 \text{ pF}$, between the DIS pin and GND.
- If the dead time feature is used, TI recommends placing the programming resistor R_{DT} and capacitor close to the DT pin of the UCC21222 to prevent noise from unintentionally coupling to the internal dead time circuit. The capacitor should be $\geq 2.2 \text{ nF}$.

11.1.2 Grounding Considerations

- It is essential to confine the high peak currents that charge and discharge the transistor gates to a minimal physical area. This will decrease the loop inductance and minimize noise on the gate terminals of the transistors. The gate driver must be placed as close as possible to the transistors.
- Pay attention to high current path that includes the bootstrap capacitor, bootstrap diode, local VSSB-referenced bypass capacitor, and the low-side transistor body/anti-parallel diode. The bootstrap capacitor is recharged on a cycle-by-cycle basis through the bootstrap diode by the VDD bypass capacitor. This recharging occurs in a short time interval and involves a high peak current. Minimizing this loop length and area on the circuit board is important for ensuring reliable operation.

11.1.3 High-Voltage Considerations

- To ensure isolation performance between the primary and secondary side, avoid placing any PCB traces or copper below the driver device. A PCB cutout is recommended in order to prevent contamination that may compromise the isolation performance.
- For half-bridge or high-side/low-side configurations, maximize the clearance distance of the PCB layout between the high and low-side PCB traces.

11.1.4 Thermal Considerations

- A large amount of power may be dissipated by the UCC21222 if the driving voltage is high, the load is heavy, or the switching frequency is high (refer to [Estimating Gate Driver Power Loss](#) for more details). Proper PCB layout can help dissipate heat from the device to the PCB and minimize junction to board thermal impedance (θ_{JB}).
- Increasing the PCB copper connecting to VDDA, VDDB, VSSA and VSSB pins is recommended, with priority on maximizing the connection to VSSA and VSSB (see [图 45](#) and [图 46](#)). However, high voltage PCB considerations mentioned above must be maintained.
- If there are multiple layers in the system, it is also recommended to connect the VDDA, VDDB, VSSA and VSSB pins to internal ground or power planes through multiple vias of adequate size. Ensure that no traces or copper from different high-voltage planes overlap.

