

带有内部基准电压的 DACx0504 四通道 16、14、12 位 SPI 电压输出 DAC

1 特性

- 性能
 - INL: 16 位分辨率下为 ± 1 LSB (最大值)
 - TUE: FSR 最大值 $\pm 0.1\%$
- 集成 2.5V 精密内部基准电压
 - 初始精度: ± 5 mV, 最大值
 - 低温漂: 2ppm/ $^{\circ}$ C (典型值)
- 高驱动能力: 20mA 0.5V 电源轨
- 灵活的输出配置
 - 用户可选增益: 2、1 或 $\frac{1}{2}$
 - 复位至零标度或中标度
- 宽运行范围:
 - 电源: 2.7V 至 5.5V
 - 温度: -40° C 至 $+125^{\circ}$ C
- 50MHz, SPI 兼容串行接口
 - 4 线制模式, 1.7V 至 5.5V 工作电压
 - 菊花链运行
 - CRC 误差校验
- 低功耗: 0.7mA/通道 (5.5V)
- 小型封装: 3mm x 3mm, 16 引脚 WQFN

2 应用

- 光纤网络
- 无线基础设施
- 工业自动化
- 数据采集系统

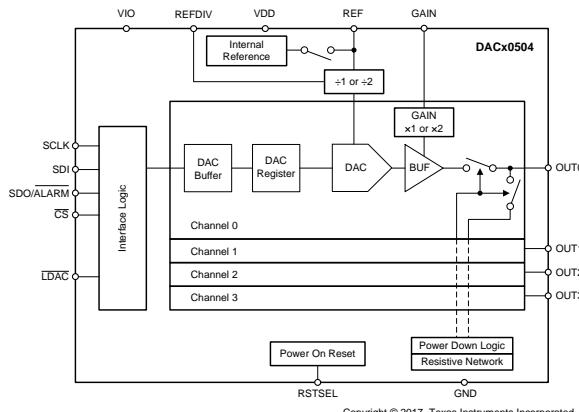
3 说明

DAC80504、DAC70504 和 DAC60504 (DACx0504) 是引脚兼容系列低功耗、四通道、缓冲电压输出的数模转换器 (DAC)，具有 16、14 和 12 位分辨率。

DACx0504 包括一个低漂移 2.5V 内部基准电压，大多数应用中无需使用外部精度基准。用户可选增益配置提供 1.25V (增益 = $\frac{1}{2}$)、2.5V (增益 = 1) 或 5V (增益 = 2) 满量程输出电压。这些器件由 2.7V 至 5.5V 单电源供电，具有指定单调性，并能提供 ± 1 LSB INL 的高线性度。

通过一个运行时钟速率为 50MHz 的 4 线制串行接口与 DACx0504 通信。VIO 引脚使串行接口可在 1.7V 至 5.5V 电压范围内运行。DACx0504 灵活接口使其能够用于广泛的行业标准微处理器和微控制器。

DACx0504 采用了上电复位电路，上电后可以将 DAC 输出保持在零电平或中间电平，直到在器件中写入一个有效代码。这些器件在 5.5V 时消耗 0.7mA/通道的低电流，因此非常适用于依靠电池供电的设备。每通道断电特性可将器件电流消耗量降低至 15 μ A。


DACx0504 可在 -40° C 至 $+125^{\circ}$ C 的温度范围内正常运行，采用 3mm x 3mm QFN 小型封装。

器件信息⁽¹⁾

器件型号	封装	封装尺寸 (标称值)
DACX0504	WQFN (16)	3.00mm x 3.00mm

(1) 如需了解所有可用封装，请参阅数据表末尾的封装选项附录。

简化方框图

本文档旨在为方便起见，提供有关 TI 产品中文版本的信息，以确认产品的概要。有关适用的官方英文版本的最新信息，请访问 www.ti.com，其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前，请务必参考最新版本的英文版本。

目录

1	特性	1	8.5	Programming.....	28
2	应用	1	8.6	Register Map.....	30
3	说明	1	9	Application and Implementation	36
4	修订历史记录	2	9.1	Application Information.....	36
5	Device Comparison Table	4	9.2	Typical Application	38
6	Pin Configuration and Functions	5	10	Power Supply Recommendations	40
7	Specifications	6	11	Layout	40
	7.1 Absolute Maximum Ratings	6	11.1	Layout Guidelines	40
	7.2 ESD Ratings.....	6	11.2	Layout Example	40
	7.3 Recommended Operating Conditions.....	6	12	器件和文档支持	41
	7.4 Thermal Information	7	12.1	文档支持	41
	7.5 Electrical Characteristics.....	7	12.2	相关链接.....	41
	7.6 Typical Characteristics.....	10	12.3	接收文档更新通知	41
8	Detailed Description	20	12.4	社区资源.....	41
	8.1 Overview	20	12.5	商标	41
	8.2 Functional Block Diagram	20	12.6	静电放电警告	41
	8.3 Feature Description.....	21	12.7	术语表	41
	8.4 Device Functional Modes.....	25	13	机械、封装和可订购信息	41

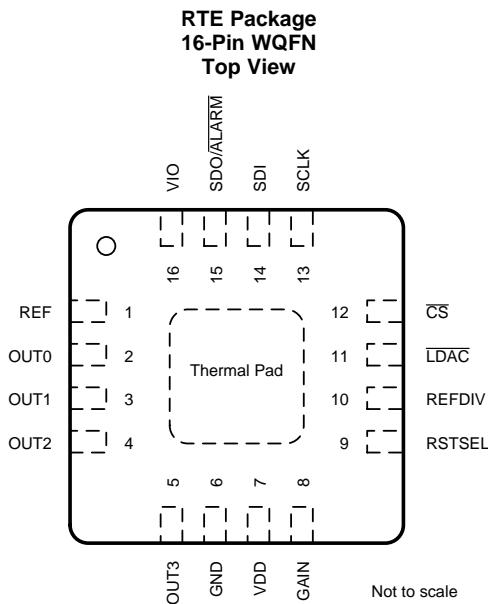
4 修订历史记录

注：之前版本的页码可能与当前版本有所不同。

Changes from Revision B (September 2018) to Revision C	Page
• 已添加 向数据表中增加了 DAC60504 器件	1
• Changed TUE values for DAC70504 in <i>Electrical Characteristics</i>	7
• Changed Full-scale error values for DAC70504 in <i>Electrical Characteristics</i>	7
• Changed Gain error values for DAC70504 in <i>Electrical Characteristics</i>	7
• Changed channel-to-channel dc crosstalk values for DAC70504 in <i>Electrical Characteristics</i>	8
• Changed reference output drift values for DAC70504 in <i>Electrical Characteristics</i>	9
• Changed reference thermal hysteresis values for DAC70504 in <i>Electrical Characteristics</i>	9
• Deleted Figure 58, DAC70504 Solder Heat Reflow Reference Voltage Shift.....	23
• Changed reset value for VERSIONID from 10 to 11 in Table 10, DEVICE ID Field Descriptions	31

Changes from Revision A (December 2017) to Revision B	Page
• 已更改 将 特性 中的 TUE 从 $\pm 0.14\%$ 更改为 $\pm 0.1\%$	1
• 已更改 将 特性 中的低温漂从 $5\text{ppm}/^\circ\text{C}$ 更改为 $2\text{ppm}/^\circ\text{C}$, 并且增加了 DAC80504	1
• 已删除 删除了器件信息中的 DAC80504 产品预览	1
• Deleted Product Preview for DAC80504 from <i>Device Comparison Table</i>	4
• Added Added TUE DAC80504. All Gains row in <i>Electrical Characteristics</i>	7
• Added Added Full-scale error DAC80504. All Gains row in <i>Electrical Characteristics</i>	7
• Added Added Gain error DAC80504. All Gains row in <i>Electrical Characteristics</i>	7
• Changed Short circuit current, DAC code = full scale, output shorted to GND in <i>Electrical Characteristics</i> TYP from 35 mA to 30 mA	8
• Changed Short circuit current, DAC code = zero scale, output shorted to V_{DD} in <i>Electrical Characteristics</i> TYP from 30 mA to 35 mA	8
• Added Channel-to channel dc crosstalk, Measured channel at midscale. Adjacent channel at full scale. DAC80504 in <i>Electrical Characteristics</i>	8
• Added Channel-to-channel crosstalk, Measured channel at midscale. All other channels at full scale. DAC80504 in	

<i>Electrical Characteristics</i>	8
• Added Added Reference output drift, DAC80504 in <i>Electrical Characteristics</i>	9
• Added Reference thermal hysteresis, DAC80504. First cycle in <i>Electrical Characteristics</i>	9
• Changed some graphs in <i>Typical Characteristics</i>	10
• Added Figure 59, Solder Heat Reflow Reference Voltage Shift.....	23
• Added t_{LDACS} and t_{LDACH} to Table 7	28
• Added 010 (12-bit) to D14:12 Description in Table 10	31


Changes from Original (August 2017) to Revision A	Page
• 已更改 将“预告信息”更改为“混合状态”	1

5 Device Comparison Table

DEVICE	RESOLUTION	REFERENCE
DAC80504	16-Bit	Internal (default) or External
DAC70504	14-Bit	Internal (default) or External
DAC60504	12-Bit	Internal (default) or External

6 Pin Configuration and Functions

Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NO.		
REF	1	I/O	When using internal reference, this is the reference output voltage pin (default). When using an external reference, this is the reference input pin to the device.
OUT0	2	O	Analog output voltage from DAC 0.
OUT1	3	O	Analog output voltage from DAC 1.
OUT2	4	O	Analog output voltage from DAC 2.
OUT3	5	O	Analog output voltage from DAC 3.
GND	6	GND	Ground reference point for all circuitry on the device.
VDD	7	PWR	Analog supply voltage (2.7 V to 5.5 V).
GAIN	8	I	Sets the gain configuration after a power-up or reset event. When tied to GND, the initial buffer amplifier gain for all four channels is set to 1. When tied to V_{IO} the initial buffer amplifier gain is 2. Changing the state of this pin after power-up does not affect the device operation.
RSTSEL	9	I	Reset select pin. When tied to GND all four DACs reset to zero scale. When connected to V_{IO} all four DACs reset to midscale.
REFDIV	10	I	Sets the reference divider configuration after a power-up or reset event. When tied to GND, the reference voltage is not divided down. When tied to V_{IO} the reference voltage is divided by 2. Changing the state of this pin after power-up does not affect the device operation.
LDAC	11	I	A high-to-low transition on the LDAC pin causes the DAC outputs of those channels configured in synchronous mode to update simultaneously. The pin can be tied permanently to GND.
CS	12	I	Active low serial data enable. This input is the frame synchronization signal for the serial data. When the signal goes low, it enables the serial interface input shift register.
SCLK	13	I	Serial interface clock.
SDI	14	I	Serial interface data input. Data are clocked into the input shift register on each falling edge of the SCLK pin.
SDO/ALARM	15	O	Serial interface data output (default). The SDO pin is in high impedance when CS pin is high. Data are clocked out of the input shift register on either rising or falling edges of the SCLK pin as specified by the FSDO bit. Alternatively the pin can be configured as an ALARM open-drain output to indicate a CRC or reference alarm event. If configured as ALARM a 10 k Ω , pull-up resistor to V_{IO} is required.
VIO	16	PWR	IO supply voltage (1.7 V to 5.5 V). This pin sets the I/O operating voltage for the serial interface.
Thermal Pad	–	–	The thermal pad is located on the bottom-side of the QFN package. The thermal pad should be connected to any internal PCB ground plane using multiple vias for good thermal performance.

7 Specifications

7.1 Absolute Maximum Ratings

 over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage	V_{DD} to GND	-0.3	6	V
	V_{IO} to GND	-0.3	6	
Pin voltage	DAC outputs to GND	-0.3	$V_{DD} + 0.3$	V
	REF to GND	-0.3	$V_{DD} + 0.3$	
	Digital pins to GND	-0.3	$V_{IO} + 0.3$	
Input current	Input current to any pin except supply pins	-10	10	mA
Temperature	Operating free-air, T_A	-40	125	°C
	Junction, T_J	-40	150	
	Storage, T_{stg}	-60	150	

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	± 3000
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	± 1000

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
POWER SUPPLY					
V_{DD}	Analog supply voltage	2.7		5.5	V
V_{IO}	IO supply voltage	1.7		5.5	
DIGITAL INPUTS					
	Digital input voltage	0		V_{IO}	V
REFERENCE INPUT					
V_{REFIN}	$V_{DD} = 2.7\text{ V to }3.3\text{ V}$	Reference divider disabled	1.2	$(V_{DD} - 0.2)/2$	V
		Reference divider enabled	2.4	$V_{DD} - 0.2$	
	$V_{DD} = 3.3\text{ V to }5.5\text{ V}$	Reference divider disabled	1.2	$V_{DD}/2$	
		Reference divider enabled	2.4	V_{DD}	
TEMPERATURE					
T_A	Operating free-air temperature	-40		125	°C

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		DACx0504	UNIT
		RTE (WQFN)	
		16 PINS	
R_{iJA}	Junction-to-ambient thermal resistance	33.3	°C/W
$R_{iJC(\text{top})}$	Junction-to-case (top) thermal resistance	29.5	°C/W
R_{iJB}	Junction-to-board thermal resistance	7.3	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	7.4	°C/W
$R_{iJC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	0.9	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

7.5 Electrical Characteristics

all minimum and maximum specifications at $V_{DD} = 2.7$ V to 5.5 V, $V_{IO} = 1.7$ V to 5.5 V, $V_{REFIN} = 1.25$ V to 5.5 V, $R_{LOAD} = 2$ kΩ to GND, $C_{LOAD} = 200$ pF to GND, digital inputs at V_{IO} or GND, and $T_A = -40$ °C to +125°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC PERFORMANCE⁽¹⁾					
Resolution	DAC80504	16			Bits
	DAC70504	14			
	DAC60504	12			
INL	DAC80504		±0.5	±1	LSB
	DAC70504		±0.5	±1	
	DAC60504		±0.5	±1	
DNL	DAC80504, specified 16-bit monotonic		±0.5	±1	LSB
	DAC70504, specified 14-bit monotonic		±0.5	±1	
	DAC60504, specified 12-bit monotonic		±0.5	±1	
TUE	Total unadjusted error		±0.05	±0.1	%FSR
Offset error			±0.75	±1.5	mV
Zero-code error	DAC code = zero scale	0.5	1.5		mV
Full-scale error			±0.05	±0.1	%FSR
Gain error			±0.05	±0.1	%FSR
Offset error drift			±1		µV/°C
Zero-code error drift			±2		µV/°C
Full-scale error drift			±2		ppm of FSR/°C
Gain error drift			±1		ppm of FSR/°C
Output voltage drift over time	$T_A = 25$ °C, DAC code = midscale, 1600 hours		20		ppm of FSR

(1) Static performance specified with DAC outputs unloaded for all gain options, unless otherwise noted. End point fit between codes. 16-bit: Code 256 to 65280, 14-bit: Code 128 to 16127, 12-bit: Code 16 to 4031.

