

ISO7310-Q1 优异 EMC 低功耗单通道数字隔离器

1 特性

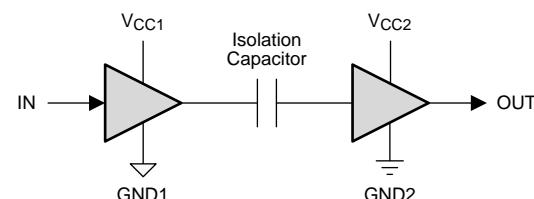
- 符合汽车应用要求
- 具有符合 AEC-Q100 的下列结果:
 - 器件温度 1 级: -40°C 至 +125°C 的环境运行温度范围
 - 器件人体模型 (HBM) 分类等级 3A
 - 器件充电器件模型 (CDM) 分类等级 C6
- 信号传输速率: 25Mbps
- 输入端集成有噪声滤波器
- 默认输出高电平和低电平选项
- 低功耗: I_{CC} 典型值
 - 1Mbps 时为 1.9mA, 25Mbps 时为 3.8mA (5V 电源供电时)
 - 1Mbps 时为 1.4mA, 25Mbps 时为 2.6mA (3.3V 电源供电时)
- 低传播延迟: 典型值 32ns (5V 电源供电时)
- 65kV/μs 瞬态抗扰度, 典型值 (5V 电源供电时)
- 优异的电磁兼容性 (EMC)
 - 系统级静电放电 (ESD)、瞬态放电 (EFT) 以及 抗浪涌保护
 - 低辐射
- 隔离隔栅寿命: > 25 年
- 由 3.3V 和 5V 电源供电
- 3.3V 和 5V 电平转换
- 窄体小尺寸集成电路 (SOIC)-8 封装
- 安全及管理批准:
 - 符合 DIN V VDE V 0884-10 和 DIN EN 61010-1 标准的 4242 V_{PK} 隔离 中的“DIN V VDE 0884-10”更改为“DIN V VDE V 0884-10”中)
 - 符合 UL 1577 标准且长达一分钟的 3000 V_{RMS}
 - CSA 组件接受通知 5A, IEC 60950-1 和 IEC 61010-1 终端设备标准中的 CSA 组件接受列表项中 CSA 组件接受列表项的“(审批正在审理中)”
 - 已计划符合 GB4943.1-2011 的 CQC 认证的“所有机构的审批已通过”

2 应用

- 在下列使用中的光电耦合器替代产品:
 - 工业用 FieldBus
 - ProfiBus
 - ModBus
 - DeviceNet™ 数据总线
 - 伺服控制接口
 - 电机控制
 - 电源
 - 电池组

3 说明

ISO7310-Q1 器件可提供符合 UL 1577 标准的长达 1 分钟且高达 3000 V_{RMS} 的电流隔离, 以及符合 VDE V 0884-10 标准的 4242 V_{PK} 隔离。这些器件具有一个隔离通道, 其逻辑输入和输出缓冲器由二氧化硅 (SiO₂) 绝缘隔栅分离开来。与隔离式电源一起使用时, ISO7310-Q1 器件可防止数据总线或者其他电路上的噪声电流进入本地接地端并干扰或损坏敏感电路。该器件已集成了针对恶劣工业环境的噪声滤波器, 在此类环境下, 器件的输入引脚上可能会出现短噪声脉冲。


ISO7310-Q1 器件具有晶体管-晶体管逻辑电路 (TTL) 输入阈值, 工作电压范围为 3V 到 5.5V。凭借创新的芯片设计和布线技术, ISO7310-Q1 器件的电磁兼容性得到了显著增强, 可确保提供系统级 ESD、EFT 和浪涌保护并符合辐射标准。

器件信息⁽¹⁾

器件型号	封装	封装尺寸 (标称值)
ISO7310-Q1	SOIC (8)	4.90mm x 3.91mm

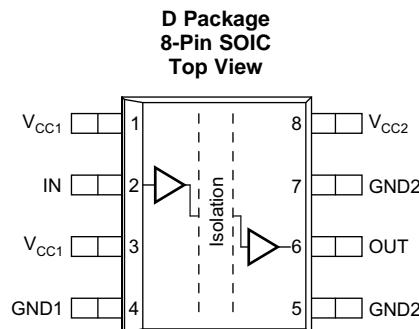
(1) 如需了解所有可用封装, 请见数据表末尾的可订购产品附录。

简化电路原理图

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

English Data Sheet: SLLSER6

目录


1 特性	1	8 Detailed Description	10
2 应用	1	8.1 Overview	10
3 说明	1	8.2 Functional Block Diagram	10
4 修订历史记录	2	8.3 Feature Description	11
5 Pin Configuration and Functions	3	8.4 Device Functional Modes	14
6 Specifications	4	9 Applications and Implementation	15
6.1 Absolute Maximum Ratings	4	9.1 Application Information	15
6.2 ESD Ratings	4	9.2 Typical Application	15
6.3 Recommended Operating Conditions	4	10 Power Supply Recommendations	17
6.4 Thermal Information	4	11 Layout	18
6.5 Electrical Characteristics—5-V Supply	5	11.1 Layout Guidelines	18
6.6 Supply Current Characteristics—5-V Supply	5	11.2 Layout Example	18
6.7 Electrical Characteristics—3.3-V Supply	5	12 器件和文档支持	19
6.8 Supply Current Characteristics—3.3-V Supply	5	12.1 文档支持	19
6.9 Power Dissipation Characteristics	6	12.2 社区资源	19
6.10 Switching Characteristics—5-V Supply	6	12.3 商标	19
6.11 Switching Characteristics	6	12.4 静电放电警告	19
6.12 Typical Characteristics	7	12.5 Glossary	19
7 Parameter Measurement Information	9	13 机械、封装和可订购信息	20

4 修订历史记录

注：之前版本的页码可能与当前版本有所不同。

日期	修订版本	注释
2015 年 12 月	*	最初发布。

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
GND1	4	—	Ground connection for V _{CC1}
GND2	5	—	Ground connection for V _{CC2}
	7		
IN	2	I	Input
OUT	6	O	Output
V _{CC1}	1	—	Power supply, V _{CC1}
	3		
V _{CC2}	8	—	Power supply, V _{CC2}

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage ⁽²⁾	V_{CC1}, V_{CC2}	-0.5	6	V
Voltage ⁽²⁾	IN, OUT	-0.5	$V_{CC}+0.5$ ⁽³⁾	V
I_O	Output current		± 15	mA
T_J	Junction temperature		150	°C
T_{STG}	Storage temperature	-65	150	°C

- Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- All voltage values are with respect to network ground terminal and are peak voltage values.
- Maximum voltage must not exceed 6 V.

6.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	± 4000	V
	Charged-device model (CDM), per AEC Q100-011	± 1500	

- AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V_{CC1}, V_{CC2}	Supply voltage	3	5.5	V	
I_{OH}	High-level output current	-4			mA
I_{OL}	Low-level output current		4		mA
V_{IH}	High-level input voltage	2	5.5	V	
V_{IL}	Low-level input voltage	0	0.8	V	
t_{ui}	Input pulse duration	40			ns
$1 / t_{ui}$	Signaling rate	0	25		Mbps
T_J	Junction temperature ⁽¹⁾		136		°C
T_A	Ambient temperature	-40	25	125	°C

- To maintain the recommended operating conditions for T_J , see the *Thermal Information* table.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾	ISO7310-Q1	UNIT
	D (SOIC)	
	8 PINS	
$R_{\theta JA}$	119.9	°C/W
$R_{\theta JCtop}$	65.2	°C/W
$R_{\theta JB}$	61.3	°C/W
Ψ_{JT}	19.3	°C/W
Ψ_{JB}	60.7	°C/W
$R_{\theta JCbot}$	N/A	°C/W

- For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953](#).