11.2 Layout Example

图 44 显示了一个 2 层 PCB 布局示例，展示了信号和关键组件的标注。

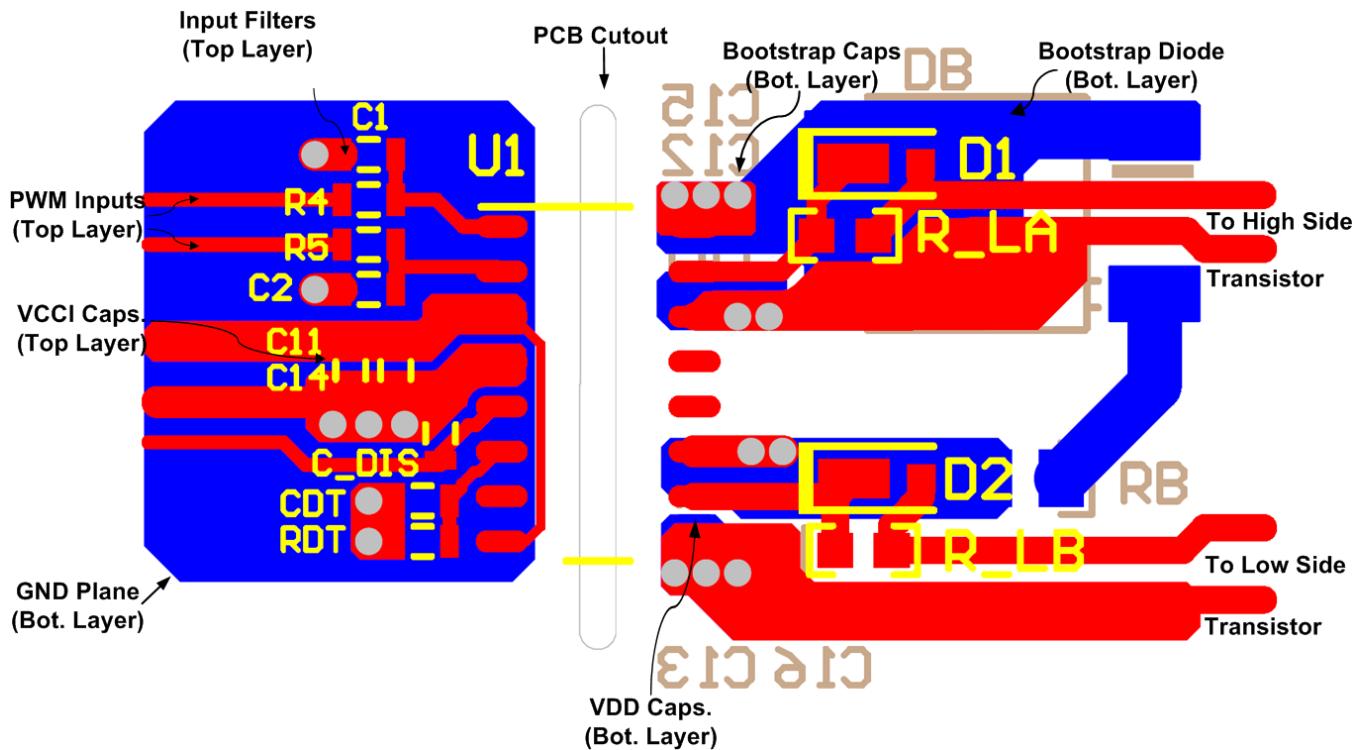


图 44. Layout Example

图 45 和 图 46 显示了顶层和底层的走线和铜箔。

注

There are no PCB traces or copper between the primary and secondary side, which ensures isolation performance.

PCB 走线在输出阶段的高侧和低侧驱动器之间增加，以最大化高电压操作下的爬电距离，并将高侧驱动器与低侧驱动器之间的寄生电容耦合引起的高 dv/dt 降至最低。

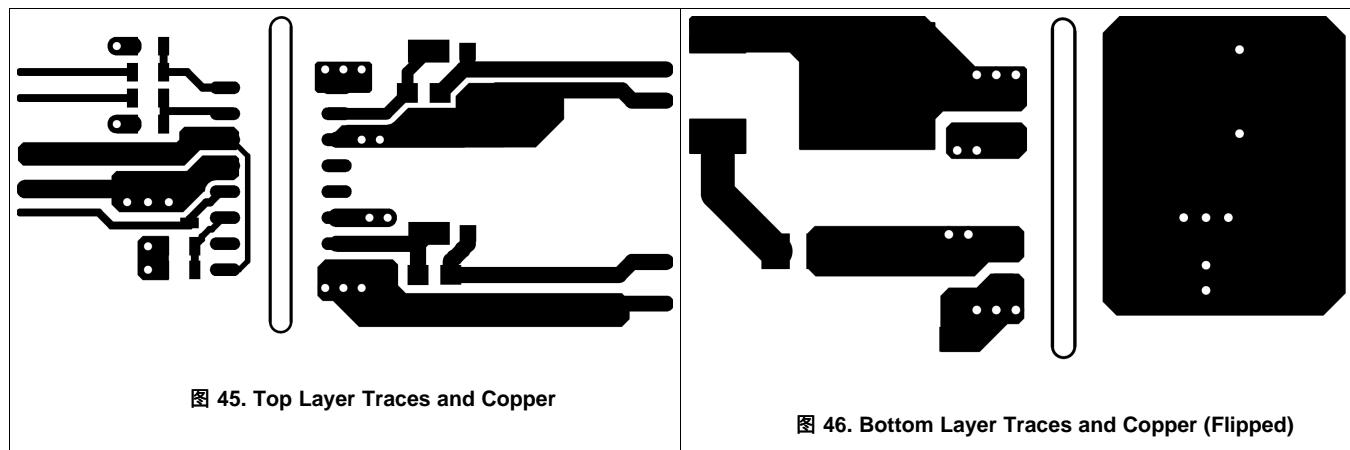


图 45. Top Layer Traces and Copper

图 46. Bottom Layer Traces and Copper (Flipped)

Layout Example (接下页)

图 47 和 图 48 是 3-D 布局图片，包含顶层和底层视图。

注

The location of the PCB cutout between the primary side and secondary sides, which ensures isolation performance.