Electrical Characteristics (continued)

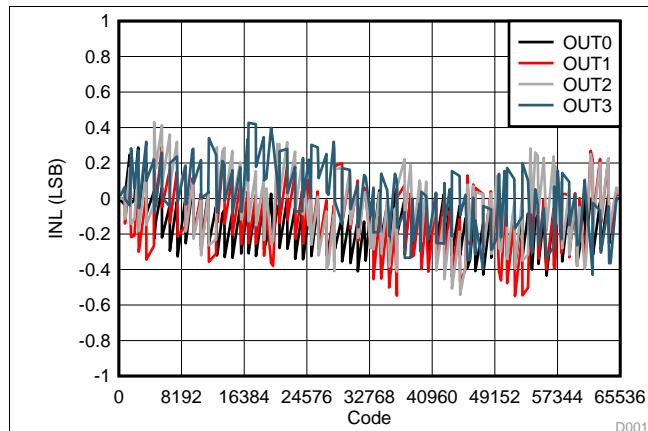
all minimum and maximum specifications at $V_{DD} = 2.7$ V to 5.5 V, $V_{IO} = 1.7$ V to 5.5 V, $V_{REFIN} = 1.25$ V to 5.5 V, $R_{LOAD} = 2$ k Ω to GND, $C_{LOAD} = 200$ pF to GND, digital inputs at V_{IO} or GND, and $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT CHARACTERISTICS					
Voltage range	Gain = 2 (BUFF-GAIN = 1, REF-DIV = 0)	0	$2 \times V_{REF}$	V	
	Gain = 1 (BUFF-GAIN = 1, REF-DIV = 1)	0	V_{REF}		
	Gain = $\frac{1}{2}$ (BUFF-GAIN = 0, REF-DIV = 1)	0	$\frac{1}{2} \times V_{REF}$		
Output voltage headroom	to GND or V_{DD} (unloaded)	0.004	V		
	to GND or V_{DD} ($-5\text{ mA} \leq I_{OUT} \leq 5\text{ mA}$)	0.15			
	to GND or V_{DD} ($-10\text{ mA} \leq I_{OUT} \leq 10\text{ mA}$)	0.3			
	to GND or V_{DD} ($-20\text{ mA} \leq I_{OUT} \leq 20\text{ mA}$)	0.5			
Short circuit current ⁽²⁾	DAC code = full scale, output shorted to GND	30	mA		
	DAC code = zero scale, output shorted to V_{DD}	35			
Load regulation	DAC code = midscale, $-10\text{ mA} \leq I_{OUT} \leq 10\text{ mA}$	85		$\mu\text{V}/\text{mA}$	
Maximum capacitive load ⁽³⁾	$R_{LOAD} = \infty$	0	2	nF	
	$R_{LOAD} = 2$ k Ω	0	10		
DC output impedance	DAC code = midscale	0.085	Ω		
	DAC code at GND or V_{DD}	15			
DYNAMIC PERFORMANCE					
Output voltage settling time	$\frac{1}{4}$ to $\frac{3}{4}$ scale and $\frac{3}{4}$ to $\frac{1}{4}$ scale settling time to ± 2 LSB, $V_{DD} = 5.5$ V, $V_{REFIN} = 2.5$ V, gain = 2	5		μs	
Slew rate	$V_{DD} = 5.5$ V, $V_{REFIN} = 2.5$ V, gain = 2	1.8		$\text{V}/\mu\text{s}$	
Power-up time	DACx-PWDWN 1 to 0 transition, DAC code = full scale, $V_{DD} = 5.5$ V, $V_{REFIN} = 2.5$ V, gain = $2^{(4)}$	12		μs	
Power-up glitch magnitude	DAC code = zero scale, $V_{DD} = 5.5$ V, $V_{REFIN} = 2.5$ V, gain = 2, $C_{LOAD} = 50$ pF	25		mV	
Output noise	0.1 Hz to 10 Hz, DAC code = midscale, $V_{DD} = 5.5$ V, $V_{REFIN} = 2.5$ V, gain = 2	14		μV_{PP}	
Output noise density	1 kHz, DAC code = midscale, $V_{DD} = 5.5$ V, $V_{REFIN} = 2.5$ V, gain = 2	78	$\text{nV}/\sqrt{\text{Hz}}$		
	10 kHz, DAC code = midscale, $V_{DD} = 5.5$ V, $V_{REFIN} = 2.5$ V, gain = 2	74			
	1 kHz, DAC code = full scale, $V_{DD} = 5.5$ V, $V_{REFIN} = 2.5$ V, gain = 1	55			
	10 kHz, DAC code = full scale, $V_{DD} = 5.5$ V, $V_{REFIN} = 2.5$ V, gain = 1	50			
AC PSRR	DAC code = midscale, frequency = 60 Hz, amplitude = 200 mV _{PP} superimposed on V_{DD}	85		dB	
DC PSRR	DAC code = midscale, $V_{DD} = 5$ V $\pm 10\%$	10		$\mu\text{V}/\text{V}$	
Code change glitch impulse	1 LSB change around major carrier	4		$\text{nV}\cdot\text{s}$	
Channel-to-channel ac crosstalk	DAC code = midscale. Code 32 to full-scale swing on adjacent channel	0.2		$\text{nV}\cdot\text{s}$	
Channel-to-channel dc crosstalk	Measured channel at midscale, adjacent channel at full scale	5	μV		
	Measured channel at midscale, all other channels at full scale	10			
Digital feedthrough	DAC code = midscale. $f_{SCLK} = 1$ MHz, SDO disabled	0.1		$\text{nV}\cdot\text{s}$	
EXTERNAL REFERENCE INPUT					
Reference input current	$V_{REFIN} = 2.5$ V	25		μA	
Reference input impedance		100		$\text{k}\Omega$	
Reference input capacitance		5		pF	

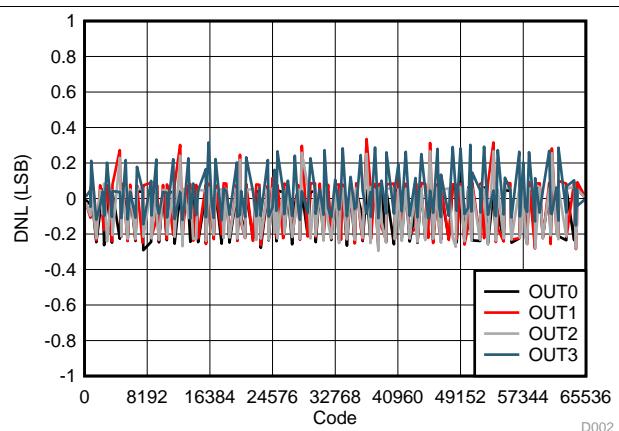
(2) Temporary overload condition protection. Junction temperature can be exceeded during current limit. Operation above the specified maximum junction temperature may impair device reliability.

(3) Specified by design and characterization. Not tested during production.

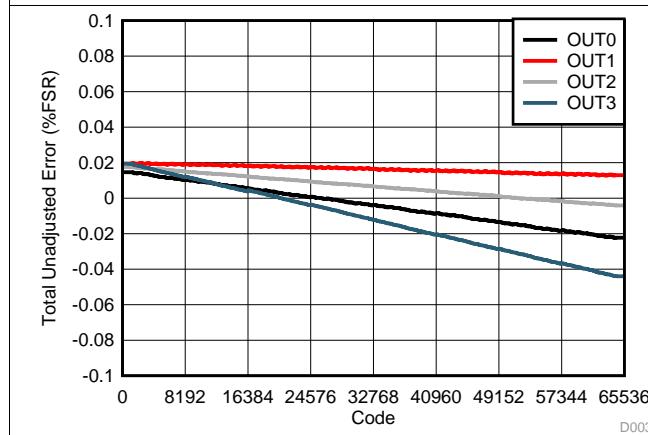
(4) Time to exit DAC power-down mode. Measured from CS rising edge to 90% of DAC final value.

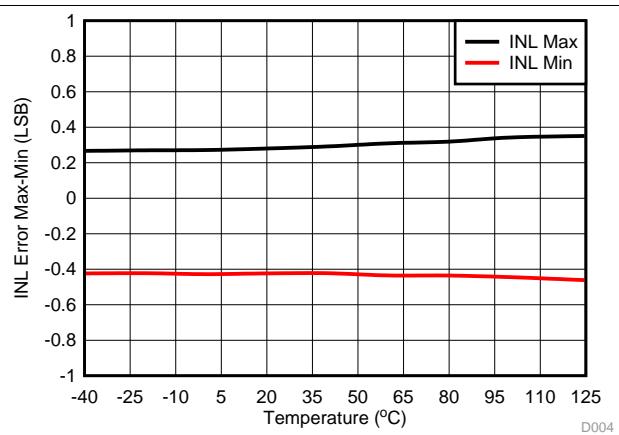

Electrical Characteristics (continued)

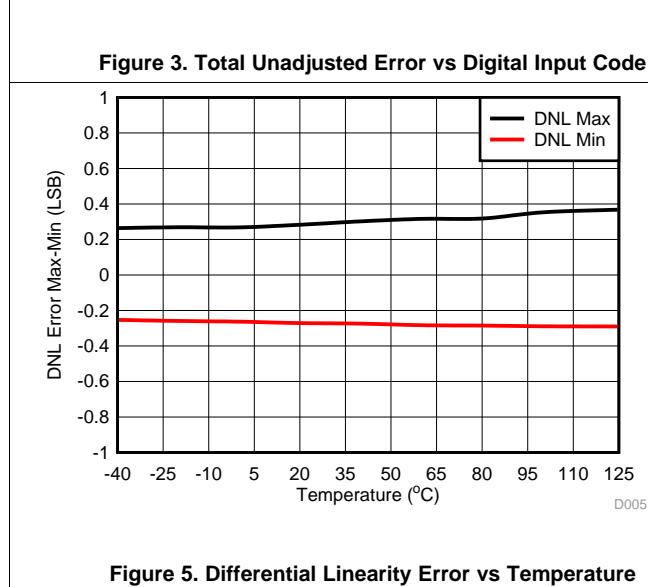
all minimum and maximum specifications at $V_{DD} = 2.7$ V to 5.5 V, $V_{IO} = 1.7$ V to 5.5 V, $V_{REFIN} = 1.25$ V to 5.5 V, $R_{LOAD} = 2$ k Ω to GND, $C_{LOAD} = 200$ pF to GND, digital inputs at V_{IO} or GND, and $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$ (unless otherwise noted)


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INTERNAL REFERENCE					
V_{REFOUT}	Reference output voltage $T_A = 25^\circ\text{C}$	2.495	2.5	2.505	V
Reference output drift		2	5		ppm/ $^\circ\text{C}$
Reference output impedance		0.1			Ω
Reference output noise	0.1 Hz to 10 Hz	15			μV_{PP}
Reference output noise density	10 kHz, $\text{REF}_{LOAD} = 10$ nF	130			$\text{nV}/\sqrt{\text{Hz}}$
Reference load current		± 5			mA
Reference load regulation	Source and sink	100			$\mu\text{V}/\text{mA}$
Reference line regulation		20			$\mu\text{V}/\text{V}$
Reference output drift over time	$T_A = 25^\circ\text{C}$, 1600 hours	4.8			ppm
Reference thermal hysteresis	First cycle	50			ppm
	Additional cycle	18			
DIGITAL INPUTS					
V_{IH}	High-level input voltage	$0.7 \times V_{IO}$			V
V_{IL}	Low-level input voltage	$0.3 \times V_{IO}$			V
Input current		± 2			μA
Input pin capacitance		2			pF
DIGITAL OUTPUTS					
V_{OH}	High-level output voltage $I_{LOAD} = 0.2$ mA	$V_{IO} - 0.4$			V
V_{OL}	Low-level output voltage $I_{LOAD} = -0.2$ mA	0.4			V
Output pin capacitance		4			pF
POWER SUPPLY REQUIREMENTS					
I_{DD}	V_{DD} supply current	Active mode, internal reference enabled, gain = 1, DAC code = full scale, outputs unloaded, SPI static	2.8	3.6	mA
		Active mode, internal reference disabled, gain = 1, DAC code = full scale, outputs unloaded, SPI static	2.3	3	
		Power-down	15		μA
I_{IO}	V_{IO} supply current		2	3	μA

7.6 Typical Characteristics


at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5\text{ V}$, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)


Figure 1. Integral Linearity Error vs Digital Input Code


Figure 2. Differential Linearity Error vs Digital Input Code

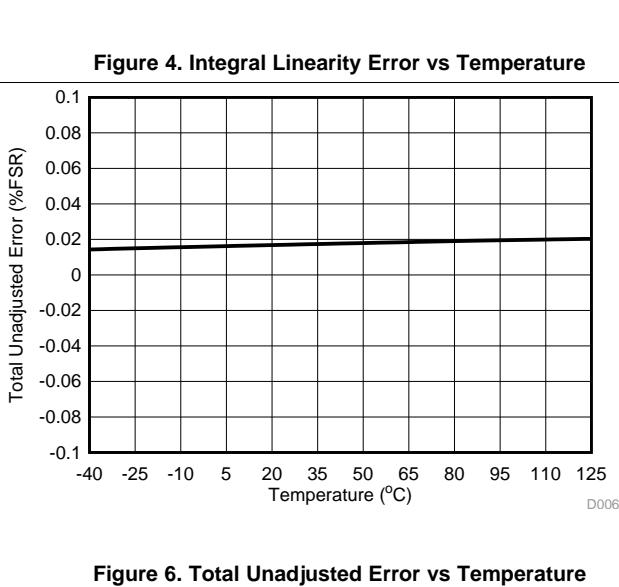

Figure 3. Total Unadjusted Error vs Digital Input Code

Figure 4. Integral Linearity Error vs Temperature

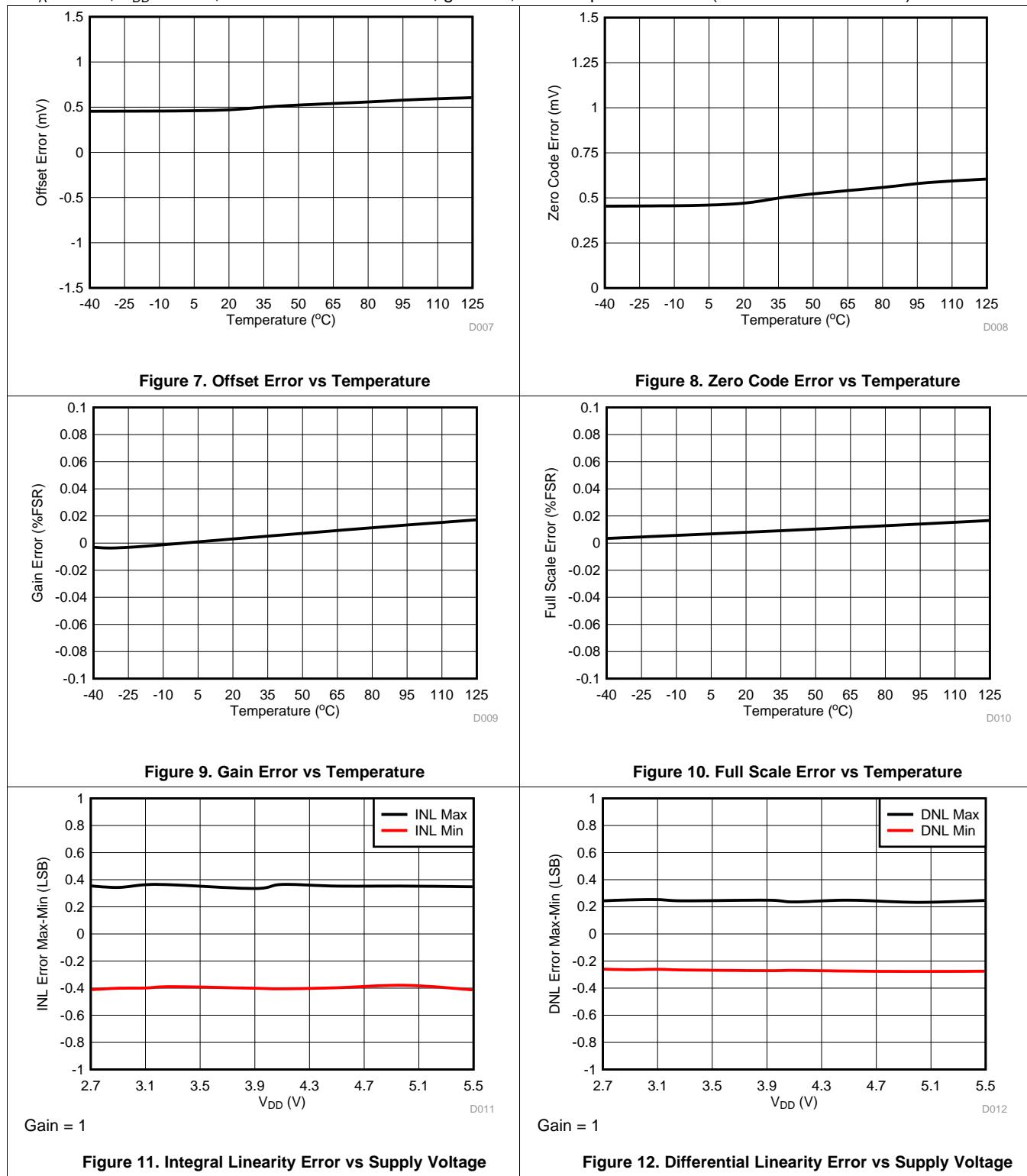
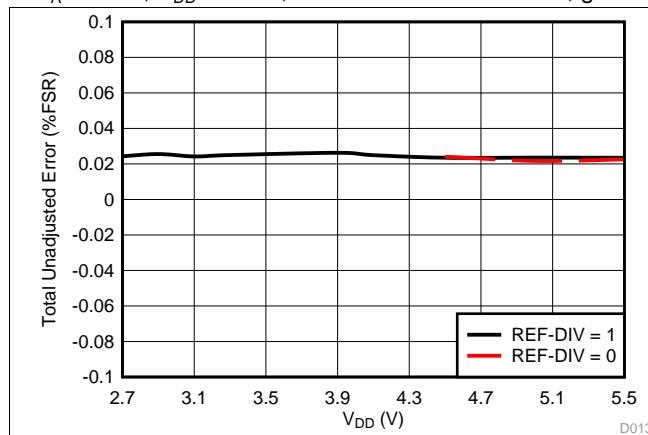
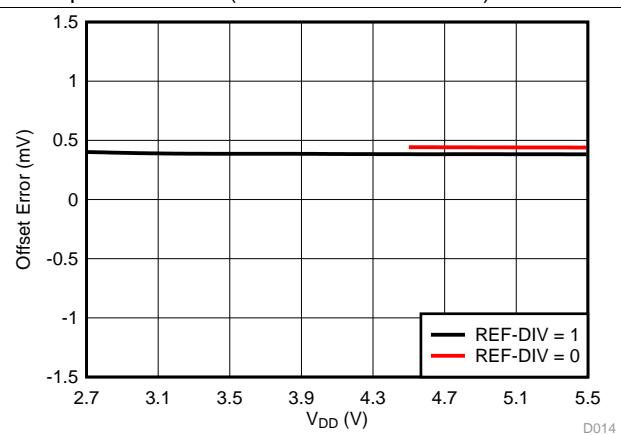