6.5 Electrical Characteristics—5-V Supply

V_{CC1} and V_{CC2} at $5\text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V_{OH} High-level output voltage	$I_{OH} = -4\text{ mA}$; see Figure 9		$V_{CC2} - 0.5$	4.7		V
	$I_{OH} = -20\text{ }\mu\text{A}$; see Figure 9		$V_{CC2} - 0.1$	5		
V_{OL} Low-level output voltage	$I_{OL} = 4\text{ mA}$; see Figure 9			0.2	0.4	V
	$I_{OL} = 20\text{ }\mu\text{A}$; see Figure 9			0	0.1	
$V_{I(HYS)}$ Input threshold voltage hysteresis				480		mV
I_{IH} High-level input current	$IN = V_{CC}$				10	μA
I_{IL} Low-level input current	$IN = 0\text{ V}$			-10		μA
CMTI Common-mode transient immunity	$V_I = V_{CC}$ or 0 V ; see Figure 11 .		25	65		kV/ μs

6.6 Supply Current Characteristics—5-V Supply

All inputs switching with square wave clock signal for dynamic I_{CC} measurement. V_{CC1} and V_{CC2} at $5\text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS		SUPPLY CURRENT	MIN	TYP	MAX	UNIT
Supply current for V_{CC1} and V_{CC2}	DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V , AC Input: $C_L = 15\text{ pF}$		I_{CC1}	0.3	0.6	mA
				I_{CC2}	1.6	2.4	
	10 Mbps	$C_L = 15\text{ pF}$		I_{CC1}	0.5	1	
				I_{CC2}	2.2	3.2	
	25 Mbps	$C_L = 15\text{ pF}$		I_{CC1}	0.8	1.3	
				I_{CC2}	3	4.2	

6.7 Electrical Characteristics—3.3-V Supply

V_{CC1} and V_{CC2} at $3.3\text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V_{OH} High-level output voltage	$I_{OH} = -4\text{ mA}$; see Figure 9		$V_{CC2} - 0.5$	3		V
	$I_{OH} = -20\text{ }\mu\text{A}$; see Figure 9		$V_{CC2} - 0.1$	3.3		
V_{OL} Low-level output voltage	$I_{OL} = 4\text{ mA}$; see Figure 9			0.2	0.4	V
	$I_{OL} = 20\text{ }\mu\text{A}$; see Figure 9			0	0.1	
$V_{I(HYS)}$ Input threshold voltage hysteresis				450		mV
I_{IH} High-level input current	$IN = V_{CC}$				10	μA
I_{IL} Low-level input current	$IN = 0\text{ V}$			-10		μA
CMTI Common-mode transient immunity	$V_I = V_{CC}$ or 0 V ; see Figure 11		25	50		kV/ μs

6.8 Supply Current Characteristics—3.3-V Supply

All inputs switching with square wave clock signal for dynamic I_{CC} measurement. V_{CC1} and V_{CC2} at $3.3\text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS		SUPPLY CURRENT	MIN	TYP	MAX	UNIT
Supply current for V_{CC1} and V_{CC2}	DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V , AC Input: $C_L = 15\text{ pF}$		I_{CC1}	0.2	0.4	mA
				I_{CC2}	1.2	1.8	
	10 Mbps	$C_L = 15\text{ pF}$		I_{CC1}	0.3	0.5	
				I_{CC2}	1.6	2.2	
	25 Mbps	$C_L = 15\text{ pF}$		I_{CC1}	0.5	0.8	
				I_{CC2}	2.1	3	

6.9 Power Dissipation Characteristics

$V_{CC1} = V_{CC2} = 5.5$ V, $T_J = 150^\circ\text{C}$, $C_L = 15$ pF, Input a 12.5 MHz 50% duty-cycle square wave (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
P_D	Maximum power dissipation			34	mW
P_{D1}	Power dissipation by Side-1			7.9	mW
P_{D2}	Power dissipation by Side-2			26.1	mW

6.10 Switching Characteristics—5-V Supply

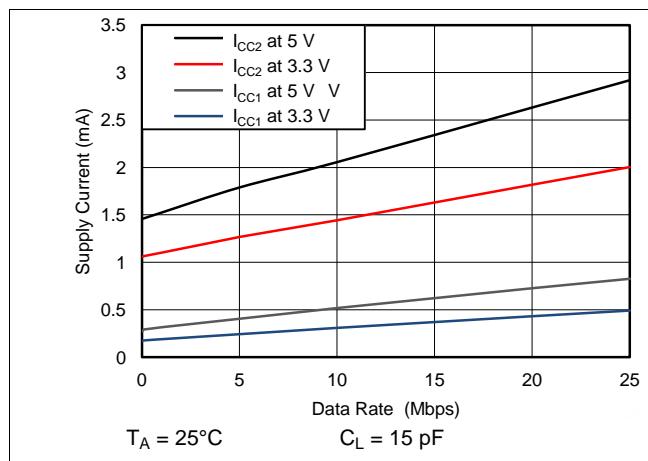
V_{CC1} and V_{CC2} at 5 V $\pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay time	20	32	58	ns
$PWD^{(1)}$	Pulse width distortion $ t_{PHL} - t_{PLH} $			4	ns
$t_{sk(pp)}^{(2)}$	Part-to-part skew time			24	ns
t_r	Output signal rise time	2.5			ns
t_f	Output signal fall time	2			ns
t_{fs}	Fail-safe output delay time from input power loss	7.5			μs

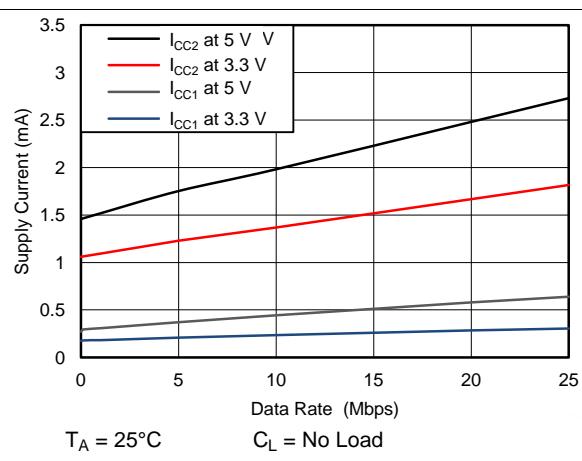
(1) Also known as pulse skew.

(2) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

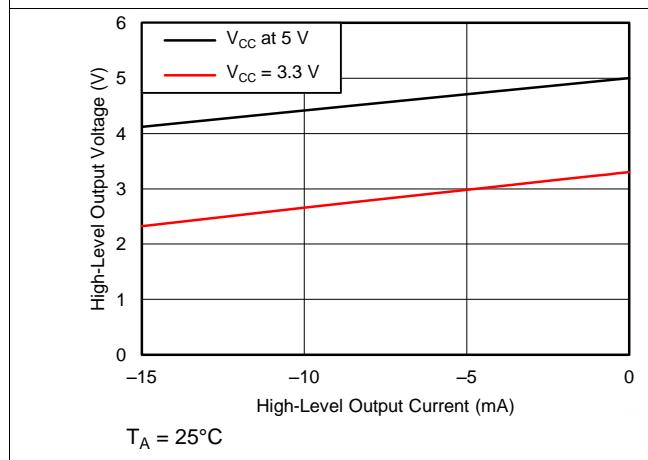
6.11 Switching Characteristics

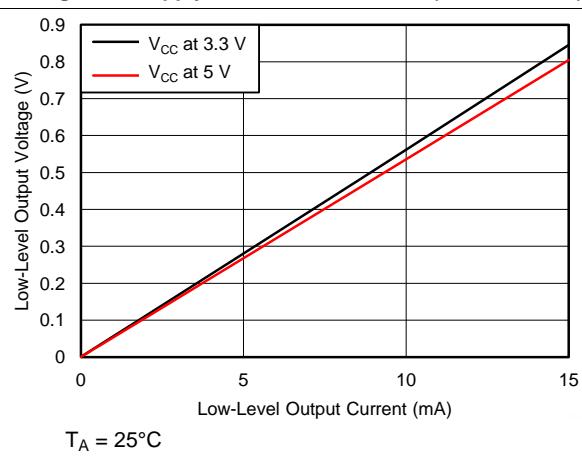

V_{CC1} and V_{CC2} at 3.3 V $\pm 10\%$ (over recommended operating conditions unless otherwise noted)

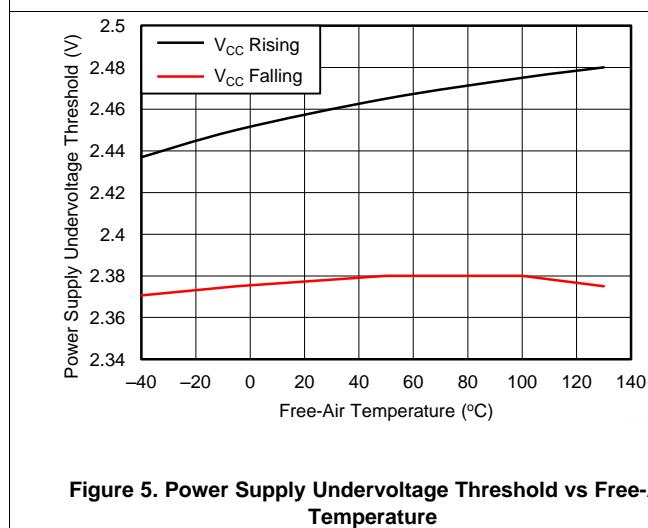
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay time	22	36	67	ns
$PWD^{(1)}$	Pulse width distortion $ t_{PHL} - t_{PLH} $			3.5	ns
$t_{sk(pp)}^{(2)}$	Part-to-part skew time	28			ns
t_r	Output signal rise time	3.2			ns
t_f	Output signal fall time	2.7			ns
t_{fs}	Fail-safe output delay time from input power loss	7.4			μs


(1) Also known as pulse skew.