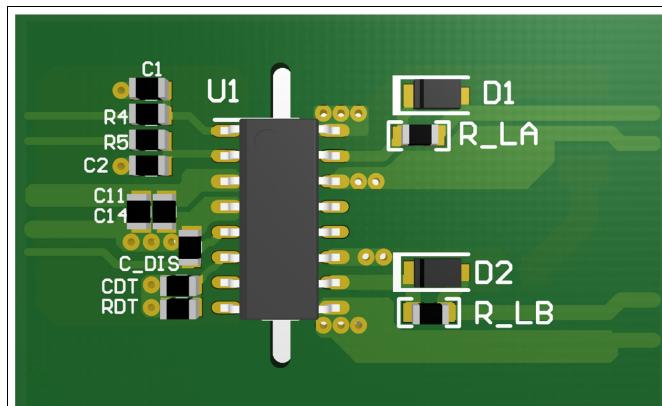


图 47. 3-D PCB Top View

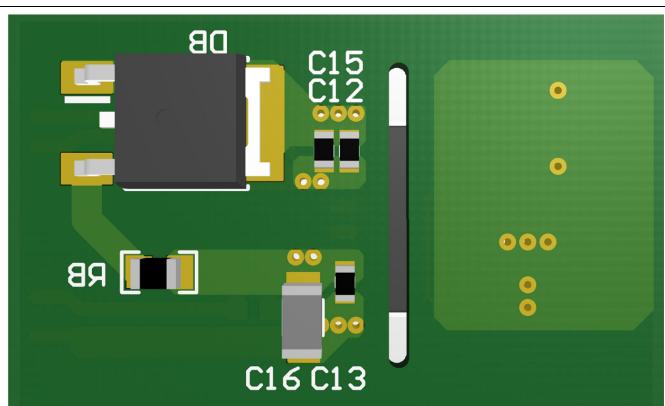


图 48. 3-D PCB Bottom View

12 器件和文档支持

12.1 器件支持

12.1.1 开发支持

12.1.1.1 使用 WEBENCH® 工具创建定制设计

请单击此处，使用 UCC21222 器件并借助 WEBENCH® 电源设计器创建定制设计方案。

1. 首先输入输入电压 (V_{IN})、输出电压 (V_{OUT}) 和输出电流 (I_{OUT}) 要求。
2. 使用优化器拨盘优化该设计的关键参数，如效率、尺寸和成本。
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。

WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。

在多数情况下，可执行以下操作：

- 运行电气仿真，观察重要波形以及电路性能
- 运行热性能仿真，了解电路板热性能
- 将定制原理图和布局方案以常用 CAD 格式导出
- 打印设计方案的 PDF 报告并与同事共享

有关 WEBENCH 工具的详细信息，请访问 www.ti.com.cn/WEBENCH。

12.2 文档支持

12.2.1 相关文档

请参阅如下相关文档：

- [隔离相关术语](#)

12.3 相关链接

下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件，以及申请样片或购买产品的快速链接。

表 5. 相关链接

器件	产品文件夹	样片与购买	技术文档	工具与软件	支持和社区
UCC21222	请单击此处				

12.4 接收文档更新通知

要接收文档更新通知，请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

12.5 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的 [《使用条款》](#)。

[TI E2E™ 在线社区](#) **TI 的工程师对工程师 (E2E) 社区**。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中，您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

[设计支持](#) **TI 参考设计支持** 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

12.6 商标

E2E is a trademark of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

12.7 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损伤。

12.8 术语表

[SLYZ022 — TI 术语表](#)。

这份术语表列出并解释术语、缩写和定义。

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更，恕不另行通知，且不会对此文档进行修订。如需获取此数据表的浏览器版本，请查阅左侧的导航栏。

重要声明和免责声明

TI 均以“原样”提供技术性及可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证其中不含任何瑕疵，且不做任何明示或暗示的担保，包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任：(1) 针对您的应用选择合适的TI 产品；(2) 设计、验证并测试您的应用；(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更，恕不另行通知。TI 对您使用所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源，也不提供其它TI 或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等，TI 对此概不负责，并且您须赔偿由此对TI 及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (<http://www.ti.com.cn/zh-cn/legal/termsofsale.html>) 以及ti.com.cn 上或随附TI 产品提供的其他可适用条款的约束。TI 提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122
Copyright © 2019 德州仪器半导体技术（上海）有限公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
UCC21222D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	21222	Samples
UCC21222DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	21222	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