Figure 5. Differential Linearity Error vs Temperature

Figure 6. Total Unadjusted Error vs Temperature


Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5\text{ V}$, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)


Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5\text{ V}$, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)

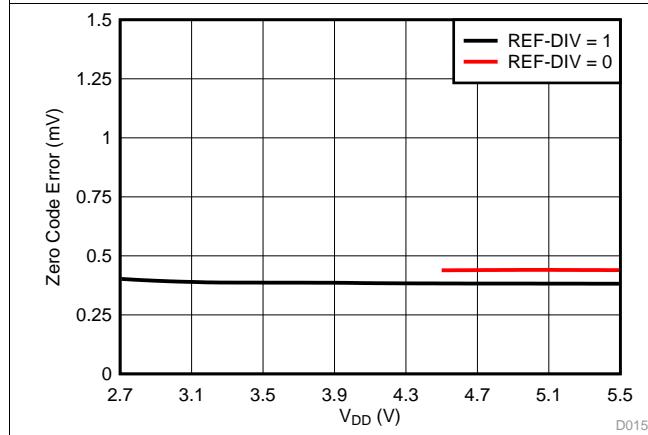

Gain = 1

Figure 13. Total Unadjusted Error vs Supply Voltage

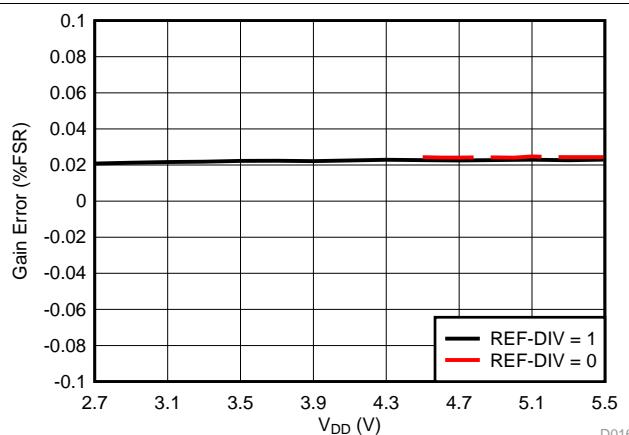

Gain = 1

Figure 14. Offset Error vs Supply Voltage

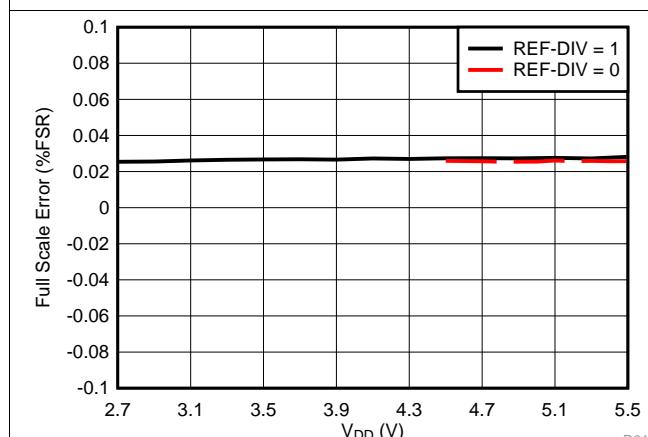

Gain = 1

Figure 15. Zero Code Error vs Supply Voltage

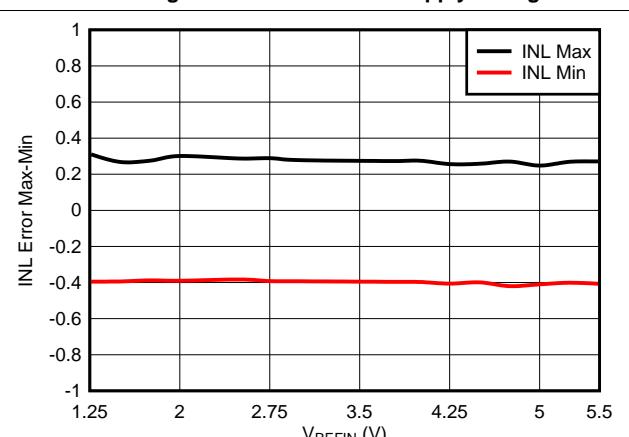
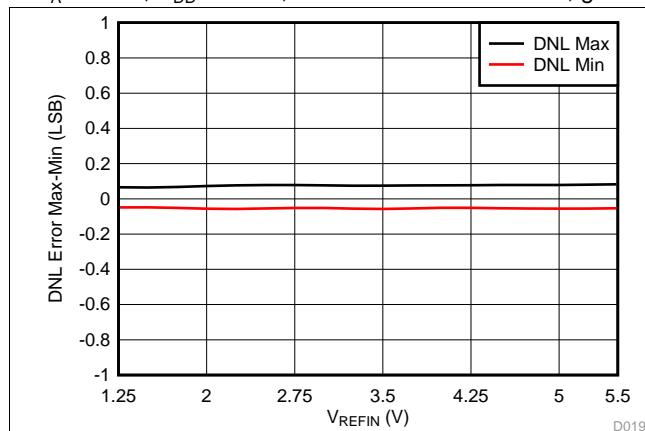

Gain = 1

Figure 16. Gain Error vs Supply Voltage

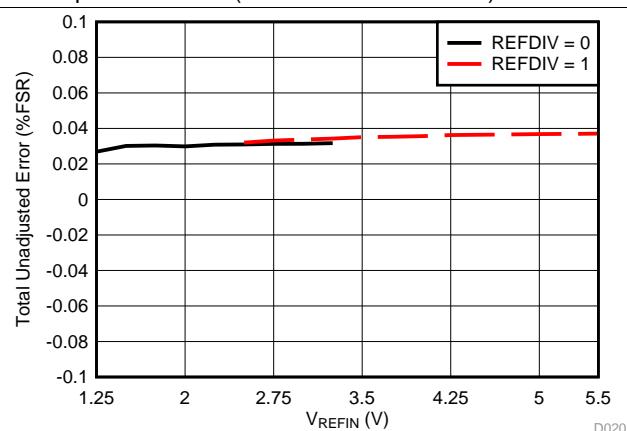
Gain = 1

Figure 17. Full Scale Error vs Supply Voltage



Gain = 1

Figure 18. Integral Linearity Error vs Reference Voltage


Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5\text{ V}$, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)

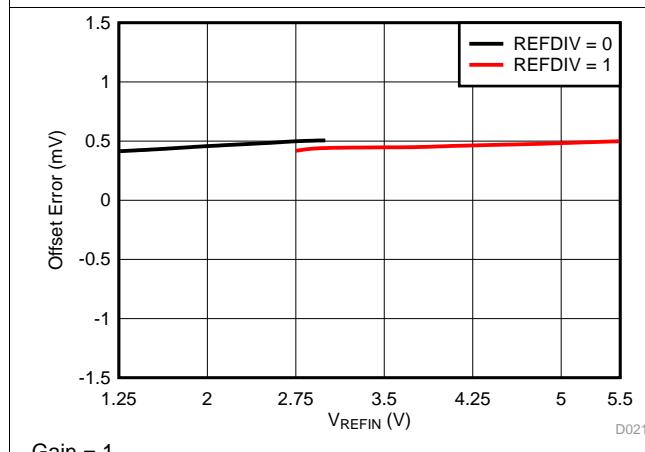

Gain = 1

Figure 19. Differential Linearity Error vs Reference Voltage

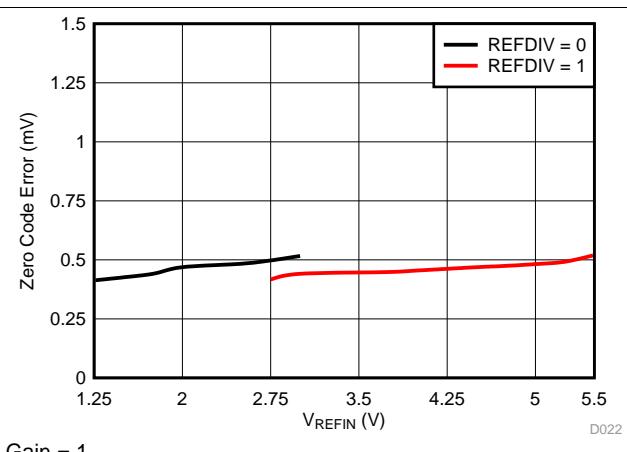

Gain = 1

Figure 20. Total Unadjusted Error vs Reference Voltage

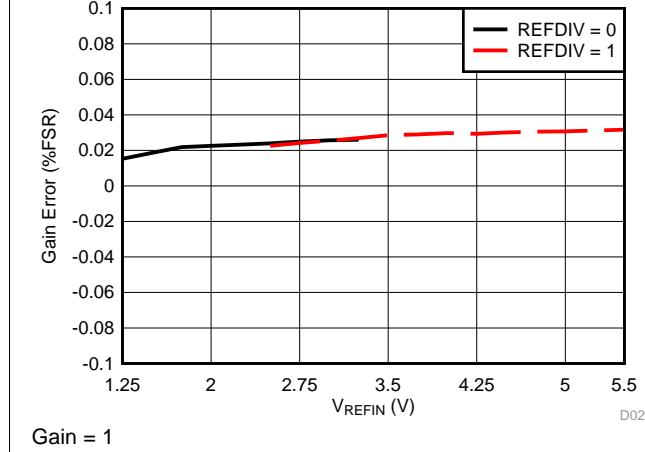

Gain = 1

Figure 21. Offset Error vs Reference Voltage

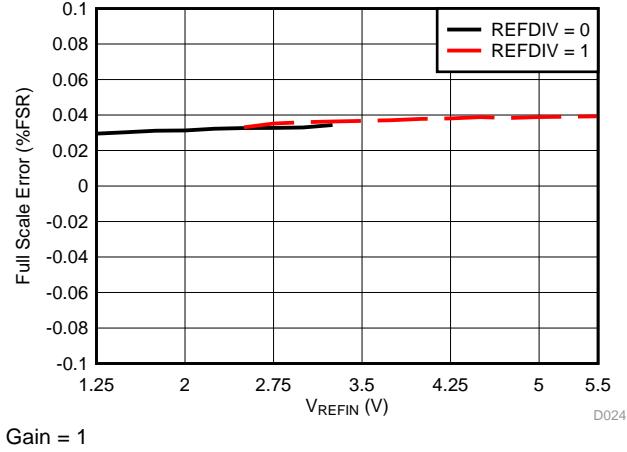
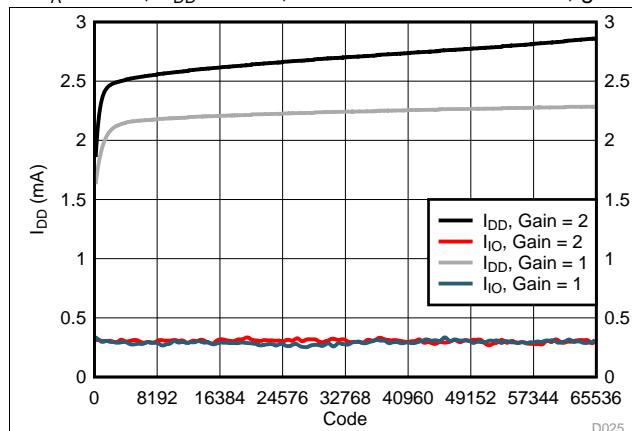

Gain = 1

Figure 22. Zero Code Error vs Reference Voltage

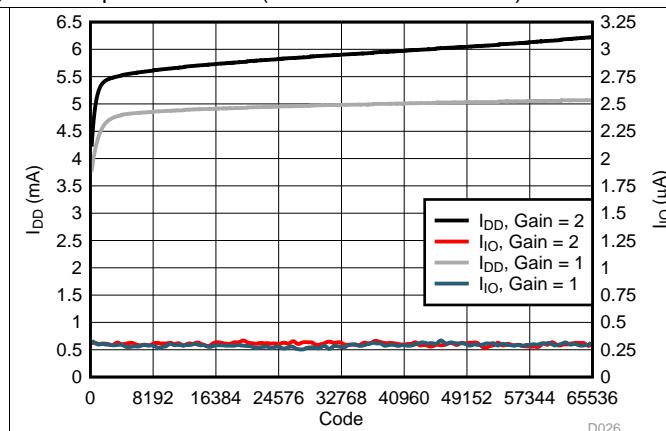
Gain = 1

Figure 23. Gain Error vs Reference Voltage



Gain = 1

Figure 24. Full Scale Error vs Reference Voltage


Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5\text{ V}$, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)