(2) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.


6.12 Typical Characteristics


Figure 1. Supply Current vs Data Rate (With 15-pF Load)


Figure 2. Supply Current vs Data Rate (With No Load)

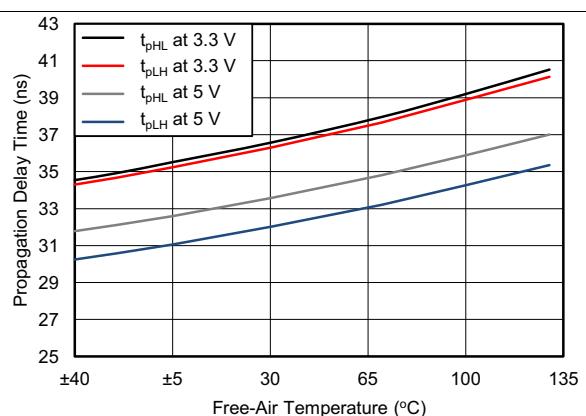

Figure 3. High-Level Output Voltage vs High-level Output Current

Figure 4. Low-Level Output Voltage vs Low-Level Output Current

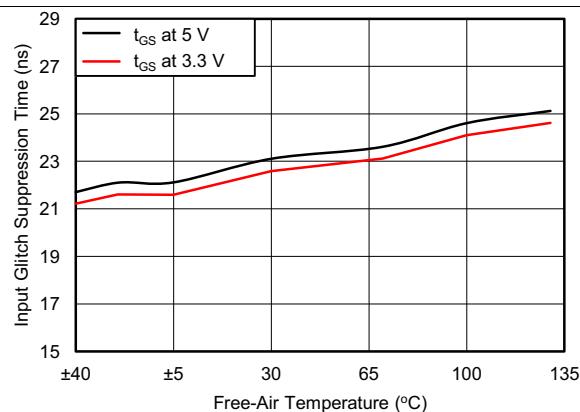


Figure 5. Power Supply Undervoltage Threshold vs Free-Air Temperature

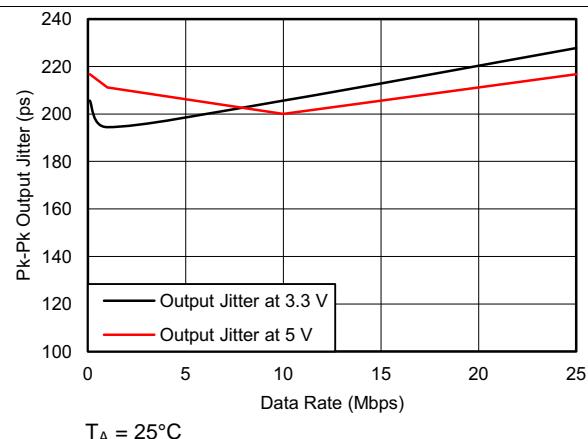


Figure 6. Propagation Delay Time vs Free-Air Temperature

Typical Characteristics (continued)

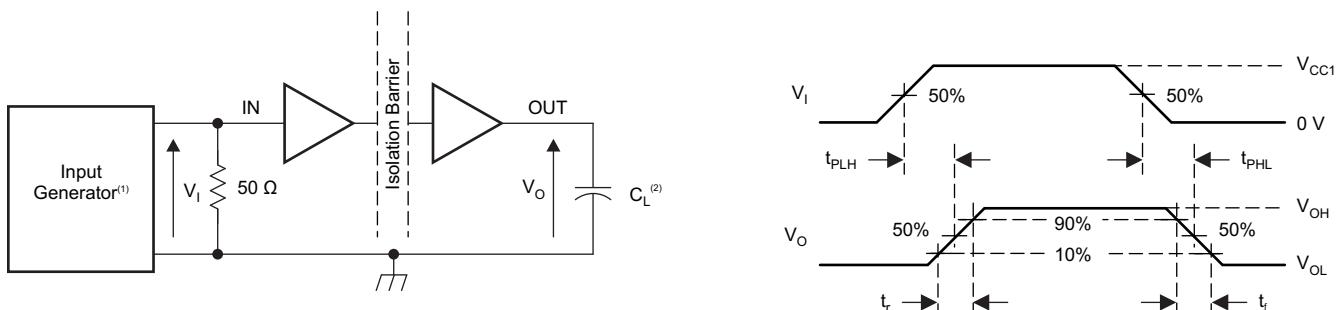
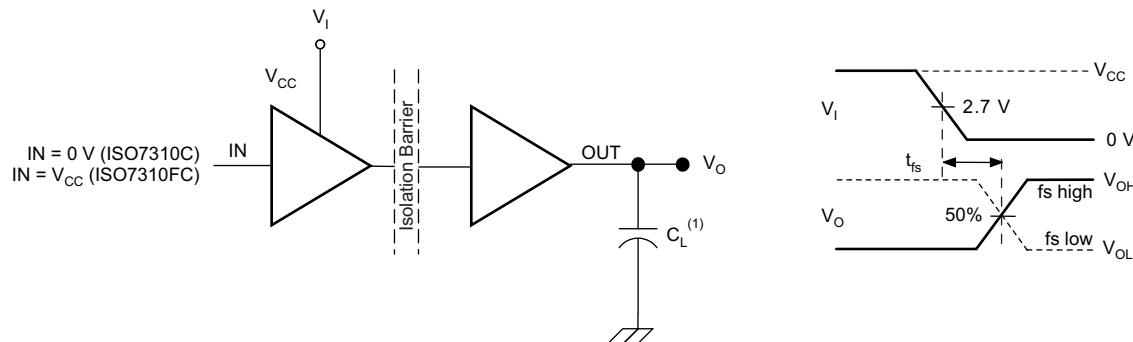

Figure 7. Input Glitch Suppression Time vs Free-Air Temperature

Figure 8. Output Jitter vs Data Rate


$T_A = 25^\circ\text{C}$

7 Parameter Measurement Information

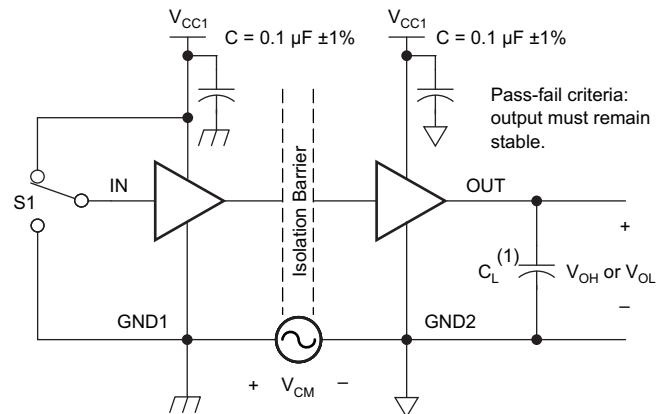

- (1) The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_0 = 50 \Omega$. At the input, a 50- Ω resistor is required to terminate the Input Generator signal. It is not needed in actual application.
- (2) $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 9. Switching Characteristic Test Circuit and Voltage Waveforms

- (1) $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 10. Fail-Safe Output Delay-Time Test Circuit and Voltage Waveforms

- (1) $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 11. Common-Mode Transient Immunity Test Circuit

8 Detailed Description

8.1 Overview

The isolator in Figure 12 is based on a capacitive isolation barrier technique. The I/O channel of the device consists of two internal data channels, a high-frequency (HF) channel with a bandwidth from 100 kbps up to 25 Mbps, and a low-frequency (LF) channel covering the range from 100 kbps down to DC.