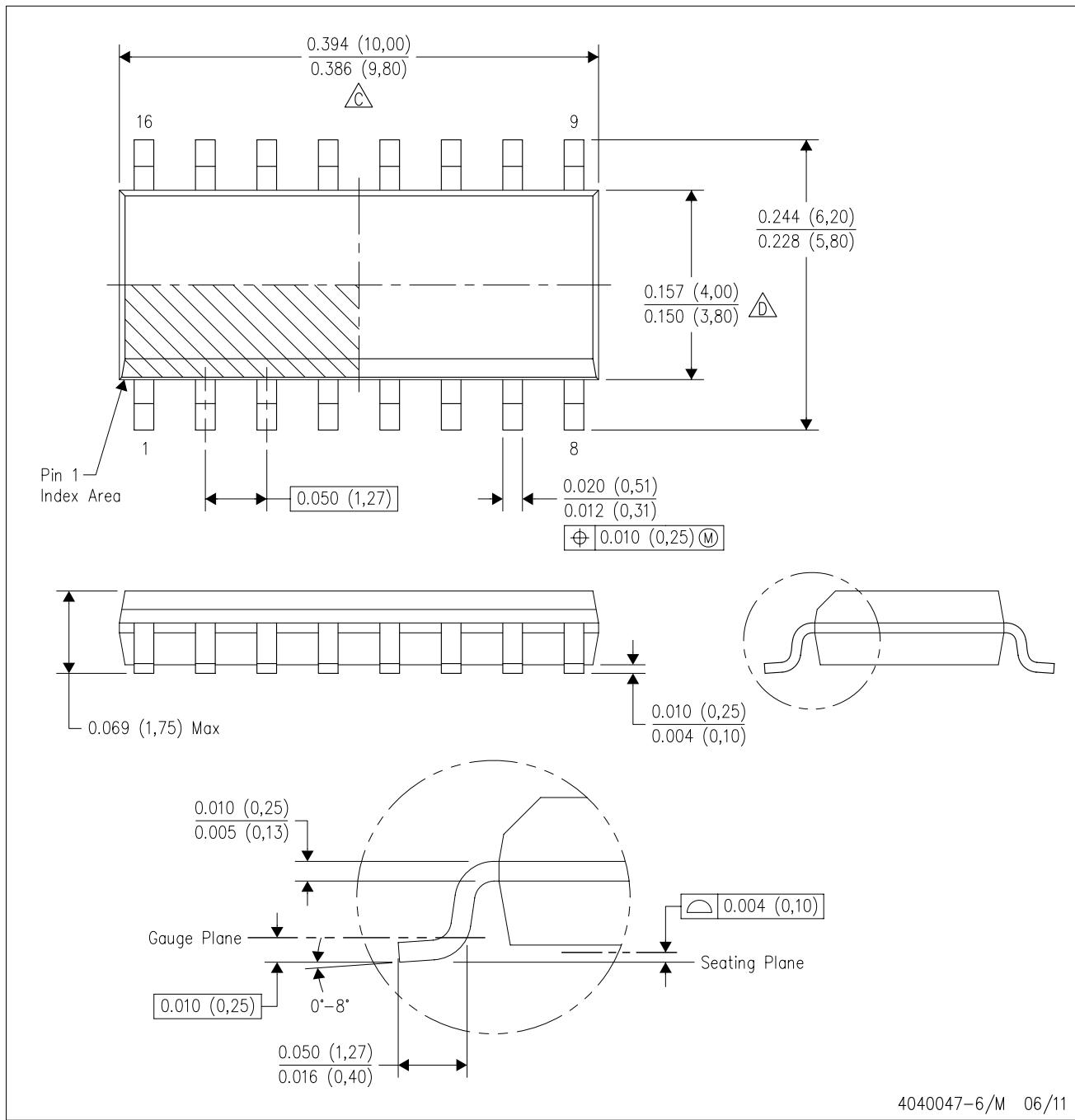
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.

E. Reference JEDEC MS-012 variation AC.

重要声明和免责声明

TI 均以“原样”提供技术性及可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证其中不含任何瑕疵，且不做任何明示或暗示的担保，包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任：(1) 针对您的应用选择合适的TI 产品；(2) 设计、验证并测试您的应用；(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更，恕不另行通知。TI 对您使用所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源，也不提供其它TI 或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等，TI 对此概不负责，并且您须赔偿由此对TI 及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (<http://www.ti.com.cn/zh-cn/legal/termsofsale.html>) 以及ti.com.cn 上或随附TI 产品提供的其他可适用条款的约束。TI 提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122
Copyright © 2020 德州仪器半导体技术（上海）有限公司