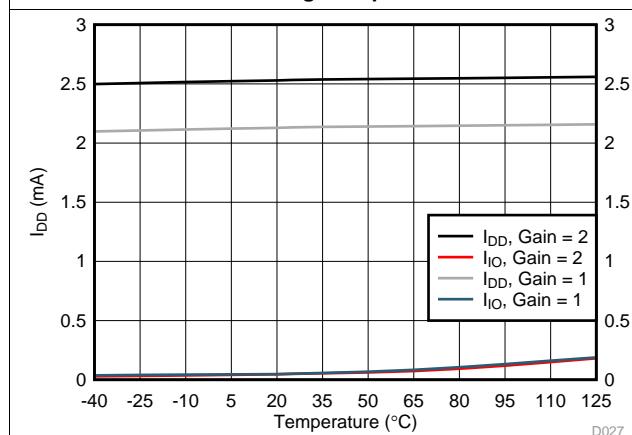

Gain = 1, external reference = 2.5 V

Figure 25. Supply Current With External Reference vs Digital Input Code

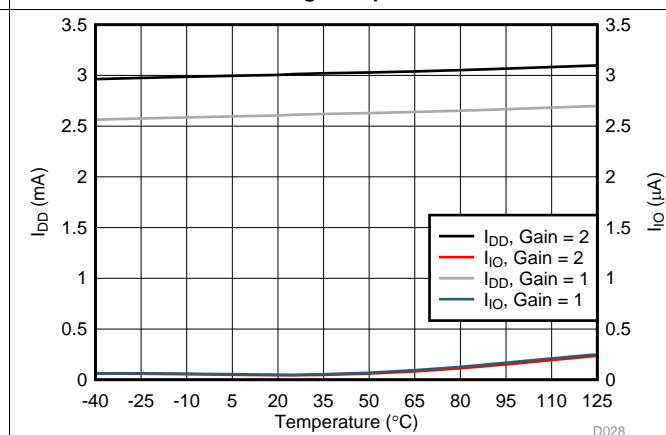

Gain = 1

Figure 26. Supply Current With Internal Reference vs Digital Input Code

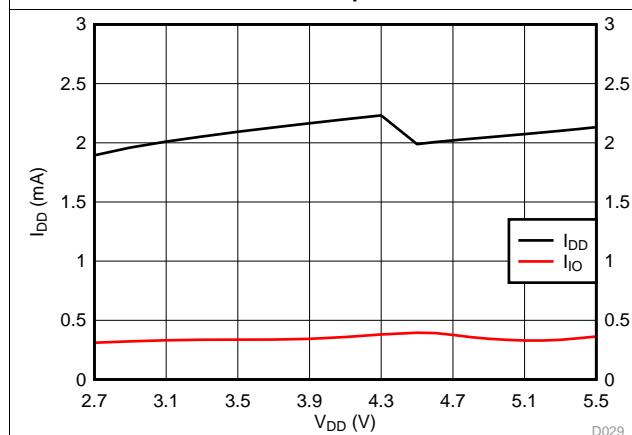

Gain = 1, external reference = 2.5 V

Figure 27. Supply Current With External Reference vs Temperature

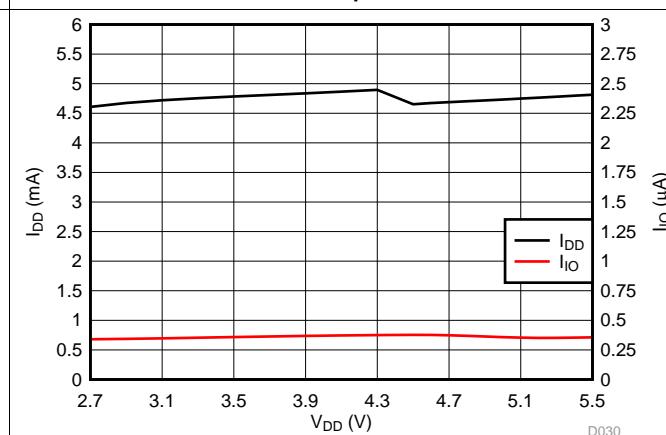
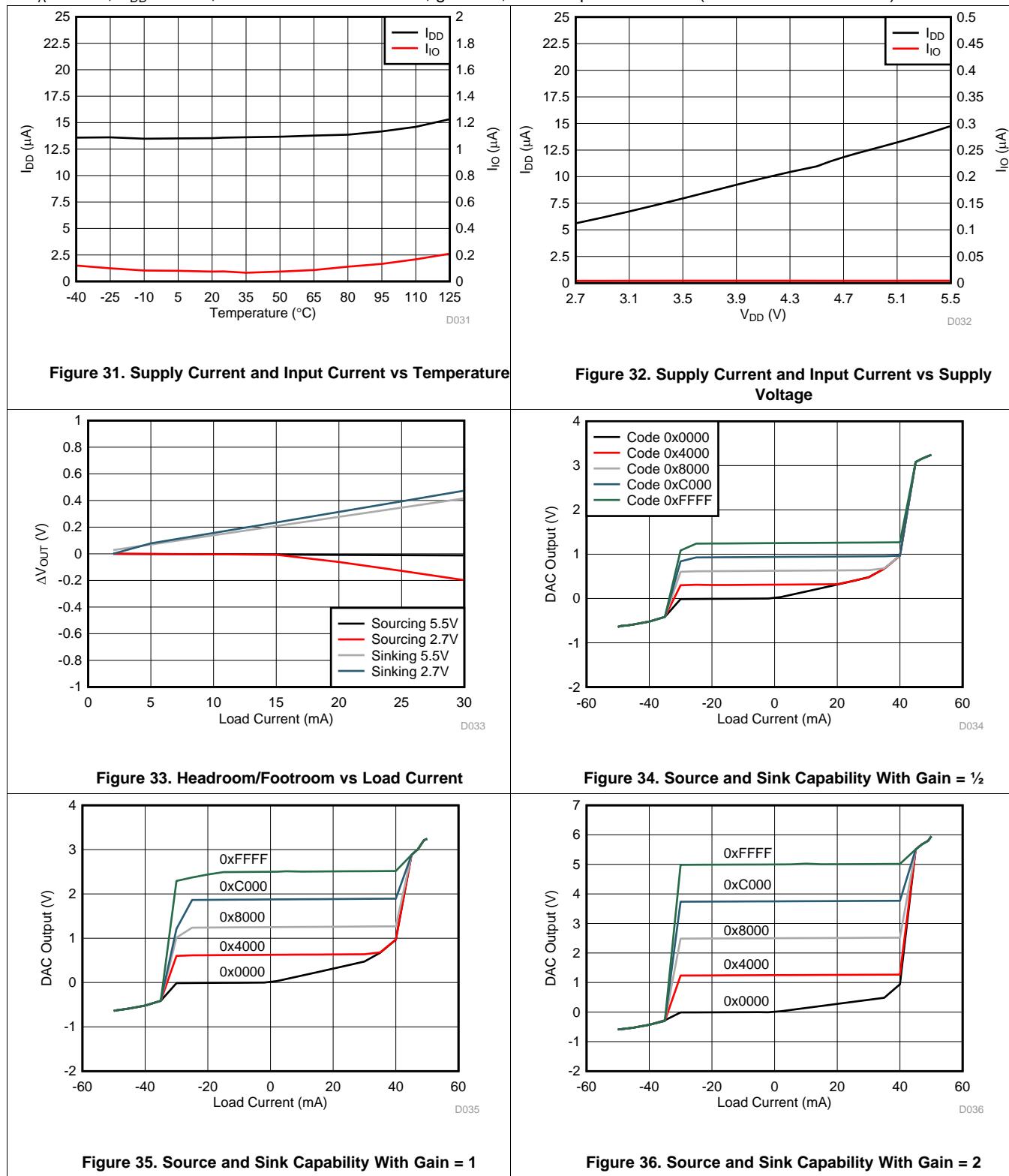

Gain = 1

Figure 28. Supply Current With Internal Reference vs Temperature

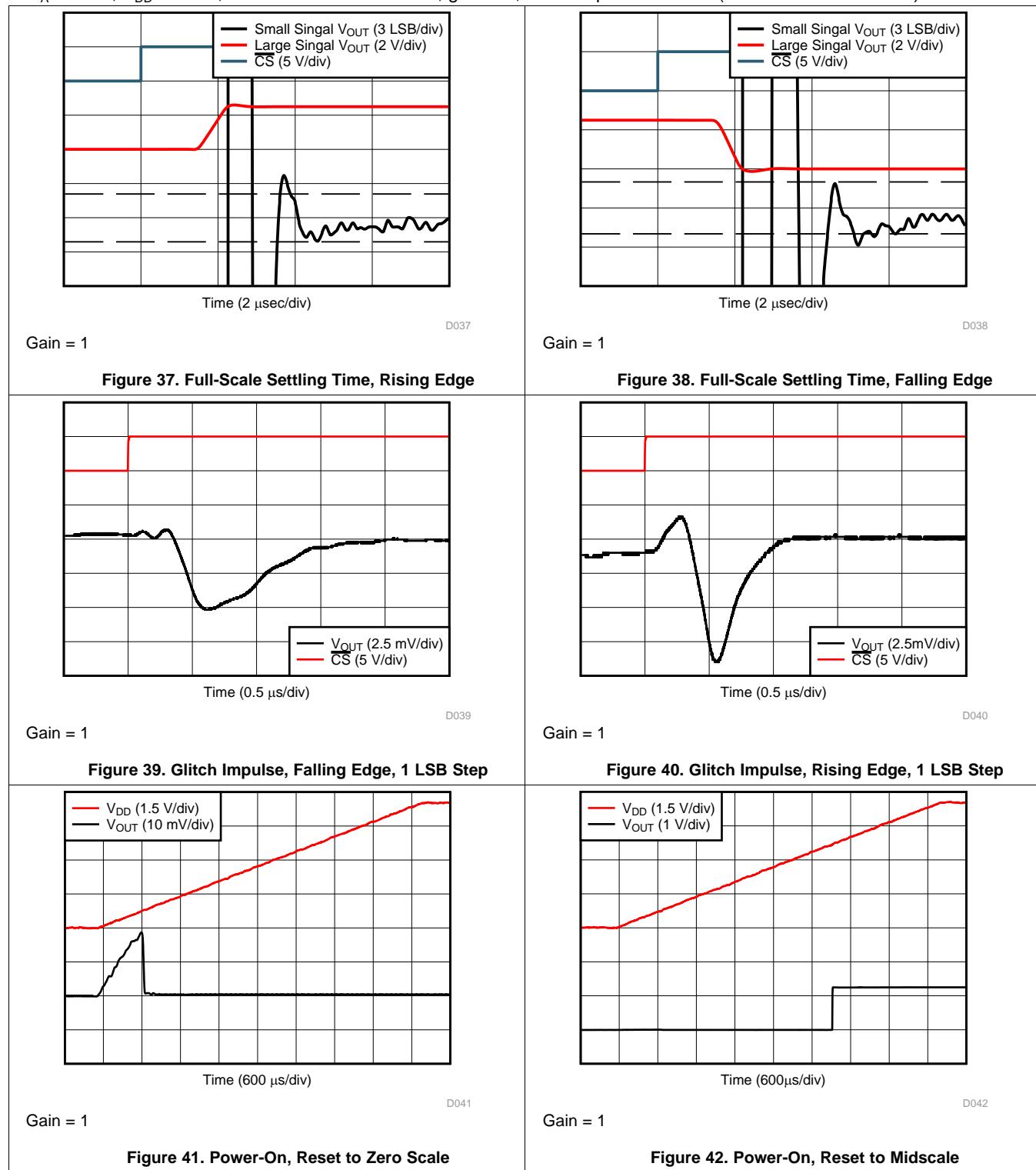
Gain = 1, external reference = 2.5 V

Figure 29. Supply Current With External Reference vs Supply Voltage

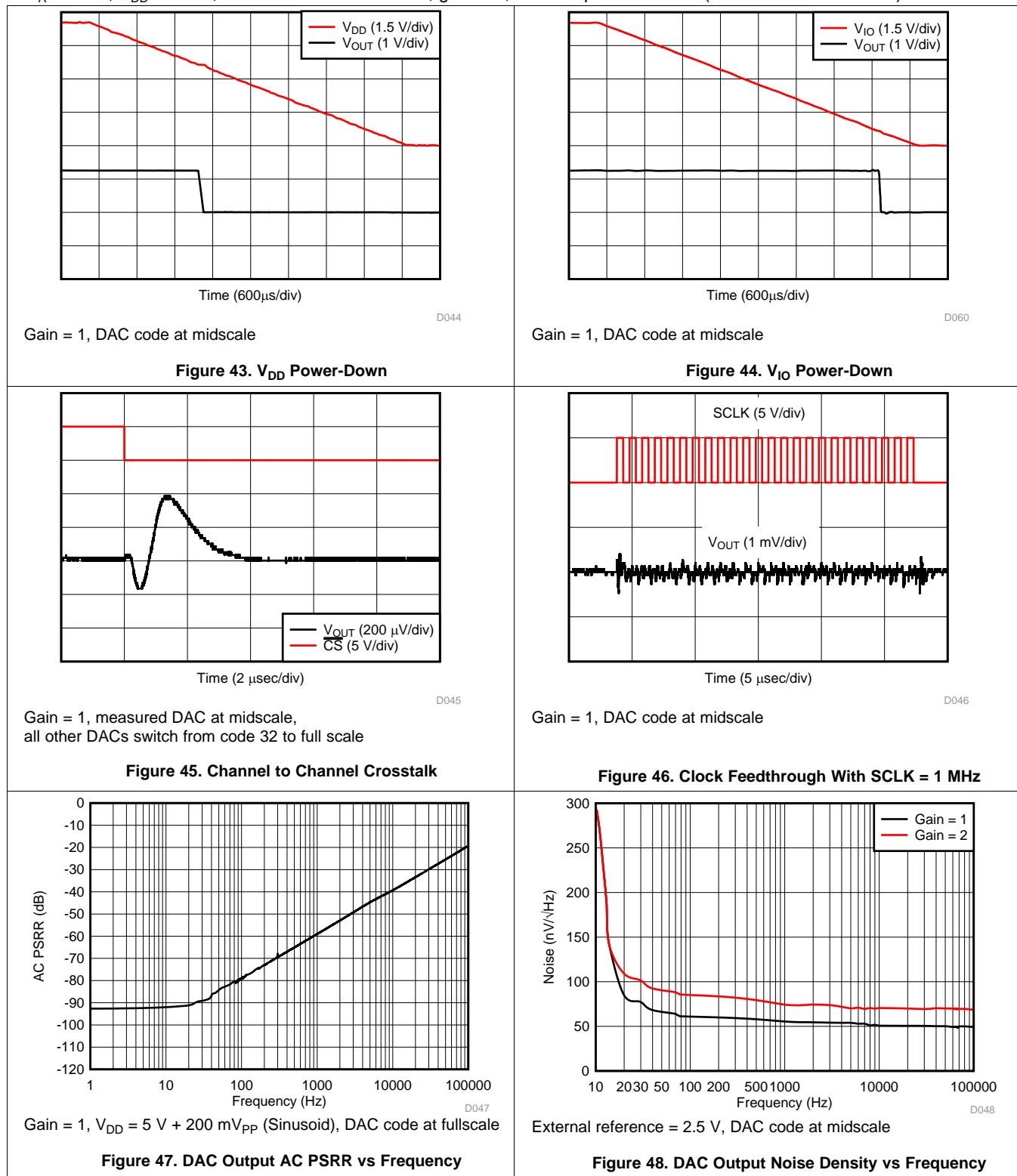


Gain = 1

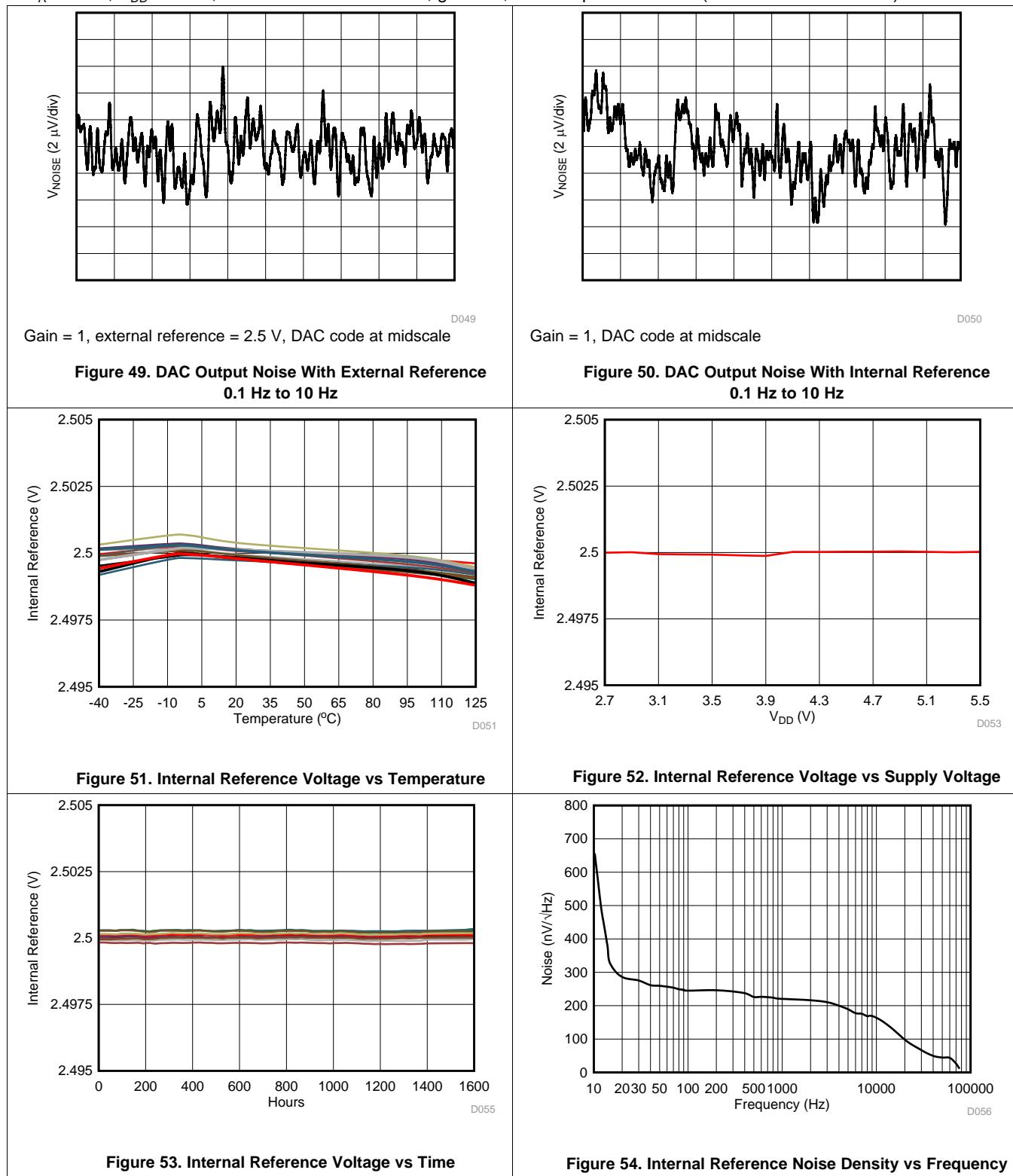
Figure 30. Supply Current With Internal Reference vs Supply Voltage


Typical Characteristics (continued)

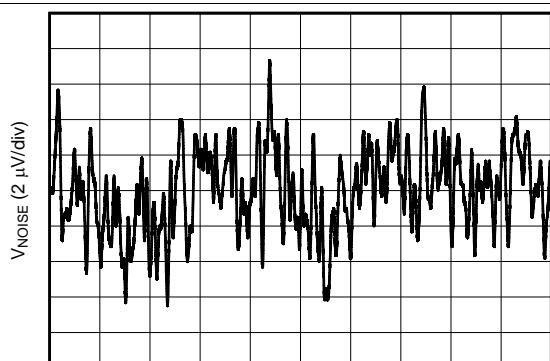
at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5\text{ V}$, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)


Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5\text{ V}$, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)


Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5\text{ V}$, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)


Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5\text{ V}$, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)

Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_{DD} = 5.5$ V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)