In principle, a single-ended input signal entering the HF channel is split into a differential signal via the inverter gate at the input. The following capacitor-resistor networks differentiate the signal into transient pulses, which then are converted into CMOS levels by a comparator. The transient pulses at the input of the comparator can be either above or below the common mode voltage V_{REF} depending on whether the input bit transitions from 0 to 1 or 1 to 0. The comparator threshold is adjusted based on the expected bit transition. A decision logic (DCL) at the output of the HF channel comparator measures the durations between signal transients. If the duration between two consecutive transients exceeds a certain time limit (as in the case of a low-frequency signal), the DCL forces the output-multiplexer to switch from the high-frequency to the low-frequency channel.

8.2 Functional Block Diagram

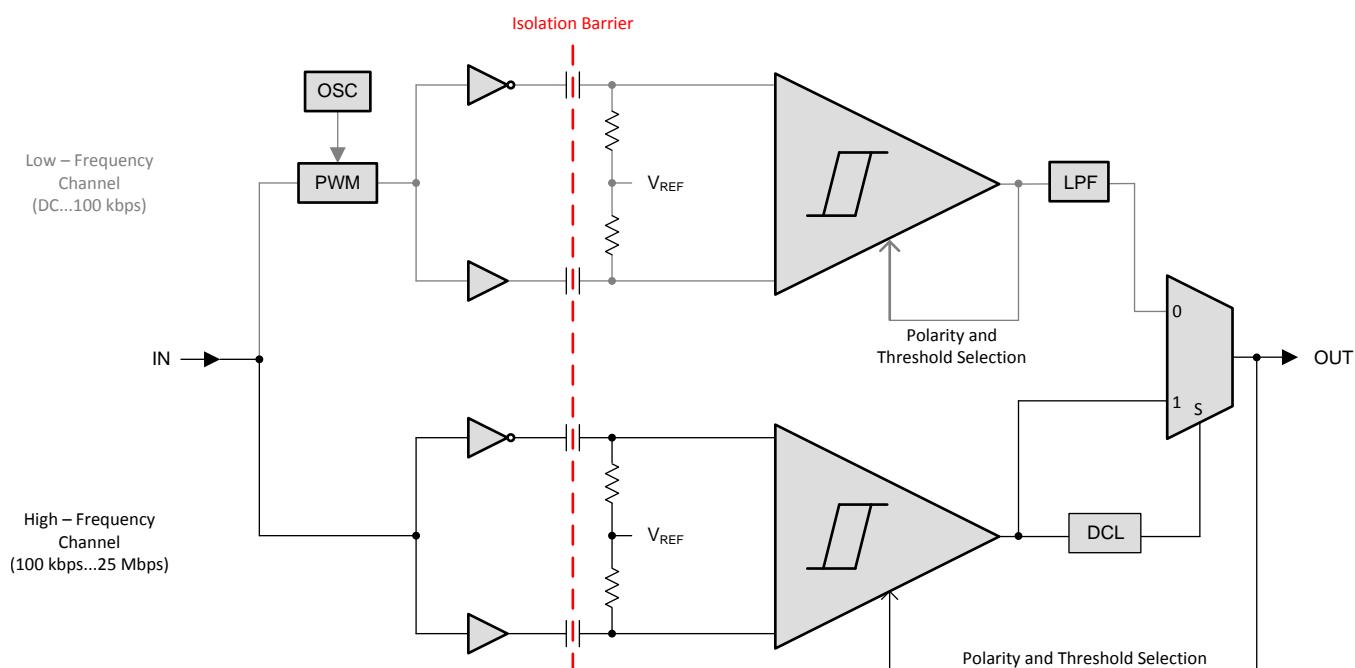


Figure 12. Conceptual Block Diagram of a Digital Capacitive Isolator

Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a sufficiently high frequency, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter (LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output multiplexer.

8.3 Feature Description

ORDERABLE DEVICE	RATED ISOLATION	MAX DATA RATE	DEFAULT OUTPUT
ISO7310CQDQ1 and ISO7310CQDRQ1	3000 V _{RMS} / 4242 V _{PK} ⁽¹⁾	25 Mbps	High
ISO7310FCQDQ1 and ISO7310FCQDRQ1			Low

(1) See the *Regulatory Information* section for detailed Isolation Ratings

8.3.1 High Voltage Feature Description

8.3.1.1 *Insulation and Safety-Related Specifications for D-8 Package*

over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01) Minimum air gap (clearance)	Shortest terminal-to-terminal distance through air	4			mm
L(I02) Minimum external tracking (creepage)	Shortest terminal-to-terminal distance across the package surface	4			mm
CTI Tracking resistance (comparative tracking index)	DIN EN 60112 (VDE 0303-11); IEC 60112	400			V
DTI Minimum internal gap (internal clearance)	Distance through the insulation	13			µm
R _{IO} Isolation resistance, input to output ⁽¹⁾	V _{IO} = 500 V, T _A = 25°C	>10 ¹²			Ω
	V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C	>10 ¹¹			Ω
C _{IO} Isolation capacitance, input to output ⁽¹⁾	V _{IO} = 0.4 sin (2πft), f = 1 MHz	0.5			pF
C _I Input capacitance ⁽²⁾	V _I = V _{CC} /2 + 0.4 sin (2πft), f = 1 MHz, V _{CC} = 5 V	1.6			pF

(1) All pins on each side of the barrier tied together creating a two-terminal device.

(2) Measured from input pin to ground.

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance.

Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

8.3.1.2 Insulation Characteristics

over recommended operating conditions (unless otherwise noted)

PARAMETER ⁽¹⁾		TEST CONDITIONS	SPECIFICATION	UNIT
V_{IOWM}	Maximum isolation working voltage		400	V_{RMS}
V_{IORM}	Maximum repetitive peak voltage per DIN V VDE V 0884-10		566	V_{PK}
V_{PR}	Input-to-output test voltage per DIN V VDE V 0884-10	After Input/Output safety test subgroup 2/3, $V_{PR} = V_{IORM} \times 1.2$, $t = 10$ s, Partial discharge < 5 pC	680	V_{PK}
		Method a, After environmental tests subgroup 1, $V_{PR} = V_{IORM} \times 1.6$, $t = 10$ s, Partial Discharge < 5 pC	906	
		Method b1, $V_{PR} = V_{IORM} \times 1.875$, $t = 1$ s (100% Production test) Partial discharge < 5 pC	1062	
V_{IOTM}	Maximum transient overvoltage per DIN V VDE V 0884-10	$V_{TEST} = V_{IOTM}$ $t = 60$ sec (qualification) $t = 1$ sec (100% production)	4242	V_{PK}
V_{IOSM}	Maximum surge isolation voltage per DIN V VDE V 0884-10	Test method per IEC 60065, 1.2/50 μ s waveform, $V_{TEST} = 1.3 \times V_{IOSM} = 7800 V_{PK}$ (qualification)	6000	V_{PK}
V_{ISO}	Withstand isolation voltage per UL 1577	$V_{TEST} = V_{ISO} = 3000 V_{RMS}$, $t = 60$ sec (qualification); $V_{TEST} = 1.2 \times V_{ISO} = 3600 V_{RMS}$, $t = 1$ sec (100% production)	3000	V_{RMS}
R_S	Insulation resistance	$V_{IO} = 500$ V at $T_S = 150^\circ\text{C}$	$>10^9$	Ω
	Pollution degree		2	

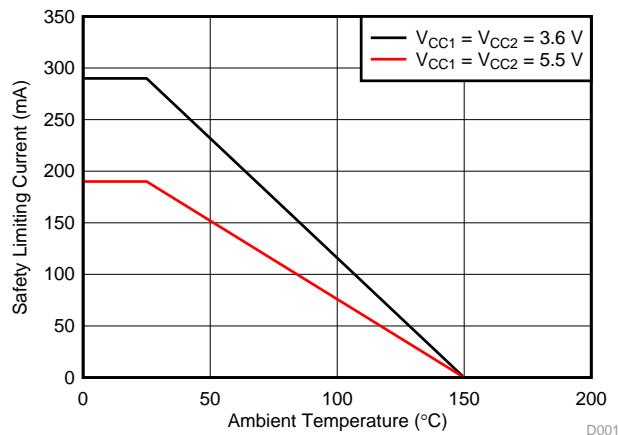
(1) Climatic Classification 40/125/21

Table 1. IEC 60664-1 Ratings Table

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group	Material group	II
Installation classification	Rated mains voltage $\leq 150 V_{RMS}$	I-IV
	Rated mains voltage $\leq 300 V_{RMS}$	I-III

8.3.1.3 Regulatory Information

VDE	CSA	UL	CQC
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1):2011-07	Approved under CSA Component Acceptance Notice 5A, IEC 60950-1, and IEC 61010-1	Recognized under UL 1577 Component Recognition Program	Plan to certify according to GB4943.1-2011
Basic Insulation Maximum Transient Overvoltage, 4242 V_{PK} ; Maximum Surge Isolation Voltage, 6000 V_{PK} ; Maximum Repetitive Peak Voltage, 566 V_{PK}	400 V_{RMS} Basic Insulation and 200 V_{RMS} Reinforced Insulation working voltage per CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed.+A1+A2; 300 V_{RMS} Basic Insulation working voltage per CSA 61010-1-12 and IEC 61010-1 3rd Ed.	Single protection, 3000 V_{RMS} ⁽¹⁾	Basic Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 V_{RMS} maximum working voltage
Certificate number: 40016131	Master contract number: 220991	File number: E181974	Certification planned


(1) Production tested $\geq 3600 V_{RMS}$ for 1 second in accordance with UL 1577.

8.3.1.4 Safety Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I_s Safety input, output, or supply current	$R_{\theta JA} = 119.9 \text{ }^{\circ}\text{C/W}$, $V_I = 5.5 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$			190	mA
	$R_{\theta JA} = 119.9 \text{ }^{\circ}\text{C/W}$, $V_I = 3.6 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$			290	
T_s Maximum safety temperature				150	°C

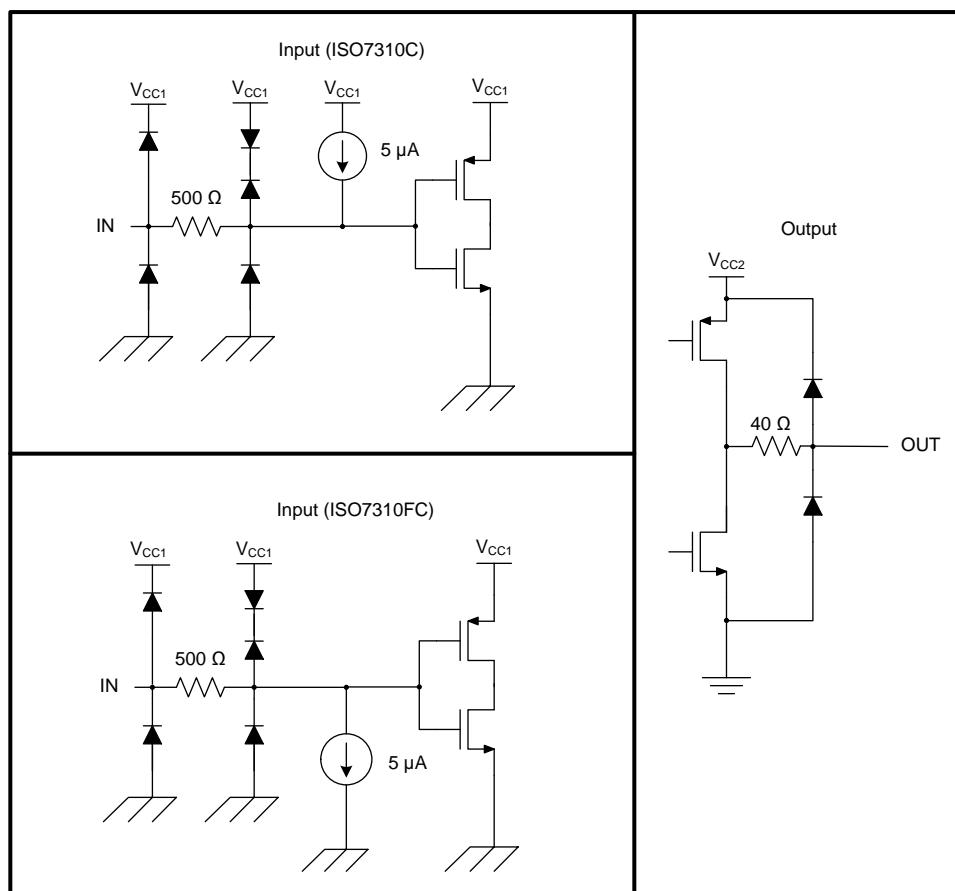
The safety-limiting constraint is the absolute-maximum junction temperature specified in the *Absolute Maximum Ratings* table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the *Thermal Information* table is that of a device installed on a High-K Test Board for Leaded Surface-Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

Figure 13. Thermal Derating Curve per VDE

8.4 Device Functional Modes

Table 2 lists the functional modes for the ISO7310-Q1 device.

Table 2. Function Table⁽¹⁾


V _{CC1}	V _{CC2}	IN	OUT	
			ISO7310CQDQ1 AND ISO7310CQDRQ1	ISO7310FCQDQ1 AND ISO7310FCQDRQ1
PU	PU	H	H	H
		L	L	L
		Open	H ⁽²⁾	L ⁽³⁾
PD	PU	X	H ⁽²⁾	L ⁽³⁾
X	PD	X	Undetermined	Undetermined

(1) PU = Powered up ($V_{CC} \geq 3$ V); PD = Powered down ($V_{CC} \leq 2.1$ V); X = Irrelevant; H = High level; L = Low level

(2) In fail-safe condition, output defaults to high level

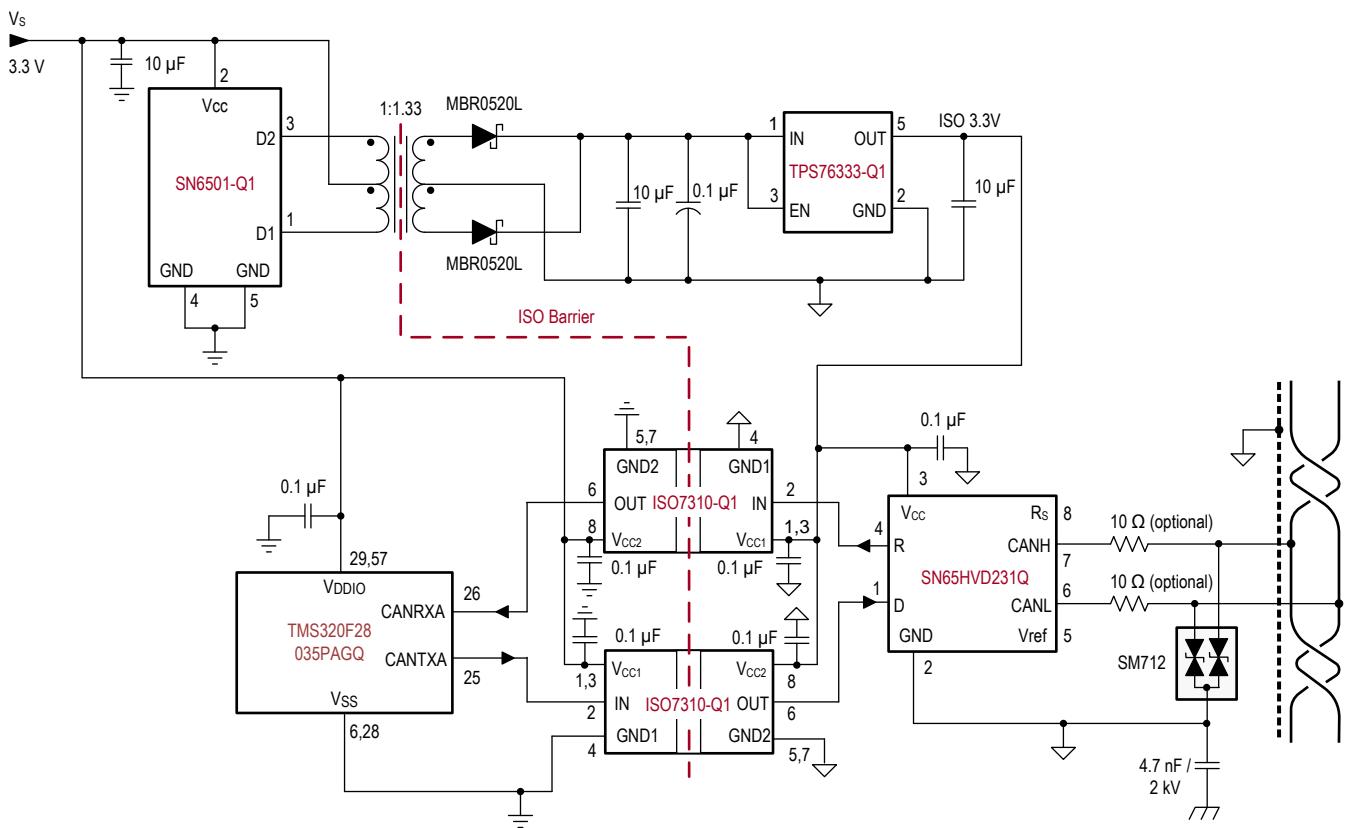
(3) In fail-safe condition, output defaults to low level