0.1 Hz to 10 Hz

D057

Figure 55. Internal Reference Noise

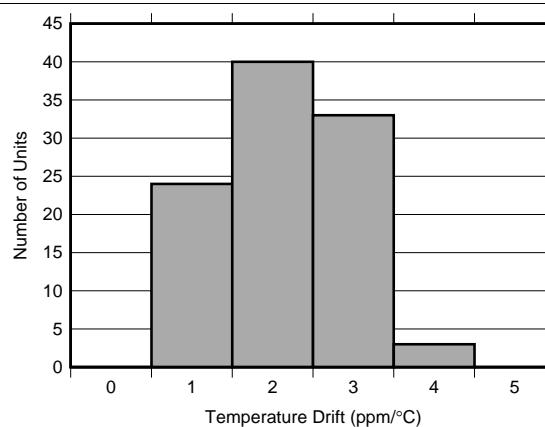
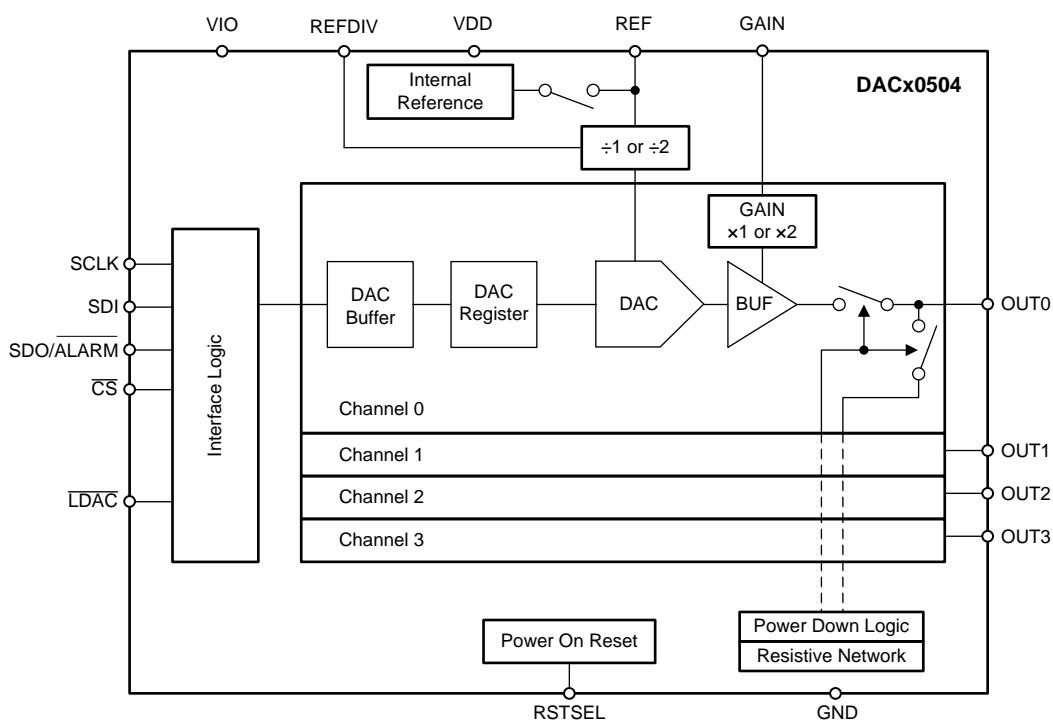


Figure 56. Internal Reference Temperature Drift Histogram

8 Detailed Description

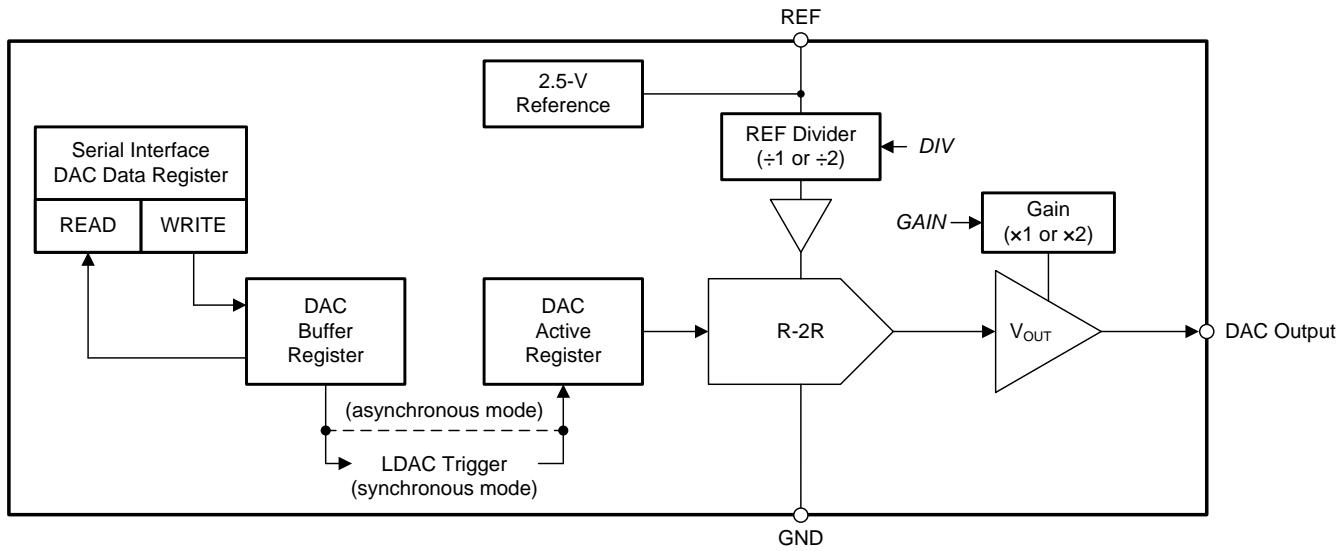

8.1 Overview

The DACx0504 is a pin-compatible family of low-power, four-channel, buffered voltage-output digital-to-analog converters (DACs) with 16-, 14-, and 12-bit resolution. The DACx0504 include a 2.5-V internal reference and user-selectable gain configuration, providing full-scale output voltages of 1.25 V (gain = $\frac{1}{2}$), 2.5 V (gain = 1), or 5 V (gain = 2). The device operates from a single 2.7 V to 5.5 V supply, is specified monotonic, and provides high linearity of ± 1 LSB INL.

Communication to the DACx0504 is performed through a 4-wire serial interface that supports stand-alone and daisy-chain operation. The optional frame-error checking provides added robustness to the DACx0504 serial interface.

The DACx0504 incorporates a power-on-reset circuit and RSTSEL pin that powers up and maintains the DAC outputs at either zero scale or midscale until a valid code is written to the device.

8.2 Functional Block Diagram



Copyright © 2017, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Digital-to-Analog Converter (DAC)

Each output channel in the DACx0504 consists of an R-2R ladder architecture followed by an output buffer amplifier. [Figure 57](#) shows a block diagram of the DAC architecture.

Copyright © 2017, Texas Instruments Incorporated

Figure 57. DACx0504 DAC Block Diagram

8.3.1.1 DAC Transfer Function

The input data are written to the individual DAC data registers in straight binary format. After a power-on or a reset event, all DAC registers are set to either zero code or midscale code, as determined by the RSTSEL pin. The DAC transfer function is given by [Equation 1](#).

$$V_{OUT} = \frac{CODE}{2^n} \times \frac{V_{REF}}{DIV} \times GAIN \quad (1)$$

where

- CODE = decimal equivalent of the binary code that is loaded to the DAC register. CODE ranges from 0 to $2^n - 1$.
- V_{REF} = DAC reference voltage. Either V_{REFOUT} from the internal 2.5 V reference or V_{REFIN} if using an external one.
- n = resolution in bits. Either 16 (DAC80504), 14 (DAC70504), or 12 (DAC60504).
- DIV = 1 or 2 as set by the REFDIV pin after a reset event or by the REF-DIV bit in the GAIN register.
- GAIN = 1 or 2 as set by the GAIN pin after a reset event or by the BUFF-GAIN bit for that DAC channel in the GAIN register.

Feature Description (continued)

8.3.1.2 Output Amplifiers

The DACx0504 output buffer amplifier is capable of generating rail-to-rail voltages on its output, giving a maximum output range of 0 V to V_{DD} . Each buffer amplifier is capable of driving a load of 2 k Ω in parallel with 10 nF to GND.

The full-scale output voltage for each channel is determined by the reference voltage (V_{REF}), the reference divider setting (DIV), and the output buffer gain for that channel (GAIN), as shown in [Table 1](#). After a power-up or reset event the DIV and GAIN settings are set by the REFDIV and GAIN pins, respectively. During normal operation the DIV and GAIN settings can be reconfigured through the REF-DIV and BUFF-GAIN bit (see [Equation 1](#)). The GAIN setting for each output channel can be individually configured thus enabling independent output voltage ranges for each DAC output.

Table 1. DAC Output Range Configuration

DIV SETTING	GAIN SETTING	DAC OUTPUT RANGE
÷2	×1	0 V to $\frac{1}{2} \times V_{REF}$
÷1	×1	Not recommended
÷2	×2	0 V to V_{REF}
÷1	×2	0 V to $2 \times V_{REF}$

8.3.1.3 DAC Register Structure

Data written to the DAC data registers is initially stored in the DAC buffer registers. Transfer of data from the DAC buffer registers to the active DAC registers can be configured to happen immediately (asynchronous mode) or initiated by an LDAC trigger (synchronous mode). Once the DAC active registers are updated, the DAC outputs change to their new values. When the host reads from a DAC Data register, the value held in the DAC buffer register is returned (not the value held in the DAC active register).

8.3.1.3.1 DAC Register Synchronous and Asynchronous Updates

The update mode for each DAC channel is determined by the status of its corresponding SYNC-EN bit. In asynchronous mode, a write to the DAC data register results in an immediate update of the DAC active register and DAC output on \overline{CS} rising edge. In synchronous mode, writing to the DAC data register does not automatically update the DAC output. Instead the update occurs only after an LDAC trigger event. An LDAC trigger is generated either through the LDAC bit in the TRIGGER register or by the \overline{LDAC} pin. The synchronous update mode enables simultaneous update of multiple DAC outputs. In both update modes a minimum wait time of 1 μ s is required between DAC output updates.

8.3.1.3.2 Broadcast DAC Register

The DAC broadcast register enables a simultaneous update of multiple DAC outputs with the same value with a single register write. Each DAC channel can be configured to update or remain unaffected by a broadcast command by setting the corresponding DAC-BRDCAST-EN bit in the SYNC register. A register write to the BRDCAST-DATA register forces those DAC channels that have been configured for broadcast operation to update their outputs. The DAC outputs update to the broadcast value on \overline{CS} rising edge independently of their synchronous mode configuration.

8.3.2 Internal Reference

The DACx0504 includes a 2.5 V precision bandgap reference enabled by default. Operation from an external reference is supported by disabling the internal reference in the CONFIG register. The internal reference is externally available at the REF pin.

A minimum 150 nF capacitor is recommended between the reference output and GND for noise filtering.

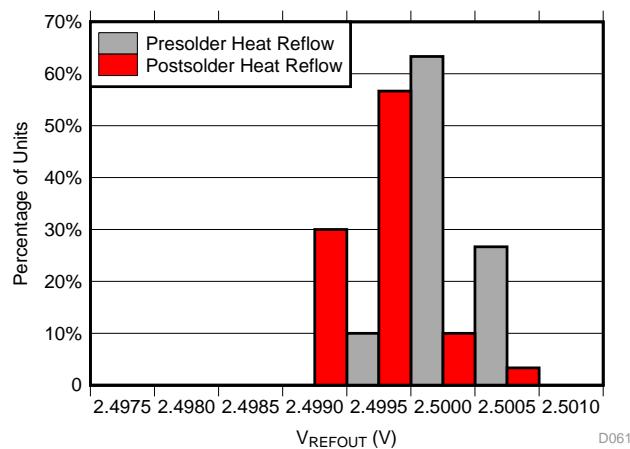
8.3.2.1 Reference Divider

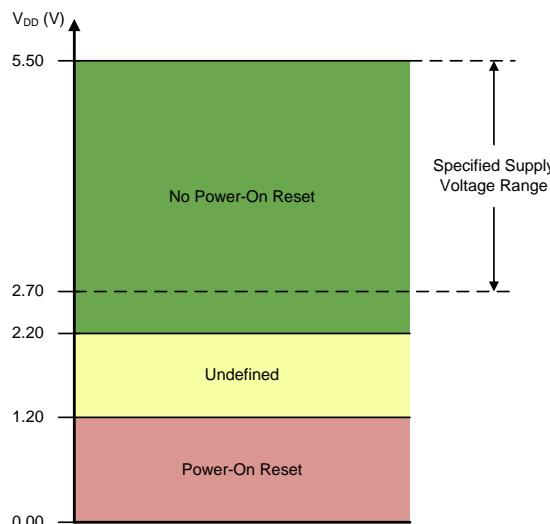
The reference voltage to the device, either from the internal reference or an external one can be divided by a factor of two by tying the REFDIV pin high at power-up or by setting the REF-DIV bit in the GAIN register to 1 during normal operation. The reference voltage divider provides additional flexibility in setting the full-scale output voltage for each DAC output and must be configured to make certain that there is sufficient headroom from V_{DD} to the DAC operating reference voltage (V_{REF}/DIV). See the [Recommended Operating Conditions](#) table for more information.

Improper configuration of the reference divider issues a reference alarm condition. In this case, the reference buffer is shut down, and all the DAC outputs go to 0 V. The DAC data registers are unaffected by the alarm condition thus enabling the DAC output to return to normal operation once the reference divider is configured correctly. The reference alarm status can be read from the REF-ALM bit in the STATUS register. Additionally by setting ALM-EN = 1 and ALM-SEL = 1 in the CONFIG register, the SDO/ALARM pin is configured as a reference alarm pin.

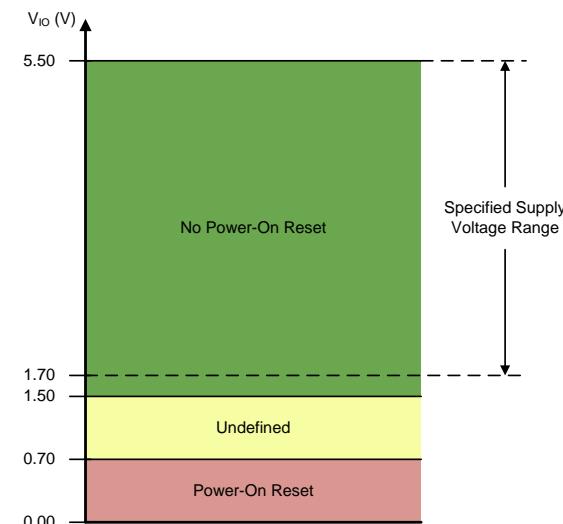
8.3.2.2 Solder Heat Reflow

A known behavior of IC reference voltage circuits is the shift induced by the soldering process. [Figure 58](#) shows the effect of solder heat reflow for the DACx0504 internal reference.




Figure 58. Solder Heat Reflow Reference Voltage Shift

8.3.3 Device Reset Options


8.3.3.1 Power-on-Reset (POR)

The DACx0504 includes a power-on reset function that controls the output voltage at power up. After the V_{DD} and V_{IO} supplies have been established a POR event is issued. The POR causes all registers to initialize to their default values and communication with the device is valid only after a 250 μ s power-on-reset delay. The default value for all DACs is either zero-code or midscale-code as determined by the RSTSEL pin. Each DAC channel remains at the power-up voltage until a valid command is written to it.

The POR circuit requires specific supply levels to discharge the internal capacitors and to reset the device on power up, as indicated in [Figure 59](#) and [Figure 60](#). In order to initiate a POR event, V_{DD} or V_{IO} must be below their corresponding low thresholds for at least 100 μ s. If V_{DD} and V_{IO} remain above their specified high threshold a POR event will not occur. When the supplies drop below their high threshold but remain over the lower one (shown as the undefined region), the device may or may not reset under all specified temperature and power-supply conditions.

Figure 59. Threshold Levels for V_{DD} POR Circuit

Figure 60. Threshold Levels for V_{IO} POR Circuit

8.3.3.2 Software Reset

A device software reset event is initiated by writing the reserved code 0x1010 to SOFT-RESET in the TRIGGER register. The software reset command is triggered on the CS rising edge of the instruction. A software reset initiates a POR event.

8.4 Device Functional Modes

8.4.1 Stand-Alone Operation

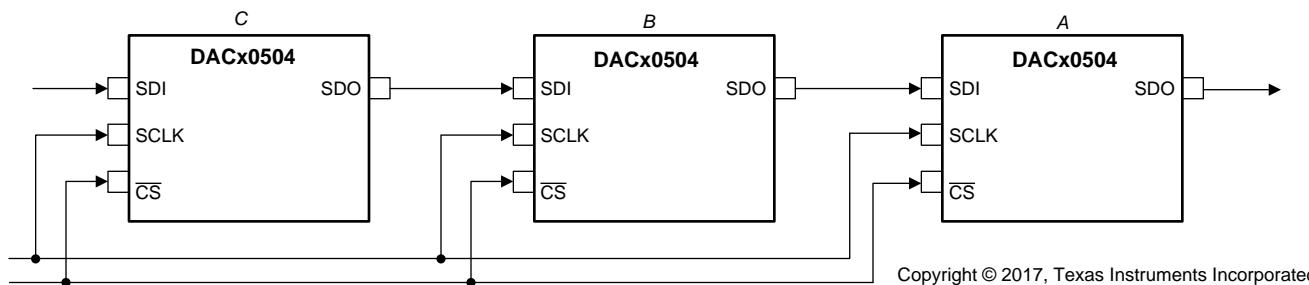
A serial interface access cycle is initiated by asserting the \overline{CS} pin low. The serial clock SCLK can be a continuous or gated clock. SDI data are clocked on SCLK falling edges. A regular serial interface access cycle is 24 bits long with error checking disabled and 32 bits long with error checking enabled, thus the \overline{CS} pin must stay low for at least 24 or 32 SCLK falling edges. The access cycle ends when the \overline{CS} pin is de-asserted high. If the access cycle contains less than the minimum clock edges, the communication is ignored. If the access cycle contains more than the minimum clock edges are present, only the last 24 or 32 bits are used by the device. When CS is high, the SCLK and SDI signals are blocked and the SDO pin is in a Hi-Z state.

In an error checking disabled access cycle (24-bits long) the first byte input to SDI is the instruction cycle which identifies the request as a read or write command and the 4-bit address to be accessed. The following bits in the cycle form the data cycle, as shown in [Table 2](#).