8.4.1 Device I/O Schematics

Figure 14. Device I/O Schematics

9 Applications and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The ISO7310-Q1 device uses single-ended TTL-logic switching technology. The supply voltage range is from 3 V to 5.5 V for both supplies, V_{CC1} and V_{CC2} . When designing with digital isolators, keep in mind that due to the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (essentially μ C or UART), and a data converter or a line transceiver, regardless of the interface type or standard.

9.2 Typical Application

The ISO7310-Q1 device can be used with a Texas Instruments' microcontroller, CAN transceiver, transformer driver, and low-dropout voltage regulator to create an Isolated CAN Interface as shown in [Figure 15](#).

(1) Multiple pins and capacitors omitted for clarity purpose.

Figure 15. Isolated CAN Interface

Typical Application (continued)

9.2.1 Design Requirements

9.2.1.1 Typical Supply Current Equations

For the equations in this section, the following is true:

- I_{CC1} and I_{CC2} are typical supply currents measured in mA
- f is the data rate measured in Mbps
- C_L is the capacitive load measured in pF

At $V_{CC1} = V_{CC2} = 5$ V

$$I_{CC1} = 0.30517 + (0.01983 \times f) \quad (1)$$

$$I_{CC2} = 1.40021 + (0.02879 \times f) + (0.0021 \times f \times C_L) \quad (2)$$

At $V_{CC1} = V_{CC2} = 3.3$ V

$$I_{CC1} = 0.18133 + (0.01166 \times f) \quad (3)$$

$$I_{CC2} = 1.053 + (0.01607 \times f) + (0.001488 \times f \times C_L) \quad (4)$$

9.2.2 Detailed Design Procedure

Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO7310-Q1 device only requires two external bypass capacitors to operate.

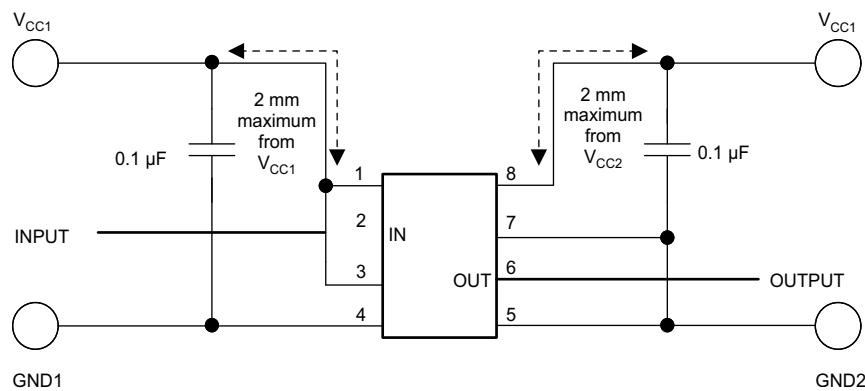


Figure 16. Typical ISO7310-Q1 Circuit Hook-up

9.2.2.1 Electromagnetic Compatibility (EMC) Considerations

Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO7310-Q1 device incorporates many chip-level design improvements for overall system robustness. Some of these improvements include:

- Robust ESD protection cells for input and output signal pins and inter-chip bond pads.
- Low-resistance connectivity of ESD cells to supply and ground pins.
- Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.
- Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path.
- PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs.
- Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.

Typical Application (continued)

9.2.3 Application Curves

The following typical eye diagrams of the ISO7310-Q1 device indicate low jitter and wide open eye at the maximum data rate of 25 Mbps.

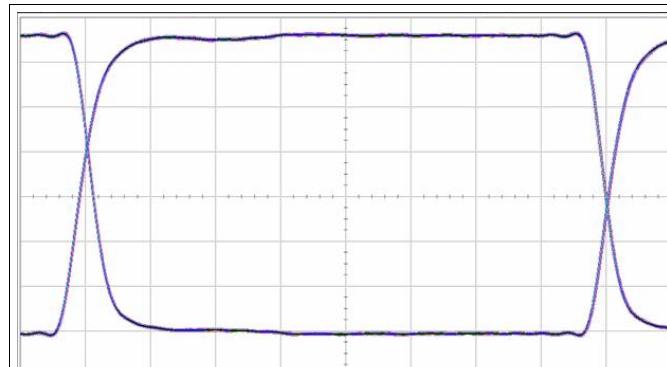


Figure 17. Eye Diagram at 25 Mbps, 5 V and 25°C

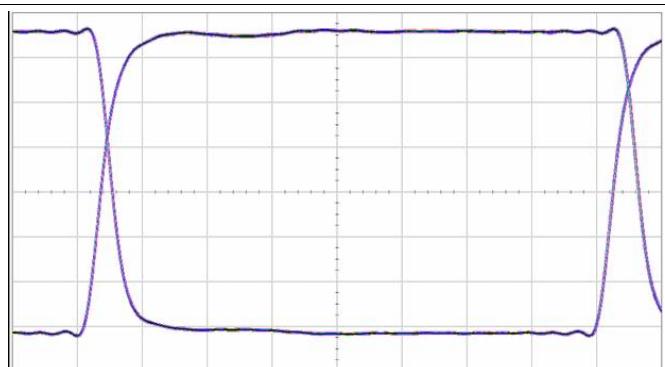


Figure 18. Eye Diagram at 25 Mbps, 3.3 V and 25°C

10 Power Supply Recommendations

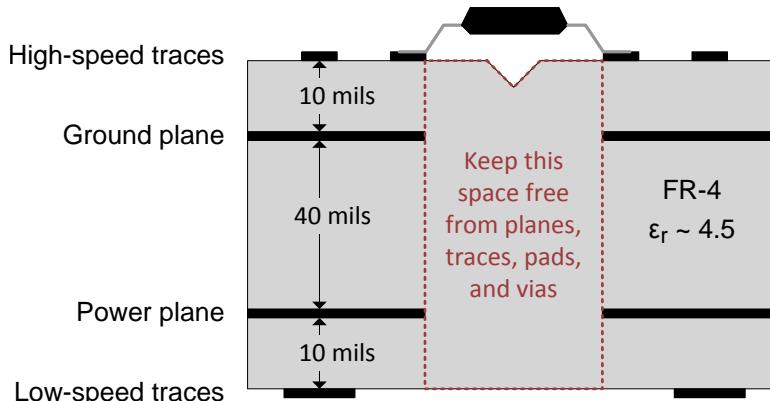
To help ensure reliable operation at data rates and supply voltages, a 0.1- μ F bypass capacitor is recommended at input and output supply pins (V_{CC1} and V_{CC2}). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments' [SN6501-Q1](#) device. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501-Q1 datasheet ([SLLSEF3](#)).

11 Layout

11.1 Layout Guidelines

A minimum of four layers is required to accomplish a low EMI PCB design (see [Figure 19](#)). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.

- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in².
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias.


If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

For detailed layout recommendations, see the application note [SLLA284, Digital Isolator Design Guide](#).

11.1.1 PCB Material

For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics.

11.2 Layout Example

Figure 19. Recommended Layer Stack

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

相关文档如下：

- 《数字隔离器设计指南》，[SLLA284](#)
- 《ISO7310 评估模块用户指南》，[SLLU206](#)
- 《隔离相关术语》，[SLLA353](#)
- 《SN6501-Q1 用于隔离电源的变压器驱动器》，[SLLSEF3](#)
- 《SN65HVD231Q 3.3V CAN 收发器》，[SGLS398](#)
- 《TMS320F28035 Piccolo™ 微控制器》，[SPRS584](#)
- 《TPS76333-Q1 低功耗 150mA 低压降线性稳压器》，[SGLS247](#)

12.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 商标

DeviceNet, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损伤。

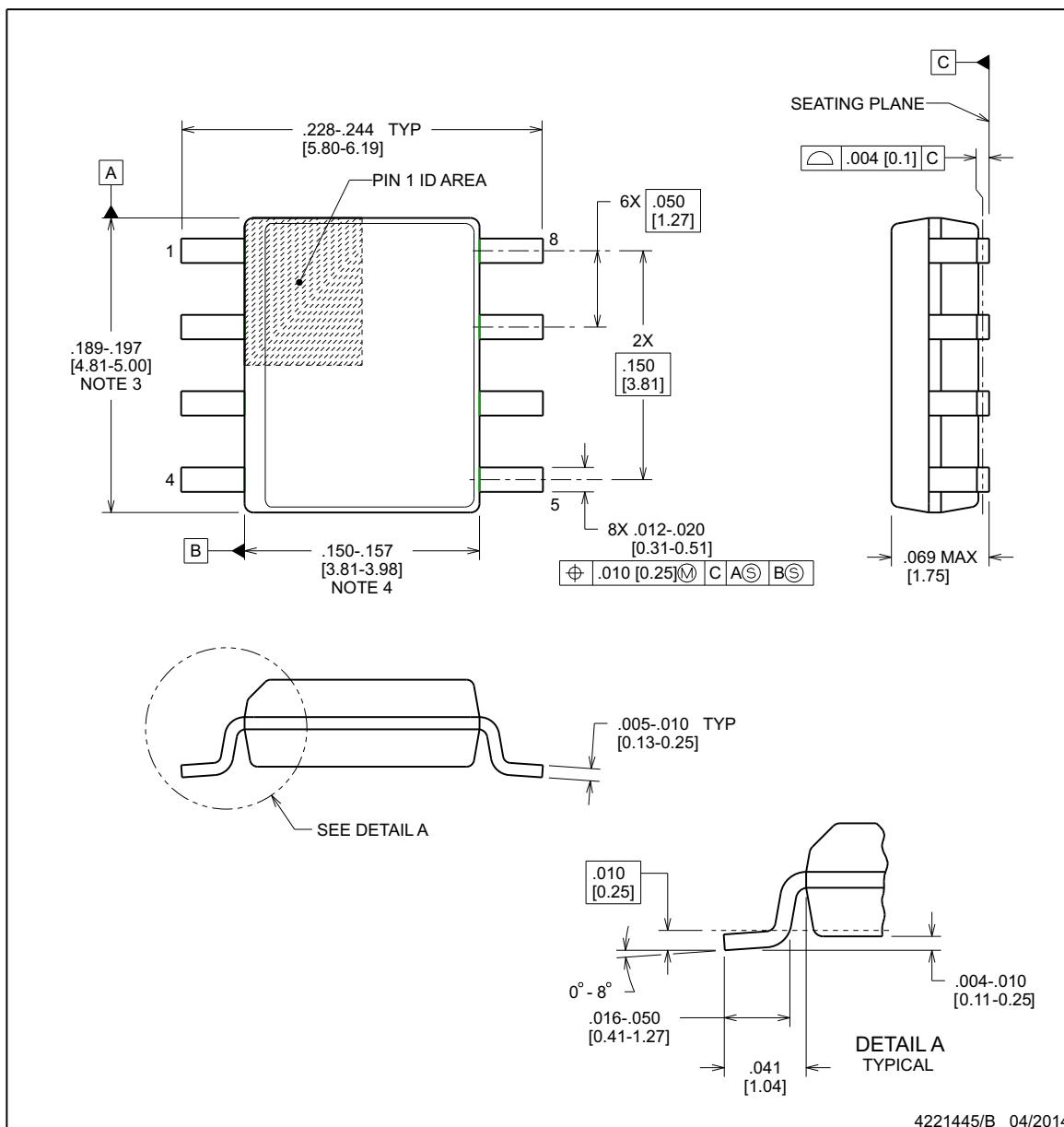
12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本, 请查阅左侧的导航栏。

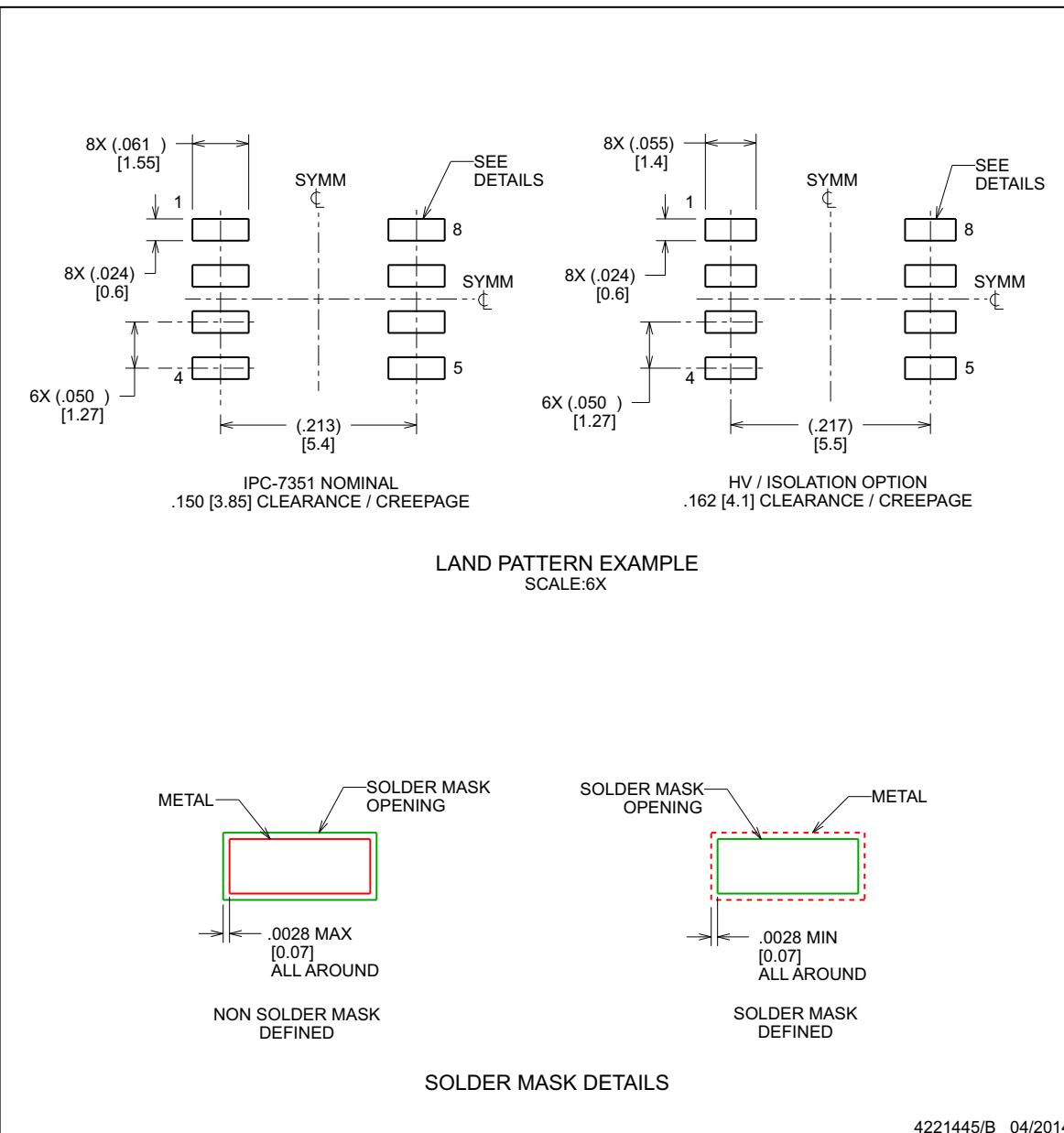


PACKAGE OUTLINE

D0008B

SOIC - 1.75 mm max height

SOIC


NOTES:

- Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
- This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15], per side.
- This dimension does not include interlead flash.
- Reference JEDEC registration MS-012, variation AA.