Table 2. Serial Interface Access Cycle

BIT	FIELD	DESCRIPTION
23	RW	Identifies the communication as a read or write command to the addressed register. R/W = 0 sets a write operation. R/W = 1 sets a read operation.
22:20	Reserved	Reserved bits. Must be filled with zeros.
19:16	A[3:0]	Register address. Specifies the register to be accessed during the read or write operation.
15:0	DI[15:0]	Data cycle bits. If a write command, the data cycle bits are the values to be written to the register with address A[3:0]. If a read command, the data cycle bits are don't care values.

A read operation is initiated by issuing a read command access cycle. After the read command, a second access cycle must be issued to get the requested data, as shown in [Table 3](#). Data are clocked out on SDO pin either on the falling edge or rising edge of SCLK according to the FSDO bit in the CONFIG register.


Table 3. SDO Output Access Cycle

BIT	FIELD	DESCRIPTION
23	RW	Echo RW from previous access cycle.
22:20	Reserved	Echo bits 22:20 from previous access cycle (all zeros).
19:16	A[3:0]	Echo address from previous access cycle.
15:0	DO[15:0]	Readback data requested on previous access cycle.

8.4.2 Daisy-Chain Operation

For systems that contain more than one DACx0504 devices, the SDO pin can be used to daisy-chain them together. Daisy-chain operation is useful in reducing the number of serial interface lines.

The first falling edge on the \overline{CS} pin starts the operation cycle. If more than 24 SCLK pulses are applied while the \overline{CS} pin is kept low, the data ripples out of the shift register and is clocked out on the SDO pin either on the falling edge or rising edge of SCLK according to the FSDO bit. By connecting the SDO output of the first device to the SDI input of the next device in the chain, a multiple-device interface is constructed. Each device in the system requires 24 clock pulses. As a result the total number of clock cycles must be equal to $24 \times N$, where N is the total number of DACx0504 devices in the daisy chain. When the serial transfer to all devices is complete the \overline{CS} signal is taken high. This action transfers the data from the serial peripheral interface (SPI) shift registers to the internal registers of each device in the daisy chain and prevents any further data from being clocked into the input shift register.

Figure 61. Daisy-Chain Layout

8.4.3 Frame Error Checking

If the DACx0504 is used in a noisy environment, error checking can be used to check the integrity of SPI data communication between the device and the host processor. This feature can be enabled by setting the CRC-EN bit in the CONFIG register.

The error checking scheme is based on the CRC-8-ATM (HEC) polynomial $x^8 + x^2 + x + 1$ (that is, 100000011). When error checking is enabled, the serial interface access cycle width is 32 bits. The normal 24-bit SPI data are appended with an 8-bit CRC polynomial by the host processor before feeding it to the device, as shown in [Table 4](#). In all serial interface readback operations the CRC polynomial is output on the SDO pin as part of the 32-bit cycle.

Table 4. Error Checking Serial Interface Access Cycle

BIT	FIELD	DESCRIPTION
31	RW	Identifies the communication as a read or write command to the addressed register. R/W = 0 sets a write operation. R/W = 1 sets a read operation.
30	CRC-ERROR	Reserved bit. Set to zero.
29:28	Reserved	Reserved bits. Must be filled with zeros.
27:24	A[3:0]	Register address. Specifies the register to be accessed during the read or write operation.
23:8	DI[15:0]	Data cycle bits. If a write command, the data cycle bits are the values to be written to the register with address A[3:0]. If a read command, the data cycle bits are don't care values.
7:0	CRC	8-bit CRC polynomial.

The DACx0504 decodes the 32-bit access cycle to compute the CRC remainder on \overline{CS} rising edges. If no error exists, the CRC remainder is zero and data are accepted by the device.

A write operation failing the CRC check causes the data to be ignored by the device. After the write command, a second access cycle can be issued to determine the error checking result (CRC-ERROR bit) on the SDO pin, as shown in [Table 5](#). Additionally, by setting ALM-EN = 1 and ALM-SEL = 0 in the CONFIG register, the SDO/ALARM pin is configured as a CRC alarm pin.

Table 5. Write Operation Error Checking Cycle

BIT	FIELD	DESCRIPTION
31	RW	Echo RW from previous access cycle (RW = 0).
30	CRC-ERROR	Returns a 1 when a CRC error is detected, 0 otherwise.
29:28	Reserved	Echo bits 29:28 from previous access cycle (all zeros).
27:24	A[3:0]	Echo address from previous access cycle.
23:8	DO[15:0]	Echo data from previous access cycle.
7:0	CRC	Calculated CRC value of bits 31:8.

A read operation must be followed by a second access cycle to get the requested data on the SDO pin. The error check result (CRC-ERROR bit) from the read command is output on the SDO pin, as shown in [Table 6](#). As in the case of a write operation failing the CRC check, the SDO/ALARM pin if configured as a CRC alarm pin can be used to indicate a read command CRC failure.

Table 6. Read Operation Error Checking Cycle

BIT	FIELD	DESCRIPTION
31	RW	Echo RW from previous access cycle (RW = 1).
30	CRC-ERROR	Returns a 1 when a CRC error is detected, 0 otherwise.
29:28	Reserved	Echo bits 29:28 from previous access cycle (all zeros).
27:24	A[3:0]	Echo address from previous access cycle.
23:8	DO[15:0]	Readback data requested on previous access cycle.
7:0	CRC	Calculated CRC value of bits 31:8.

8.4.4 Power-Down Mode

The DACx0504 DAC output amplifiers and internal reference can be independently powered down through the CONFIG register. At power-up all output channels and the device internal reference are active by default. A DAC output channel in power-down mode is connected internally to GND through a 1-k Ω resistor.

8.5 Programming

The DACx0504 is controlled through a flexible four-wire serial interface that is compatible with SPI type interfaces used on many microcontrollers and DSP controllers. The interface provides read and write access to all DACx0504 registers and can also be configured to daisy-chain multiple devices for write operations. The DACx0504 incorporates an optional error checking mode to validate SPI data communication integrity in noisy environments. [Table 7](#) shows the SPI timing requirements. [Figure 62](#) and [Figure 63](#) show the SPI write and read timing diagrams, respectively. [Figure 64](#) shows the digital logic timing diagram.

Table 7. Programming Timing Requirements⁽¹⁾

		V _{IO} = 1.7 V to 2.7 V			V _{IO} = 2.7 V to 5.5 V			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
SERIAL INTERFACE – WRITE OPERATION								
f _{SCLK}	SCLK frequency			50			50	MHz
t _{SCLKHIGH}	SCLK high time		9		9			ns
t _{SCLKLOW}	SCLK low time		9		9			ns
t _{SDIS}	SDI setup		5		5			ns
t _{SDIH}	SDI hold		10		10			ns
t _{CS}	CS to SCLK falling edge setup		13		13			ns
t _{CSH}	SCLK falling edge to CS rising edge		10		10			ns
t _{CSHIGH}	CS high time		15		15			ns
t _{CSIGNORE}	SCLK falling edge to CS ignore		7		7			ns
SERIAL INTERFACE – READ AND DAISY CHAIN OPERATION, FSDO = 0								
f _{SCLK}	SCLK frequency			12			18	MHz
t _{SCLKHIGH}	SCLK high time		35		25			ns
t _{SCLKLOW}	SCLK low time		35		25			ns
t _{SDIS}	SDI setup		5		5			ns
t _{SDIH}	SDI hold		10		10			ns
t _{CS}	CS to SCLK falling edge setup		32		20			ns
t _{CSH}	SCLK falling edge to CS rising edge		10		10			ns
t _{CSHIGH}	CS high time		15		15			ns
t _{SDODLY}	SDO output delay from SCLK rising edge		3.5	33.5	3.5		23	ns
t _{SDODZ}	SDO driven to tri-state		0	30	0		25	ns
t _{CSIGNORE}	SCLK falling edge to CS ignore		7		7			ns
SERIAL INTERFACE – READ AND DAISY CHAIN OPERATION, FSDO = 1								
f _{SCLK}	SCLK frequency			20			25	MHz
t _{SCLKHIGH}	SCLK high time		22		18			ns
t _{SCLKLOW}	SCLK low time		22		18			ns
t _{SDIS}	SDI setup		5		5			ns
t _{SDIH}	SDI hold		10		10			ns
t _{CS}	CS to SCLK falling edge setup		32		20			ns
t _{CSH}	SCLK falling edge to CS rising edge		10		10			ns
t _{CSHIGH}	CS high time		15		15			ns
t _{SDODLY}	SDO output delay from SCLK falling edge		3.5	45	3.5		32	ns
t _{SDODZ}	SDO driven to tri-state		0	30	0		25	ns
t _{CSIGNORE}	SCLK falling edge to CS ignore		7		7			ns
DIGITAL LOGIC								
t _{RSTDLYPOR}	POR reset delay		170	250		170	250	μs
t _{DACWAIT}	Sequential DAC output updates		1		1			μs
t _{LDACS}	LDAC setup		0		0			ns
t _{LDACH}	LDAC hold		5		5			ns

(1) All input signals are specified at $t_R = t_F = 1 \text{ ns/V}$ (10% to 90% of V_{IO}), timed from a voltage level of $(V_{IL} + V_{IH}) / 2$, $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$, $V_{IO} = 1.7 \text{ V to } 5.5 \text{ V}$, $V_{REFIN} = 1.25 \text{ V to } 5.5 \text{ V}$, SDO loaded with 20 pF, and $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$ (unless otherwise noted)

Figure 62. Serial Interface Write Timing Diagram

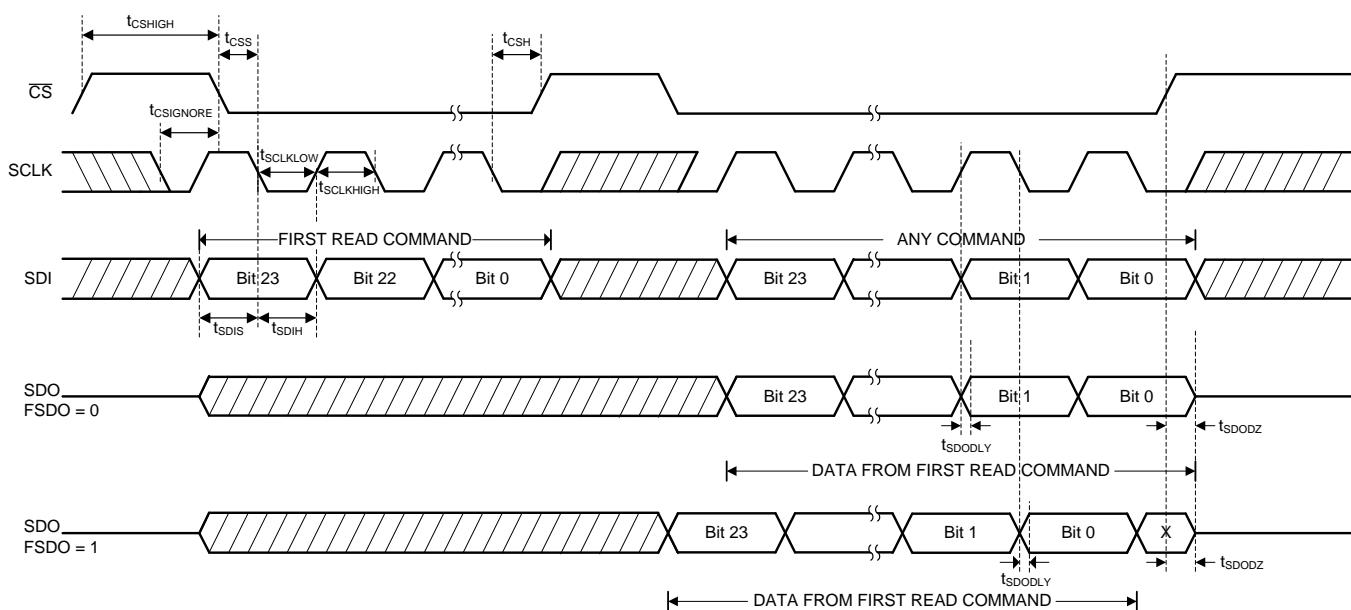


Figure 63. Serial Interface Read Timing Diagram

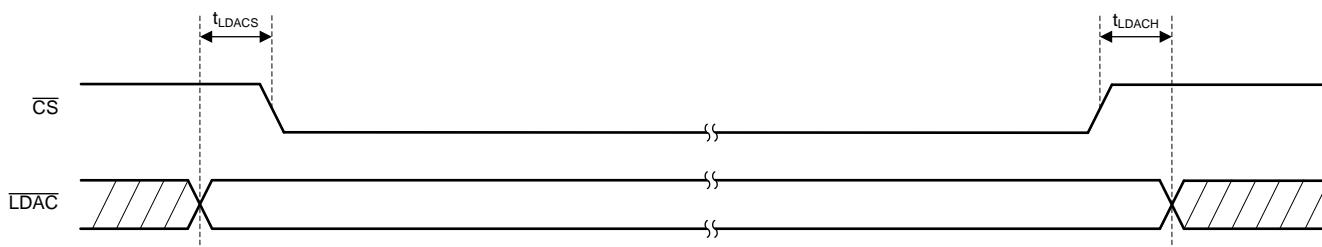


Figure 64. Digital Logic Timing Diagram

8.6 Register Map

Table 8. Register Map

REGISTER	TYPE	RESET	ADDRESS BITS				DATA BITS																					
			A3	A2	A1	A0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0						
NOP	W	0000	0	0	0	0	NOP																					
DEVICE ID	R	—	0	0	0	1	DEVICEID												VERSIONID									
SYNC	R/W	FF00	0	0	1	0	RESERVED				DACx-BRDCAST-EN				RESERVED				DACx-SYNC-EN									
CONFIG	R/W	0000	0	0	1	1	RESERVED	ALM SEL	ALM EN	CRC EN	F SDO	D SDO	REF PWD WN	RESERVED				DACx-PWDWN										
GAIN	R/W	0000	0	1	0	0	RESERVED								REF DIV EN	RESERVED				BUFFx-GAIN								
TRIGGER	W	0000	0	1	0	1	RESERVED												L DAC	SOFT-RESET[3:0]								
BRDCAST	R/W	0000	0	1	1	0	BRDCAST-DATA[15:0]																					
STATUS	R/W	0000	0	1	1	1	RESERVED																		REF ALM			
DAC0	R/W	0000	1	0	0	0	DAC0-DATA[15:0]																					
DAC1	R/W	0000	1	0	0	1	DAC1-DATA[15:0]																					
DAC2	R/W	0000	1	0	1	0	DAC2-DATA[15:0]																					
DAC3	R/W	0000	1	0	1	1	DAC3-DATA[15:0]																					
All Others	—	—	—	—	—	—	RESERVED																					

8.6.1 NOP Register (address = 0x00) [reset = 0x0000]

Figure 65. NOP Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NOP								W							
W															

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. NOP Register Field Descriptions

Bit	Field	Type	Reset	Description
15:0	NOP	W	0x0000	No operation. Write 0000h for proper no-operation command

8.6.2 DEVICE ID Register (address = 0x01) [reset = 0x---]

Figure 66. DEVICE ID Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DEVICEID															
R								R							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. DEVICE ID Field Descriptions

Bit	Field	Type	Reset	Description
15:2	DEVICEID	R	----	Device ID: D15 Reserved - 0 D14:12 Resolution - 000 (16-bit); 001 (14-bit); 010 (12-bit) D11:4 Channels - 0100 (4 channels) D7 Reset - Determined by RSTSEL pin. 0 (reset to zero); 1 (reset to midscale) D6:2 Reserved - 00101
1:0	VERSIONID	R	11	Version ID. Subject to change

8.6.3 SYNC Register (address = 0x2) [reset = 0xFF00]

Figure 67. SYNC Register

15	14	13	12	11	10	9	8
		Reserved		DAC3-BRDCAST-EN	DAC2-BRDCAST-EN	DAC1-BRDCAST-EN	DAC0-BRDCAST-EN
—				R/W	R/W	R/W	R/W
7	6	5	4	3	2	1	0
	Reserved			DAC3-SYNC-EN	DAC2-SYNC-EN	DAC1-SYNC-EN	DAC0-SYNC-EN
—				R/W	R/W	R/W	R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. SYNC Register Field Descriptions

Bit	Field	Type	Reset	Description
15:12	Reserved	—	1111	Reserved for factory use
11	DAC3-BRDCAST-EN	R/W	1	When set to 1 the corresponding DAC is set to update its output after a serial interface write to the BRDCAST register.
10	DAC2-BRDCAST-EN	R/W	1	When cleared to 0 the corresponding DAC output remains unaffected after a serial interface write to the BRDCAST register.
9	DAC1-BRDCAST-EN	R/W	1	
8	DAC0-BRDCAST-EN	R/W	1	
7:4	Reserved	—	0000	Reserved for factory use
3	DAC3-SYNC-EN	R/W	0	When set to 1 the corresponding DAC output is set to update in response to an LDAC trigger (synchronous mode).
2	DAC2-SYNC-EN	R/W	0	When cleared to 0 the corresponding DAC output is set to update immediately on a \overline{CS} rising edge (asynchronous mode).
1	DAC1-SYNC-EN	R/W	0	
0	DAC0-SYNC-EN	R/W	0	

8.6.4 CONFIG Register (address = 0x3) [reset = 0x0000]

Figure 68. CONFIG Register

15	14	13	12	11	10	9	8
Reserved		ALM-SEL	ALM-EN	CRC-EN	FSDO	DSDO	REF-PWDWN
—		R/W	R/W	R/W	R/W	R/W	R/W
7	6	5	4	3	2	1	0
		Reserved		DAC3-PWDWN	DAC2-PWDWN	DAC1-PWDWN	DAC0-PWDWN
		—		R/W	R/W	R/W	R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. CONFIG Register Field Descriptions

Bit	Field	Type	Reset	Description
15:14	Reserved	—	00	Reserved for factory use
13	ALM-SEL	R/W	0	ALARM select. 0: ALARM pin is CRC-ERROR 1: ALARM pin is REF-ALARM
12	ALM-EN	R/W	0	Configure SDO/ALARM pin. When 1: SDO/ALARM pin is an active-low, open-drain, alarm pin. An external 10 kΩ pullup resistor to V_{IO} is required. FSDO and DSDO bits are ignored. When 0: SDO/ALARM pin is a serial interface, push-pull, SDO pin
11	CRC-EN	R/W	0	CRC enable bit. Set to 1 to enable CRC. Set to 0 to disable
10	FSDO	R/W	0	Fast SDO bit (half-cycle speedup). When 0, SDO updates on an SCLK rising edge. When 1, SDO updates a half-cycle earlier, during an SCLK falling edge.
9	DSDO	R/W	0	Disable SDO bit. When 1, SDO is always tri-stated. When 0, SDO is driven while CS is low, and tri-stated while CS is high
8	REF-PWDWN	R/W	0	When set to 1 disables the device internal reference
7:4	Reserved	—	0000	Reserved for factory use
3	DAC3-PWDWN	R/W	0	When set to 1 the corresponding DAC is set in power-down mode and its output is connected to GND through a 1 kΩ internal resistor.
2	DAC2-PWDWN	R/W	0	
1	DAC1-PWDWN	R/W	0	
0	DAC0-PWDWN	R/W	0	

8.6.5 GAIN Register (address = 0x04) [reset = 0x---]

Figure 69. GAIN Register

15	14	13	12	11	10	9	8
Reserved							REFDIV-EN
—							R/W
7	6	5	4	3	2	1	0
Reserved				BUFF3-GAIN	BUFF2-GAIN	BUFF1-GAIN	BUFF0-GAIN
—				R/W	R/W	R/W	R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. GAIN Register Field Descriptions

Bit	Field	Type	Reset	Description
15:9	Reserved	—	0	Reserved for factory use.
8	REFDIV-EN	R/W	0/1	When set to 1 the reference voltage is internally divided by a factor of 2. When cleared to 0 the reference voltage is unaffected. Default value is determined by the REFDIV pin.
7:4	Reserved	—	0000	Reserved for factory use
3	BUFF3-GAIN	R/W	0/1	When set to 1 the buffer amplifier for corresponding DAC has a gain of 2. When cleared to 0 the buffer amplifier for corresponding DAC has a gain of 1. Default value is determined by the GAIN pin.
2	BUFF2-GAIN	R/W	0/1	
1	BUFF1-GAIN	R/W	0/1	
0	BUFF0-GAIN	R/W	0/1	

8.6.6 TRIGGER Register (address = 0x05) [reset = 0x0000]

Figure 70. TRIGGER Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										LDAC	SOFT-RESET[3:0]				
—										W	W				

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. TRIGGER Register Field Descriptions

Bit	Field	Type	Reset	Description
15:5	Reserved	—	0	Reserved for factory use.
4	LDAC	W	0	Set this bit to 1 to synchronously load those DACs that have been set in synchronous mode in the SYNC register.
3:0	SOFT-RESET[3:0]	W	0x0	When set to the reserved code 1010 resets the device to its default state.

8.6.7 BRDCAST Register (address = 0x6) [reset = 0x0000]

Figure 71. BRDCAST Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BRDCAST-DATA[15:0]															
R/W															

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. BRDCAST Register Field Descriptions

Bit	Field	Type	Reset	Description
15:0	BRDCAST-DATA[15:0]	R/W	0x0000	<p>Writing to the BRDCAST register forces those DAC channels that have been set to broadcast in the SYNC register to update their active data register with the BRDCAST-DATA value. Data are MSB aligned in straight binary format and follows the format below:</p> <p>DAC80504: { DATA[15:0] } DAC70504: { DATA[13:0], x, x } DAC60504: { DATA[11:0], x, x, x, x } x – Don't care bits</p>

8.6.8 STATUS Register (address = 0x7) [reset = 0x0000]

Figure 72. STATUS Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved															REF-ALM
—															R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. STATUS Register Field Descriptions

Bit	Field	Type	Reset	Description
15:1	Reserved	—	0	Reserved for factory use.
0	REF-ALM	R	0	Reference alarm bit. Reads 1 when the difference between V_{REF}/DIV and V_{DD} is below the required minimum analog threshold. Reads 0 otherwise.

8.6.9 DACx Register (address = 0x8 to 0xF) [reset = 0x0000 or 0x8000]

Figure 73. DACx Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DACx-DATA[15:0]															
R/W															

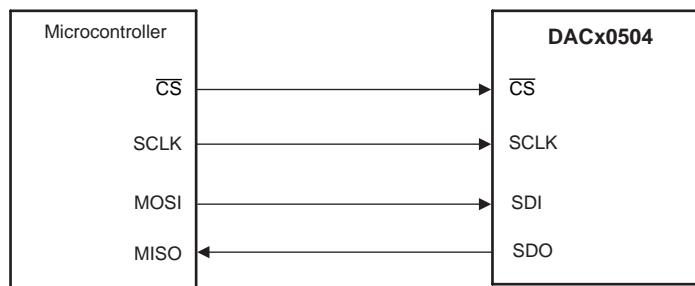
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. DACx Register Field Descriptions

Bit	Field	Type	Reset	Description
15:0	DACx-DATA[15:0]	R/W	0x0000 or 0x8000	<p>Stores the 16- or 14-bit data to be loaded to DACx in MSB aligned straight binary format. The default value is determined by the RSTSEL pin.</p> <p>Data follows the format below:</p> <p>DAC80504: { DATA[15:0] } DAC70504: { DATA[13:0], x, x } DAC60504: { DATA[11:0], x, x, x, x } x – Don't care bits</p>

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The high linearity, small package size and wide temperature range make the DACx0504 suitable in applications such as optical networking, wireless infrastructure, industrial automation and data acquisition systems. The device incorporates a 2.5 V internal reference with an internal reference divider circuit that enables full-scale DAC output voltages of 1.25 V, 2.5 V, or 5 V.

9.1.1 Interfacing to a Microcontroller

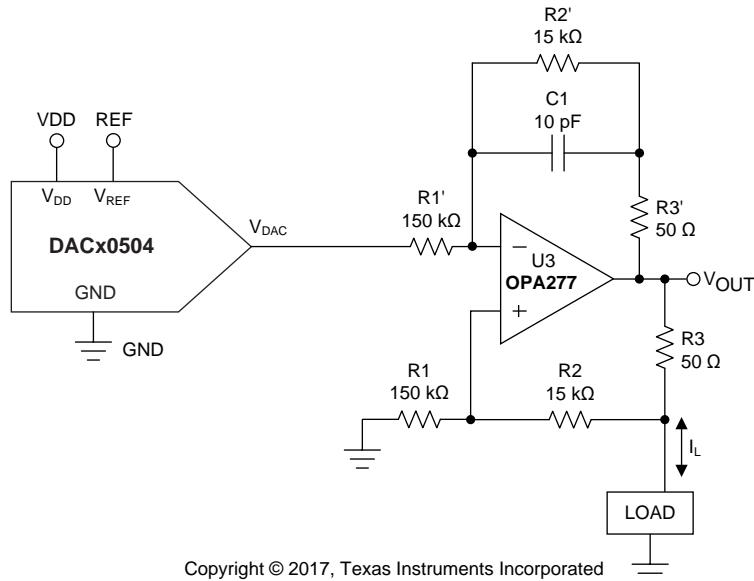
Figure 74 displays a typical serial interface that may be observed when connecting the DACx0504 SPI serial interface to a (master) microcontroller type platform. The setup for the interface is as follows: the microcontroller output SPI CLK drives the SCLK pin of the DACx0504, while the DACx0504 SDI pin is driven by the MOSI pin of the microcontroller. The CS pin of the DACx0504 can be asserted from a general program input/output pin of the microcontroller. When data are to be transmitted to the DACx0504, the CS pin is taken low. The data from the microcontroller is then transmitted to the DACx0504, totaling 24 bits latched into the DACx0504 device through the falling edge of SCLK. CS is then brought high after the completed write. The DACx0504 requires data with the MSB as the first bit received.

Copyright © 2017, Texas Instruments Incorporated

Figure 74. Typical Serial Interface

Application Information (continued)

9.1.2 Programmable Current Source Circuit


The DACx0504 can be integrated into the circuit in [Figure 75](#) to implement an improved Howland current pump for precise voltage to current conversions. Bidirectional current flow and high voltage compliance are two features of the circuit. With a matched resistor network, the load current of the circuit is shown by [Equation 2](#).

$$I_L = \frac{(R2 + R3) / R1}{R3} \times V_{REF} \times \frac{CODE}{2^n} \quad (2)$$

The value of R3 in [Equation 2](#) can be reduced to increase the output current drive of U3. U3 can drive ± 20 mV in both directions with voltage compliance limited up to 15 V by the U3 voltage supply. Elimination of the circuit compensation capacitor C1 in the circuit is not suggested as a result of the change in the output impedance Z_0 , according to [Equation 3](#).

$$Z_0 = \frac{(R1')(R3)(R1 + R2)}{R1(R2' + R3') - R1'(R2 + R3)} \quad (3)$$

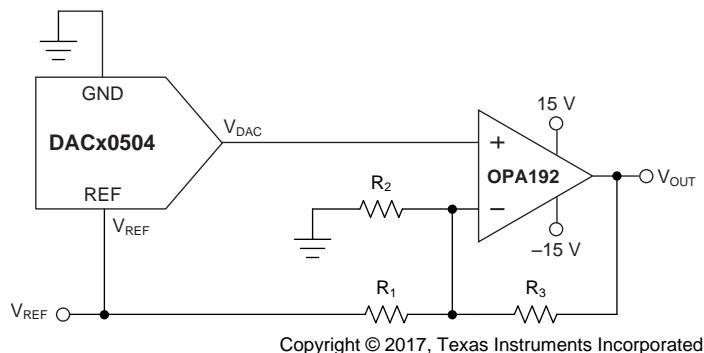

As shown in [Equation 3](#), with matched resistors, Z_0 is infinite and the circuit is optimum for use as a current source. However, if unmatched resistors are used, Z_0 is positive or negative with negative output impedance being a potential cause of oscillation. Therefore, by incorporating C1 into the circuit, possible oscillation problems are eliminated. The value of C1 can be determined for critical applications; for most applications, however, a value of several pF is suggested.

Figure 75. Programmable Bidirectional Current Source Circuit

9.2 Typical Application

The DACx0504 is designed for single-supply operation; however, a bipolar output is also possible using the circuit shown in [Figure 76](#).

Figure 76. Bipolar Operation Using the DACx0504

9.2.1 Design Requirements

The circuit shown in [Figure 76](#) gives a bipolar output voltage at V_{OUT} . When GAIN = 1, V_{OUT} can be calculated using [Equation 4](#):

$$V_{OUT}(\text{CODE}) = \left[\left(V_{REF} \times \frac{\text{CODE}}{2^n} \right) \left(1 + \frac{R_3}{R_2} + \frac{R_3}{R_1} \right) - \left(V_{REF} \times \frac{R_3}{R_1} \right) \right]$$

where

- $V_{OUT}(\text{CODE})$ = output voltage versus code
- CODE = 0 to $2^n - 1$. This is the digital code loaded to the DAC
- V_{REF} = reference voltage applied to the DACx0504
- n = resolution in bits

(4)

Table 18. Design Parameters

PARAMETER	VALUE
V_{OUT}	± 10 V
V_{REF}	2.5 V
n	12

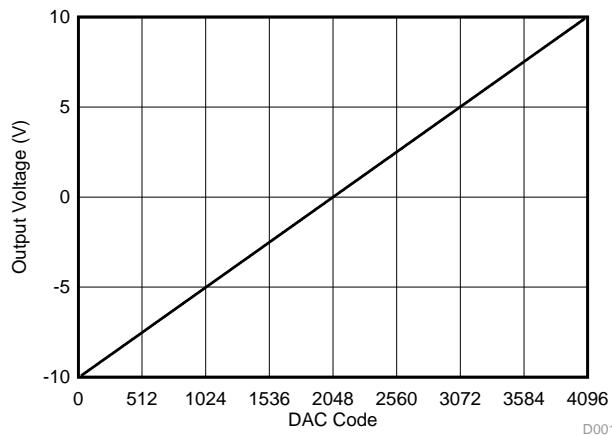
9.2.2 Detailed Design Procedure

The bipolar output span can be calculated through [Equation 4](#) by defining a few parameters, the first being the value for the reference voltage. Once a reference voltage is chosen, the gain resistors can be set accordingly by determining the desired V_{OUT} at code 0 and code 2^n . For a V_{REF} of 2.5 V and a desired output voltage range of ± 10 V the calculation is as follows.

CODE = 0:

$$V_{OUT}(0) = - \left(V_{REF} \times \frac{R_3}{R_1} \right) = - \left(2.5V \times \frac{R_3}{R_1} \right) \quad (5)$$

Setting the equation to minimum output span, $V_{OUT}(0) = -10$ V, will reduce the equation to: $R_3/R_1 = 4$:


CODE = 4096:

Setting the equation to maximum output span, $V_{OUT}(4096) = 10$ V, and $R_3/R_1 = 4$ will reduce the equation to: $R_3/R_2 = 3$

It is important to note that the maximum code of a 12-bit DAC is 4095; code 4096 was used to simplify the equation above. For practical use, the true output span will encompass a range of -10 V to $(10$ V $- 1$ LSB), which in this case is -10 V to 9.995 V.

9.2.3 Application Curve

The ± 10 V output span with a reference voltage of 2.5 V can be achieved by using values of $30\text{ k}\Omega$, $10\text{ k}\Omega$, and $7.5\text{ k}\Omega$ for R_3 , R_2 , and R_1 , respectively. A curve to illustrate this output span is shown in [Figure 77](#). For this example, 1% tolerance resistors were used in evaluating bipolar operation.

Figure 77. Bipolar Operation

10 Power Supply Recommendations

The DACx0504 operates within the specified V_{DD} supply range of 2.7 V to 5.5 V, and V_{IO} supply range of 1.7 V to 5.5 V. The DACx0504 does not require specific supply sequencing.

The V_{DD} supply must be well-regulated and low-noise. Switching power supplies and dc-dc converters often have high-frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar high-frequency spikes. This noise can easily couple into the DAC output voltage through various paths between the power connections and analog output. In order to further minimize noise from the power supply, include a 1- μ F to 10- μ F capacitor and 0.1- μ F bypass capacitor. The current consumption on the V_{DD} pin, the short-circuit current limit, and the load current for the device is listed in the *Electrical Characteristics*. The power supply must meet the aforementioned current requirements.

11 Layout

11.1 Layout Guidelines

A precision analog component requires careful layout, the list below provides some insight into good layout practices.

- Bypass all power supply pins to ground with a low-ESR ceramic bypass capacitor. The typical recommended bypass capacitance is 0.1- μ F to 0.22- μ F ceramic with a X7R or NP0 dielectric.
- Place power supplies and REF bypass capacitors close to the pins to minimize inductance and optimize performance.
- Use a high-quality ceramic type NP0 or X7R for its optimal performance across temperature, and very low dissipation factor.
- The digital and analog sections must have proper placement with respect to the digital pins and analog pins of the DACx0504 device. The separation of analog and digital blocks minimizes coupling into neighboring blocks, as well as interaction between analog and digital return currents.