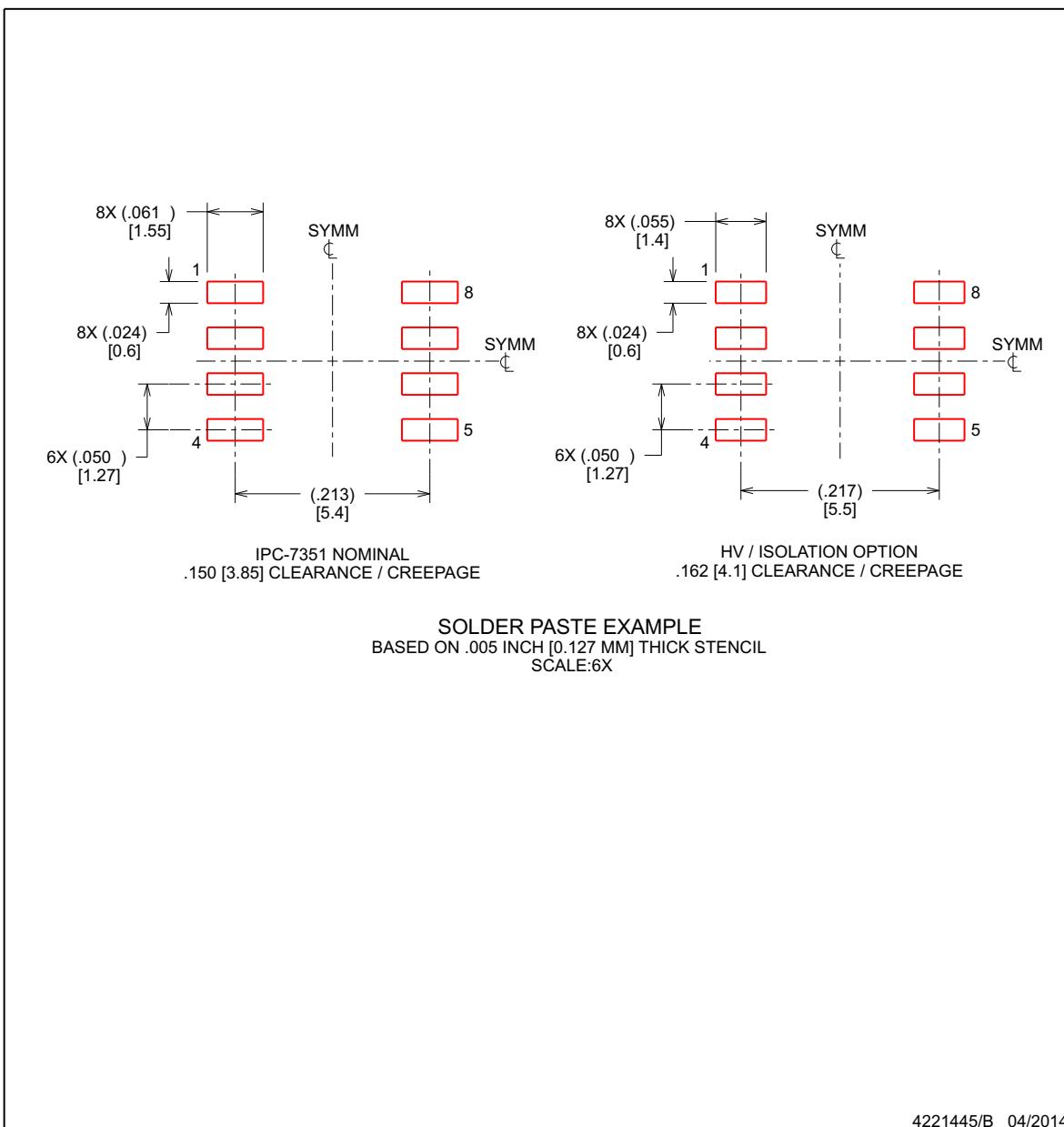
EXAMPLE BOARD LAYOUT

D0008B
SOIC - 1.75 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

D0008B

SOIC - 1.75 mm max height

SOIC

4221445/B 04/2014

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

重要声明

德州仪器(TI) 及其下属子公司有权根据 **JESD46** 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 **JESD48** 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的**TI** 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 **TI** 半导体产品销售条件与条款的适用规范。仅在 **TI** 保证的范围内, 且 **TI** 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定, 否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 **TI** 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险, 客户应提供充分的设计与操作安全措施。

TI 不对任何 **TI** 专利权、版权、屏蔽作品权或其它与使用了 **TI** 组件或服务的组合设备、机器或流程相关的 **TI** 知识产权中授予的直接或隐含权限作出任何保证或解释。**TI** 所发布的与第三方产品或服务有关的信息, 不能构成从 **TI** 获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可, 或是 **TI** 的专利权或其它知识产权方面的许可。

对于 **TI** 的产品手册或数据表中 **TI** 信息的重要部分, 仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。**TI** 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 **TI** 组件或服务时, 如果对该组件或服务参数的陈述与 **TI** 标明的参数相比存在差异或虚假成分, 则会失去相关 **TI** 组件或服务的所有明示或暗示授权, 且这是不正当的、欺诈性商业行为。**TI** 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意, 尽管任何应用相关信息或支持仍可能由 **TI** 提供, 但他们将独自负责满足与其产品及在其应用中使用 **TI** 产品相关的所有法律、法规和安全相关要求。客户声明并同意, 他们具备制定与实施安全措施所需的全部专业技术和知识, 可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类安全关键应用中使用任何 **TI** 组件而对 **TI** 及其代理造成任何损失。

在某些场合中, 为了推进安全相关应用有可能对 **TI** 组件进行特别的促销。**TI** 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此, 此类组件仍然服从这些条款。

TI 组件未获得用于 **FDA Class III** (或类似的生命攸关医疗设备) 的授权许可, 除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 **TI** 特别注明属于军用等级或“增强型塑料”的 **TI** 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同意, 对并非指定面向军事或航空航天用途的 **TI** 组件进行军事或航空航天方面的应用, 其风险由客户单独承担, 并且由客户独自负责满足与此类使用相关的所有法律和法规要求。

TI 已明确指定符合 **ISO/TS16949** 要求的产品, 这些产品主要用于汽车。在任何情况下, 因使用非指定产品而无法达到 **ISO/TS16949** 要求, **TI** 不承担任何责任。

产品	应用
数字音频	www.ti.com.cn/audio
放大器和线性器件	www.ti.com.cn/amplifiers
数据转换器	www.ti.com.cn/dataconverters
DLP® 产品	www.dlp.com
DSP - 数字信号处理器	www.ti.com.cn/dsp
时钟和计时器	www.ti.com.cn/clockandtimers
接口	www.ti.com.cn/interface
逻辑	www.ti.com.cn/logic
电源管理	www.ti.com.cn/power
微控制器 (MCU)	www.ti.com.cn/microcontrollers
RFID 系统	www.ti.com.cn/rfidsys
OMAP应用处理器	www.ti.com/omap
无线连通性	www.ti.com.cn/wirelessconnectivity
	德州仪器在线技术支持社区 www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568号, 中建大厦32楼邮政编码: 200122
Copyright © 2016, 德州仪器半导体技术(上海)有限公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7310CQDQ1	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7310Q	Samples
ISO7310CQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7310Q	Samples
ISO7310FCQDQ1	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7310FQ	Samples
ISO7310FCQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7310FQ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

重要声明和免责声明

TI 均以“原样”提供技术性及可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证其中不含任何瑕疵，且不做任何明示或暗示的担保，包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任：(1) 针对您的应用选择合适的TI 产品；(2) 设计、验证并测试您的应用；(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更，恕不另行通知。TI 对您使用所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源，也不提供其它TI 或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等，TI 对此概不负责，并且您须赔偿由此对TI 及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (<http://www.ti.com.cn/zh-cn/legal/termsofsale.html>) 以及ti.com.cn 上或随附TI 产品提供的其他可适用条款的约束。TI 提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122
Copyright © 2020 德州仪器半导体技术（上海）有限公司