11.2 Layout Example

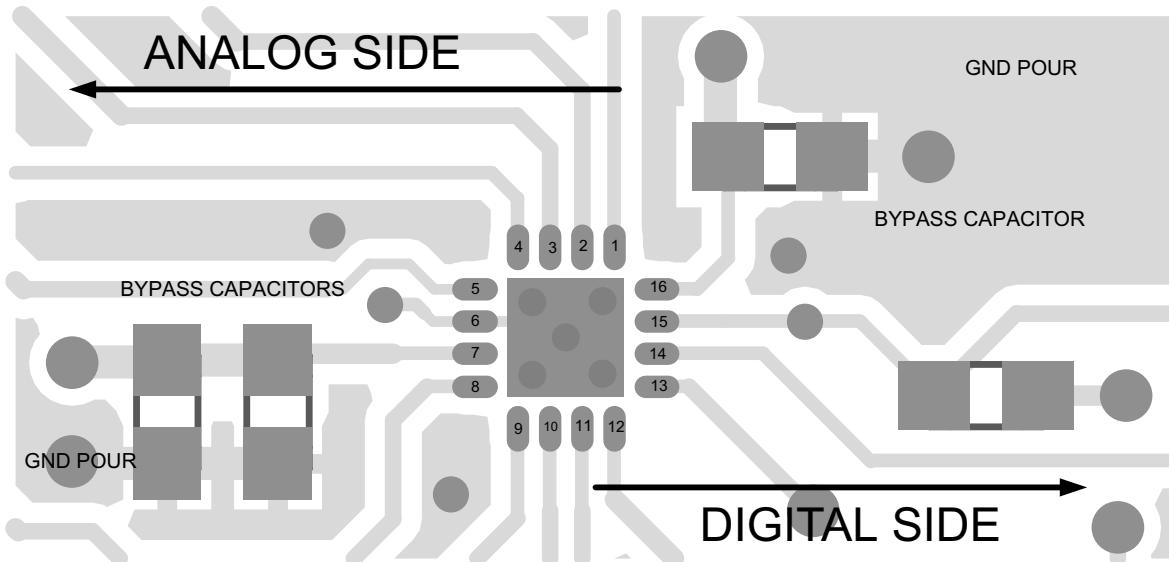


Figure 78. DACx0504 Layout Example

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

请参阅如下相关文档： [《DACx0504 评估模块用户指南》](#)

12.2 相关链接

表 19 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具与软件，以及立即订购快速访问。

表 19. 相关链接

器件	产品文件夹	立即订购	技术文档	工具与软件	支持和社区
DAC80504	请单击此处				
DAC70504	请单击此处				
DAC60504	请单击此处				

12.3 接收文档更新通知

要接收文档更新通知，请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

12.4 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的 [《使用条款》](#)。

TI E2E™ 在线社区 **TI 的工程师对工程师 (E2E) 社区**。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中，您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 **TI 参考设计支持** 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

12.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 静电放电警告

 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序，可能会损坏集成电路。

 ESD 的损坏小至导致微小的性能降级，大至整个器件故障。精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能导致器件与其发布的规格不相符。

12.7 术语表

[SLYZ022 — TI 术语表](#)。

这份术语表列出并解释术语、缩写和定义。

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更，恕不另行通知，且不会对此文档进行修订。如需获取此数据表的浏览器版本，请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DAC60504BRTER	ACTIVE	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	654B	Samples
DAC60504BRTET	ACTIVE	WQFN	RTE	16	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	654B	Samples
DAC70504RTER	ACTIVE	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	70504	Samples
DAC70504RTET	ACTIVE	WQFN	RTE	16	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	70504	Samples
DAC80504RTER	ACTIVE	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	(80504, 854)	Samples
DAC80504RTET	ACTIVE	WQFN	RTE	16	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	(80504, 854)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

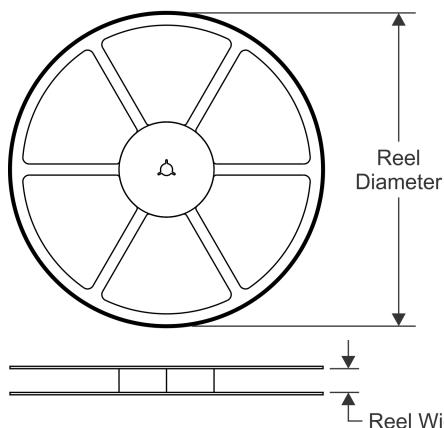
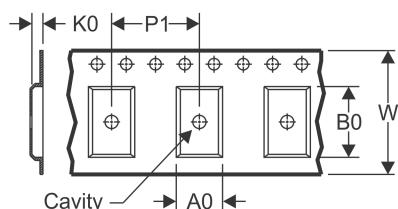
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

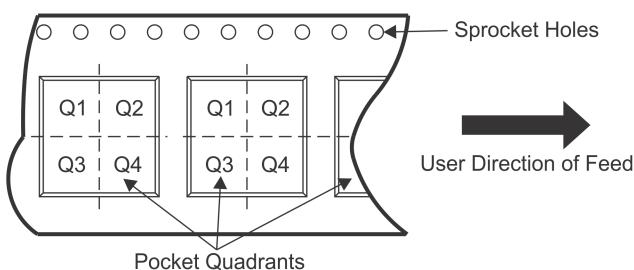
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

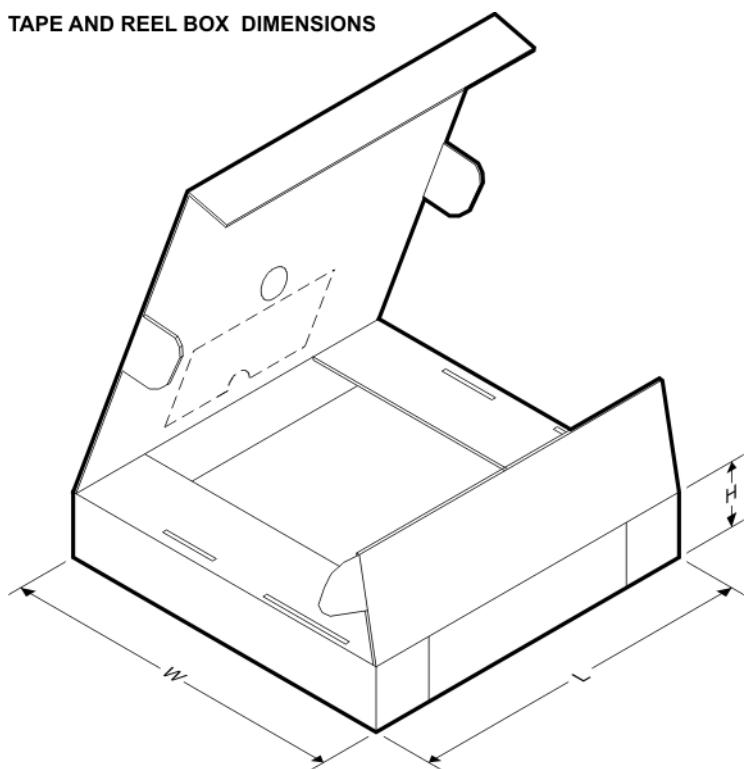


www.ti.com

PACKAGE OPTION ADDENDUM


10-Dec-2020

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

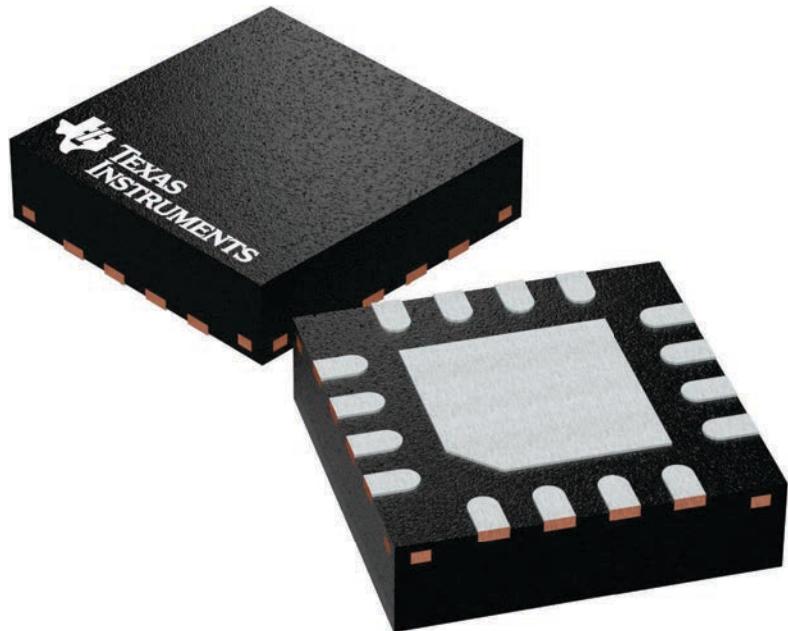
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DAC60504BRTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC60504BRTET	WQFN	RTE	16	250	180.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC70504RTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC70504RTET	WQFN	RTE	16	250	180.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC80504RTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC80504RTET	WQFN	RTE	16	250	180.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DAC60504BRTER	WQFN	RTE	16	3000	367.0	367.0	38.0
DAC60504BRTET	WQFN	RTE	16	250	213.0	191.0	35.0
DAC70504RTER	WQFN	RTE	16	3000	367.0	367.0	38.0
DAC70504RTET	WQFN	RTE	16	250	213.0	191.0	35.0
DAC80504RTER	WQFN	RTE	16	3000	367.0	367.0	38.0
DAC80504RTET	WQFN	RTE	16	250	213.0	191.0	35.0

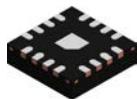
GENERIC PACKAGE VIEW


RTE 16

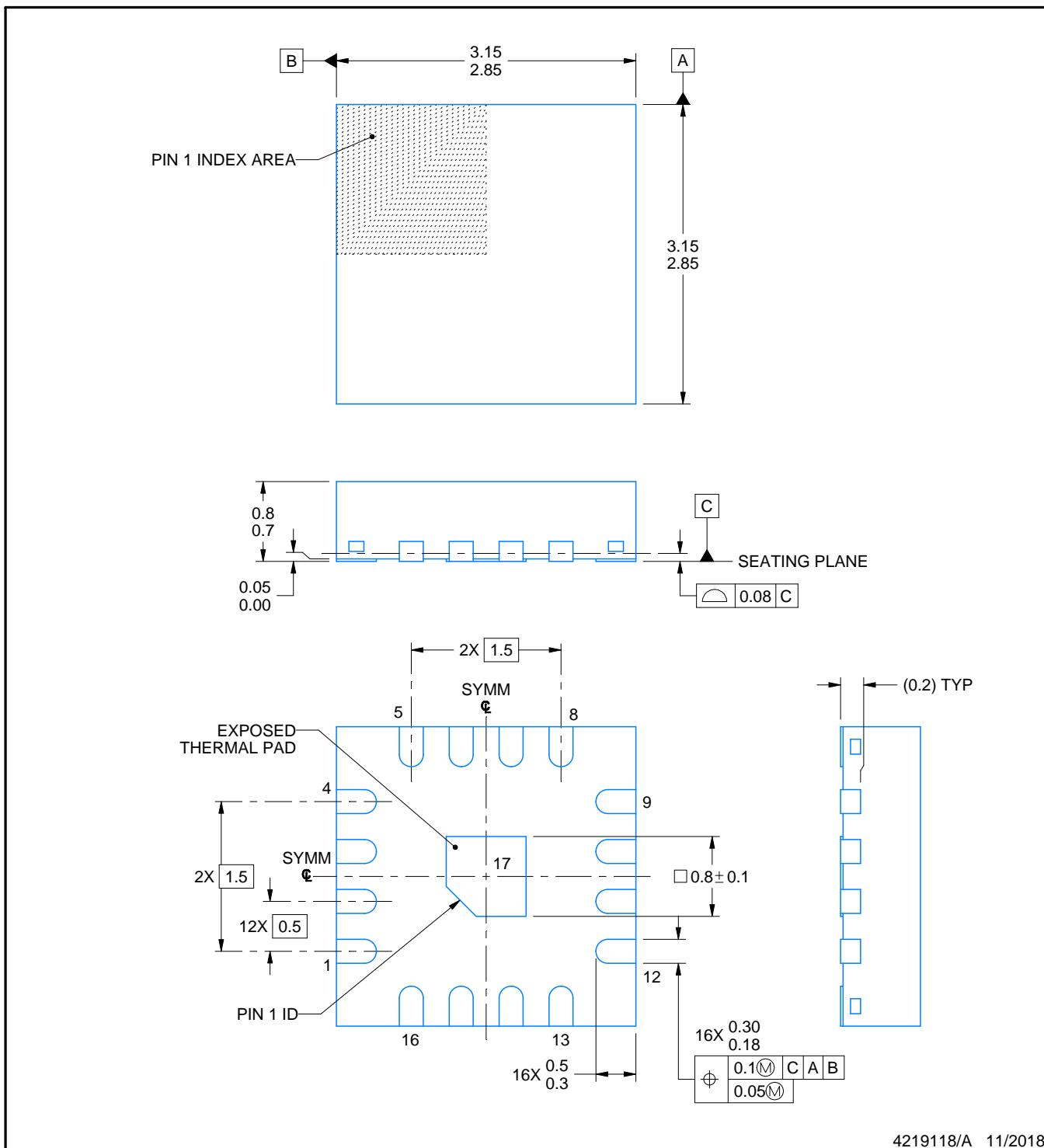
WQFN - 0.8 mm max height

3 x 3, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4225944/A


PACKAGE OUTLINE

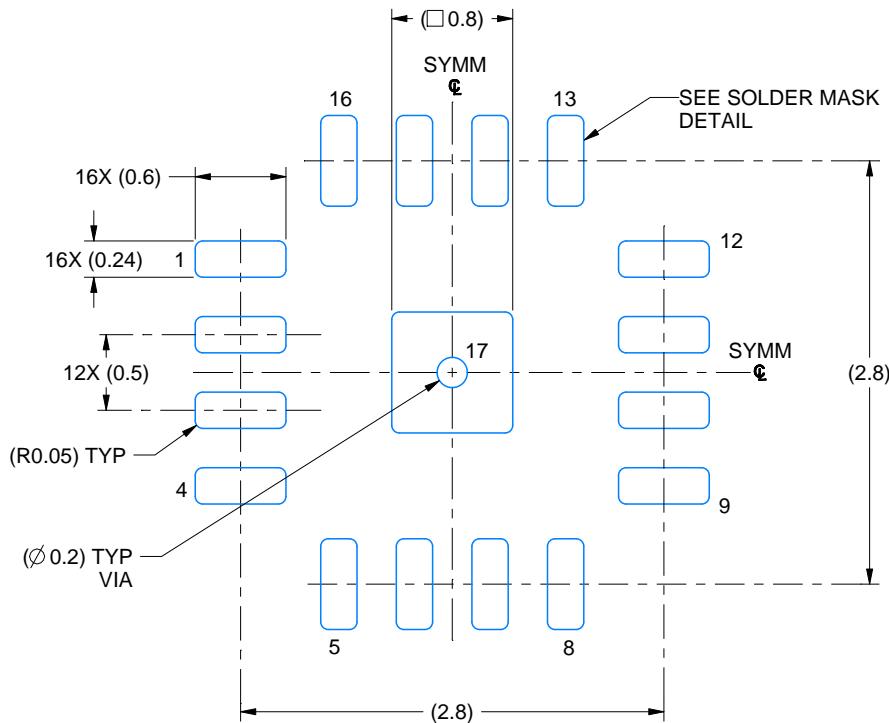
RTE0016D

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

4219118/A 11/2018

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

RTE0016D

WQFN - 0.8 mm max height

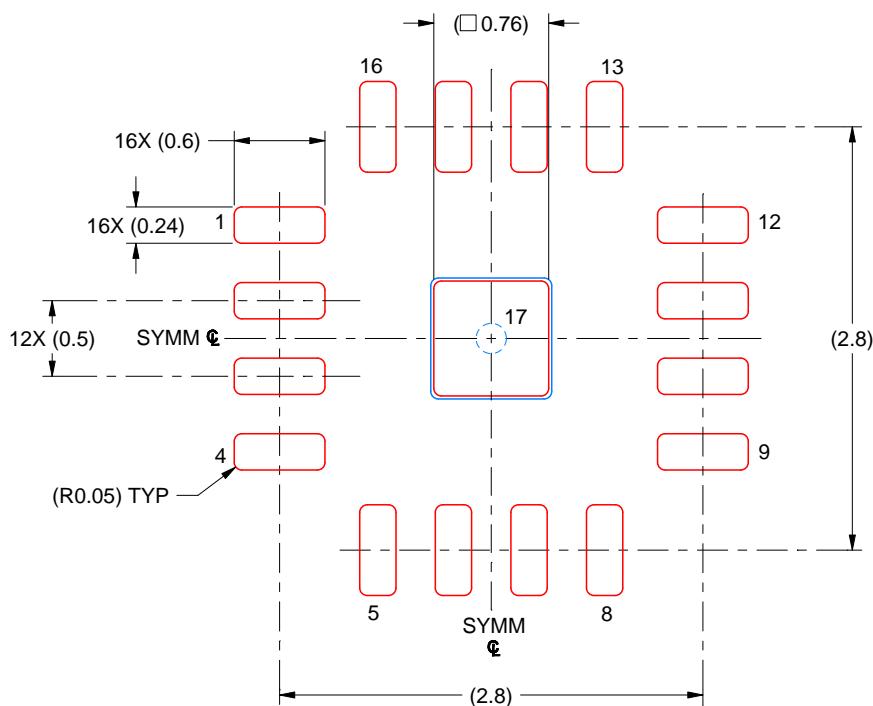
PLASTIC QUAD FLATPACK - NO LEAD

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 20X

SOLDER MASK DETAILS

4219118/A 11/2018

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RTE0016D

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

SOLDER PASTE EXAMPLE
BASED ON 0.125 MM THICK STENCIL
SCALE: 20X

EXPOSED PAD 17
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE

4219118/A 11/2018

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成任何索赔、损害、成本、损失和债务，TI 对此概不负责。

TI 提供的产品受 [TI 的销售条款](#) 或 [ti.com](#) 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址：Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, 德州仪器 (TI) 公司